1
|
Van Nerum K, Wenzel A, Argemi-Muntadas L, Kafkia E, Drews A, Brun IS, Lavro V, Roelofsen A, Stamidis N, Arnal SB, Zhao C, di Sanzo S, Völker-Albert M, Petropoulos S, Moritz T, Żylicz JJ. α-Ketoglutarate promotes trophectoderm induction and maturation from naive human embryonic stem cells. Nat Cell Biol 2025:10.1038/s41556-025-01658-1. [PMID: 40269259 DOI: 10.1038/s41556-025-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Development and lineage choice are driven by interconnected transcriptional, epigenetic and metabolic changes. Specific metabolites, such as α-ketoglutarate (αKG), function as signalling molecules affecting the activity of chromatin-modifying enzymes. However, how metabolism coordinates cell-state changes, especially in human pre-implantation development, remains unclear. Here we uncover that inducing naive human embryonic stem cells towards the trophectoderm lineage results in considerable metabolic rewiring, characterized by αKG accumulation. Elevated αKG levels potentiate the capacity of naive embryonic stem cells to specify towards the trophectoderm lineage. Moreover, increased αKG levels promote blastoid polarization and trophectoderm maturation. αKG supplementation does not affect global histone methylation levels; rather, it decreases acetyl-CoA availability, reduces histone acetyltransferase activity and weakens the pluripotency network. We propose that metabolism functions as a positive feedback loop aiding in trophectoderm fate induction and maturation, highlighting that global metabolic rewiring can promote specificity in cell fate decisions through intricate regulation of signalling and chromatin.
Collapse
Affiliation(s)
- Karlien Van Nerum
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Kafkia
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Antar Drews
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sophie Brun
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria Lavro
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Annina Roelofsen
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Bages Arnal
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Hayashi Y, Bai H, Takahashi M, Mitani T, Kawahara M. Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†. Biol Reprod 2025; 112:614-627. [PMID: 39812326 DOI: 10.1093/biolre/ioaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025] Open
Abstract
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear. In this study, we analyzed mouse embryos into which liver-derived somatic mitochondria were introduced (SM-embryos). Most SM-embryos were arrested at the two-cell stage. Some of the introduced somatic mitochondria became round, while others remained elongated and large. RNA-sequencing revealed a disruption of both minor and major zygotic gene activation (ZGA) in SM-embryos. Minor ZGA did not terminate before major ZGA, and the onset of major ZGA was inhibited, as shown by histone modification analyses of histone H3 lysine 4 trimethylation and histone H3 lysine 27 acetylation. Further analysis of metabolites involved in histone modification regulation in SM-embryos showed a significantly lower NAD+/NADH ratio in SM-embryos than in control embryos. Additionally, the mitochondrial membrane potential, an indicator of mitochondrial function, was lower in SM-embryos than in control embryos. Our results demonstrated that introducing somatic mitochondria into an embryo induces mitochondrial dysfunction, thereby disrupting metabolite production, leading to a disruption in ZGA and inducing developmental arrest. Our findings reveal that the alignment between cell differentiation and mitochondrial maturity is essential for early embryonic development.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Hokkaido, Japan
| | - Tomohiro Mitani
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
3
|
Frisch AT, Wang Y, Xie B, Yang A, Ford BR, Joshi S, Kedziora KM, Peralta R, Wilfahrt D, Mullett SJ, Spahr K, Lontos K, Jana JA, Dean VG, Gunn WG, Gelhaus S, Poholek AC, Rivadeneira DB, Delgoffe GM. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab 2025; 37:870-885.e8. [PMID: 39879981 DOI: 10.1016/j.cmet.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo. We used dichloroacetate (DCA) to modulate glycolytic metabolism during expansion, resulting in elevated mitochondrial capacity, stemness, and improved antitumor efficacy in murine T cell receptor (TCR)-Tg and human CAR-T cells. DCA-conditioned T cells surprisingly show no elevated intratumoral effector function but rather have improved engraftment. DCA conditioning decreases reliance on glucose, promoting usage of serum-prevalent physiologic carbon sources. Further, DCA conditioning promotes metabolic flux from mitochondria to chromatin, resulting in increased histone acetylation at key longevity genes. Thus, hyperglycemic culture conditions promote expansion at the expense of metabolic flexibility and suggest pharmacologic metabolic rewiring as a beneficial strategy for improvement of cellular immunotherapies.
Collapse
Affiliation(s)
- Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University, Beijing, China
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aaron Yang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronal Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica A Jana
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria G Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William G Gunn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Bae JE, Jang S, Kim JB, Park NY, Jo DS, Hyung H, Kim P, Kim MS, Ryu HY, Lee HS, Lee DS, Baes M, Ryoo ZY, Cho DH. HSD17B4 deficiency causes dysregulation of primary cilia and is alleviated by acetyl-CoA. Nat Commun 2025; 16:2663. [PMID: 40102401 PMCID: PMC11920078 DOI: 10.1038/s41467-025-57793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
Primary cilia are dynamic sensory organelles orchestrating key signaling pathways, and disruption of primary ciliogenesis is implicated in a spectrum of genetic disorders. The peroxisomal bifunctional enzyme HSD17B4 is pivotal for peroxisomal β-oxidation and acetyl-CoA synthesis, and its deficiency profoundly impairs peroxisomal metabolism. While patients with HSD17B4 deficiency exhibit ciliopathy-like symptoms due to dysfunctional primary cilia, the molecular connection between HSD17B4 and ciliopathy remains poorly understood. Here, we demonstrate that HSD17B4 deficiency impairs primary ciliogenesis and alters cilia-mediated signaling, suggesting a potential link between peroxisomal metabolism and ciliary function. Notably, elevation of acetyl-CoA rescues ciliary defects via HDAC6-mediated ciliogenesis in HSD17B4-deficient cells. Strikingly, acetate administration restores motor function, enhances primary cilia formation, and preserves the Purkinje layer in Hsd17B4-knockout mice. These findings provide insights into the functional link between HSD17B4 and primary cilia, highlighting acetyl-CoA as a potential therapeutic target for HSD17B4 deficiency and ciliopathy.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Jang
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Na Yeon Park
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, Seoul, Republic of Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Dong-Hyung Cho
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea.
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Qiu H, Ye C. Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism. Biol Cell 2025; 117:e70002. [PMID: 40123381 DOI: 10.1111/boc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.
Collapse
Affiliation(s)
- Hong Qiu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| |
Collapse
|
6
|
Park S, Hall MN. Metabolic reprogramming in hepatocellular carcinoma: mechanisms and therapeutic implications. Exp Mol Med 2025; 57:515-523. [PMID: 40025169 PMCID: PMC11958682 DOI: 10.1038/s12276-025-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatocellular carcinoma features extensive metabolic reprogramming. This includes alterations in major biochemical pathways such as glycolysis, the pentose phosphate pathway, amino acid metabolism and fatty acid metabolism. Moreover, there is a complex interplay among these altered pathways, particularly involving acetyl-CoA (coenzyme-A) metabolism and redox homeostasis, which in turn influences reprogramming of other metabolic pathways. Understanding these metabolic changes and their interactions with cellular signaling pathways offers potential strategies for the targeted treatment of hepatocellular carcinoma and improved patient outcomes. This review explores the specific metabolic alterations observed in hepatocellular carcinoma and highlights their roles in the progression of the disease.
Collapse
Affiliation(s)
- Sujin Park
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
| | | |
Collapse
|
7
|
Smith JJ, Valentino TR, Ablicki AH, Banerjee R, Colligan AR, Eckert DM, Desjardins GA, Diehl KL. A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells. Cell Chem Biol 2025; 32:325-337.e10. [PMID: 39874963 PMCID: PMC11848811 DOI: 10.1016/j.chembiol.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. Herein, we engineered an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). The sensor, "PancACe," has a maximum change of ∼2-fold and a response range of ∼10 μM-2 mM acetyl-CoA. We demonstrated that the sensor has a greater than 7-fold selectivity over coenzyme A, butyryl-CoA, malonyl-CoA, and succinyl-CoA, and a 2.3-fold selectivity over propionyl-CoA. We expressed the sensor in E. coli and showed that it enables detection of rapid changes in acetyl-CoA levels. By localizing the sensor to either the cytoplasm, nucleus, or mitochondria in human cells, we showed that it enables subcellular detection of changes in acetyl-CoA levels, the magnitudes of which agreed with an orthogonal PicoProbe assay.
Collapse
Affiliation(s)
- Joseph J Smith
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Taylor R Valentino
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Austin H Ablicki
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Riddhidev Banerjee
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Debra M Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Katharine L Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Yi J, Jing D. Unlocking the Epigenetic Symphony: Histone Acetylation Orchestration in Bone Remodeling and Diseases. Stem Cell Rev Rep 2025; 21:291-303. [PMID: 39495465 DOI: 10.1007/s12015-024-10807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Histone acetylation orchestrates a complex symphony of gene expression that controls cellular fate and activities, including the intricate processes of bone remodeling. Despite its proven significance, a systematic illustration of this process has been lacking due to its complexity, impeding clinical application. In this review, we delve into the central regulators of histone acetylation, unveiling their multifaceted roles in modulating bone physiology. We explore both contradictory and overlapping roles among these regulators and assess their potential as therapeutic targets for various bone disorders. Furthermore, we highlight current applications and discuss looming questions for a more effective use of epigenetic therapy in bone diseases, aiming to address gaps in knowledge and clinical practice. By providing a panoramic view of histone acetylation's impact on bone health and disease, this review unveils promising avenues for therapeutic intervention and enhances our understanding of skeletal physiology, crucial for improving therapeutical outcomes and quality of patients' life.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
9
|
Kim BR, Rauckhorst AJ, Chimenti MS, Rehman T, Keen HL, Karp PH, Taylor EB, Welsh MJ. The oxygen level in air directs airway epithelial cell differentiation by controlling mitochondrial citrate export. SCIENCE ADVANCES 2025; 11:eadr2282. [PMID: 39854459 PMCID: PMC11759043 DOI: 10.1126/sciadv.adr2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Oxygen controls most metazoan metabolism, yet in mammals, tissue O2 levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O2 levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O2 levels in the body. We asked how the O2 level in air controls differentiation of airway basal stem cells into the ciliated epithelial cells essential for clearing airborne pathogens from the lung. Through a metabolomics screen and 13C tracing on primary cultures of human airway basal cells, we found that the O2 level in air directs ciliated cell differentiation by increasing mitochondrial citrate export. Unexpectedly, disrupting mitochondrial citrate export elicited hypoxia transcriptional responses independently of HIF1α stabilization and at O2 levels that would be hyperoxic for most tissues. These findings identify mitochondrial citrate export as a cellular mechanism for responding to physiologically high O2 levels.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Adam J. Rauckhorst
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tayyab Rehman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Philip H. Karp
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J. Welsh
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
10
|
Campbell SL, Christofk HR. Lessons Learned from Cancer Metabolism for Physiology and Disease. Cold Spring Harb Perspect Med 2025; 15:a041554. [PMID: 38858085 PMCID: PMC11694740 DOI: 10.1101/cshperspect.a041554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.
Collapse
Affiliation(s)
- Sydney L Campbell
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
12
|
Guo D, Li N, Zhang X, Zhou R, He J, Ding X, Yu W, Tong F, Yin S, Wang Y, Xu X, Wang L, Fan M, Feng S, Liu K, Tang K, Ouyang Z, Guo YR, Wang Y. Co-Translational Deposition of N 6-Acetyl-L-Lysine in Nascent Proteins Contributes to the Acetylome in Mammalian Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403309. [PMID: 39630081 PMCID: PMC11789599 DOI: 10.1002/advs.202403309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/02/2024] [Indexed: 01/30/2025]
Abstract
N6-acetyl-L-lysine residue is abundant in dietary protein but little is known about its potential influences on the diet-consumers. Herein, it is reported that Lysyl-tRNA synthetase (KARS) mediates co-translational deposition of diet-derived N6-acetyl-L-lysine (AcK) in nascent proteins to contribute to the acetylome in cells. Acetylated dietary protein is a direct source of AcK that can widely and substantially regulate the acetylome in multiple organs of mice. By analyzing the mechanisms underlying AcK contributing to the acetylome in mammalian cells, it is found that KARS can utilize AcK as an alternative substrate to produce N6-acetyl-l-lysyl-tRNA. The crystal structure of KARS in complex with AcK at 2.26 Å resolution shows that AcK shares the same substrate-binding pocket as L-lysine, allowed by a sidechain flip of Tyr499. The generated N6-acetyl-L-lysyl-tRNA introduces AcK into growing nascent polypeptide and results in protein acetylation, including the regions buried inside folded proteins that are post-translational modification (PTM)-inaccessible and functionally important. This undocumented protein modification mechanism is inherently different from PTM and termed as co-translational modification (coTM). It is expected to extend the repertoire of acetylome and improve the understanding of protein modification mechanisms in cells.
Collapse
Affiliation(s)
- Dingyuan Guo
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Nan Li
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiaoyan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Runxin Zhou
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jie He
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | | | - Weixing Yu
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Fuqiang Tong
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Sibi Yin
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Wang
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xin Xu
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Long Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Mingzhu Fan
- Mass Spectrometry & Metabolomics Core FacilityThe Biomedical Research Core FacilityCenter for Research Equipment and FacilitiesWestlake UniversityHangzhouZhejiang310024China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core FacilityThe Biomedical Research Core FacilityCenter for Research Equipment and FacilitiesWestlake UniversityHangzhouZhejiang310024China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
| | - Ke Liu
- Department of BiostatisticsSchool of Public HealthCheeloo College of MedicineShandong UniversityJinan250000China
| | - Ke Tang
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yusong R Guo
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
- Cell Architecture Research CenterHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yugang Wang
- Department of Biochemistry and Molecular BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhanHubei430030China
- Cell Architecture Research CenterHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
13
|
Charidemou E, Kirmizis A. A two-way relationship between histone acetylation and metabolism. Trends Biochem Sci 2024; 49:1046-1062. [PMID: 39516127 DOI: 10.1016/j.tibs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
A link between epigenetics and metabolism was initially recognized because the cellular metabolic state is communicated to the genome through the concentration of intermediary metabolites that are cofactors of chromatin-modifying enzymes. Recently, an additional interaction was postulated due to the capacity of the epigenome to store substantial amounts of metabolites that could become available again to cellular metabolite pools. Here, we focus on histone acetylation and review recent evidence illustrating this reciprocal relationship: in one direction, signaling-induced acetyl-coenzyme A (acetyl-CoA) changes influence histone acetylation levels to regulate genomic functions, and in the opposite direction histone acetylation acts as an acetate reservoir to directly affect downstream acetyl-CoA-mediated metabolism. This review highlights the current understanding, experimental challenges, and future perspectives of this bidirectional interplay.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus; Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus; Research Centre for Exercise and Nutrition (RECEN), Nicosia, Cyprus.
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus.
| |
Collapse
|
14
|
Kaluba FC, Rogers TJ, Jeong YJ, Waldhart A, Sokol KH, Lee CJ, Daniels SR, Longo J, Johnson A, Sheldon RD, Jones RG, Lien EC. An alternative route for β-hydroxybutyrate metabolism supports fatty acid synthesis in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621317. [PMID: 39554134 PMCID: PMC11565918 DOI: 10.1101/2024.10.31.621317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cancer cells are exposed to diverse metabolites in the tumor microenvironment that are used to support the synthesis of nucleotides, amino acids, and lipids needed for rapid cell proliferation1-3. Recent work has shown that ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle in some tumors4-7. Here, we discover a non-canonical route for β-OHB metabolism, in which β-OHB can bypass the TCA cycle to generate cytosolic acetyl-CoA for de novo fatty acid synthesis in cancer cells. We show that β-OHB-derived acetoacetate in the mitochondria can be shunted into the cytosol, where acetoacetyl-CoA synthetase (AACS) and thiolase convert it into acetyl-CoA for fatty acid synthesis. This alternative metabolic routing of β-OHB allows it to avoid oxidation in the mitochondria and net contribute to anabolic biosynthetic processes. In cancer cells, β-OHB is used for fatty acid synthesis to support cell proliferation under lipid-limited conditions in vitro and contributes to tumor growth under lipid-limited conditions induced by a calorie-restricted diet in vivo. Together, these data demonstrate that β-OHB is preferentially used for fatty acid synthesis in cancer cells to support tumor growth.
Collapse
Affiliation(s)
- Faith C. Kaluba
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Thomas J. Rogers
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Yu-Jin Jeong
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Althea Waldhart
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Kelly H. Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Cameron J. Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Samuel R. Daniels
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
- Van Andel Institute Graduate School, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Amy Johnson
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| |
Collapse
|
15
|
Gao W, Zhang L, Li Z, Wu T, Lang C, Mulholland MW, Zhang W. Nuclear Acly protects the liver from ischemia-reperfusion injury. Hepatology 2024; 80:1087-1103. [PMID: 37983829 PMCID: PMC11102925 DOI: 10.1097/hep.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (IR) injury is the most common complication that occurs in liver surgery and hemorrhagic shock. ATP citrate lyase (Acly) plays a pivotal role in chromatin modification via generating acetyl-CoA for histone acetylation to influence biological processes. We aim to examine the roles of Acly, which is highly expressed in hepatocytes, in liver IR injury. APPROACH AND RESULTS The functions of Acly in hepatic IR injury were examined in the mouse model with a hepatocyte-specific knockout of Acly . The Acly target genes were analyzed by CUT&RUN assay and RNA sequencing. The relationship between the susceptibility of the steatotic liver to IR and Acly was determined by the gain of function studies in mice. Hepatic deficiency of Acly exacerbated liver IR injury. IR induced Acly nuclear translocation in hepatocytes, which spatially fueled nuclear acetyl-CoA. This alteration was associated with enhanced acetylation of H3K9 and subsequent activation of the Foxa2 signaling pathway. Nuclear localization of Acly enabled Foxa2-mediated protective effects after hypoxia-reperfusion in cultured hepatocytes, while cytosolic Acly demonstrated no effect. The presence of steatosis disrupted Acly nuclear translocation. In the steatotic liver, restoration of Acly nuclear localization through overexpression of Rspondin-1 or Rspondin-3 ameliorated the IR-induced injury. CONCLUSIONS Our results indicate that Acly regulates histone modification by means of nuclear AcCoA production in hepatic IR. Disruption of Acly nuclear translocation increases the vulnerability of the steatotic liver to IR. Nuclear Acly thus may serve as a potential therapeutic target for future interventions in hepatic IR injury, particularly in the context of steatosis.
Collapse
Affiliation(s)
- Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart. Commun Biol 2024; 7:1422. [PMID: 39482367 PMCID: PMC11528069 DOI: 10.1038/s42003-024-07110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease.
Collapse
Affiliation(s)
- Chiemela Ohanele
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica N Peoples
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anja Karlstaedt
- Department of Cardiology; Smidt Heart Institute; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua T Geiger
- Division of Vascular Surgery; University of Rochester Medical Center, Rochester, NY, USA
| | - Ashley D Gayle
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fateemaa Sohani
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - George A Porter
- Department of Pediatrics; Division of Cardiology; University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Faundez
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
18
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
19
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
20
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
21
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
22
|
Mochmann LH, Treue D, Bockmayr M, Silva P, Zasada C, Mastrobuoni G, Bayram S, Forbes M, Jurmeister P, Liebig S, Blau O, Schleich K, Splettstoesser B, Nordmann TM, von der Heide EK, Isaakidis K, Schulze V, Busch C, Siddiq H, Schlee C, Hester S, Fransecky L, Neumann M, Kempa S, Klauschen F, Baldus CD. Proteomic profiling reveals ACSS2 facilitating metabolic support in acute myeloid leukemia. Cancer Gene Ther 2024; 31:1344-1356. [PMID: 38851813 PMCID: PMC11405269 DOI: 10.1038/s41417-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by genomic aberrations in oncogenes, cytogenetic abnormalities, and an aberrant epigenetic landscape. Nearly 50% of AML cases will relapse with current treatment. A major source of therapy resistance is the interaction of mesenchymal stroma with leukemic cells resulting in therapeutic protection. We aimed to determine pro-survival/anti-apoptotic protein networks involved in the stroma protection of leukemic cells. Proteomic profiling of cultured primary AML (n = 14) with Hs5 stroma cell line uncovered an up-regulation of energy-favorable metabolic proteins. Next, we modulated stroma-induced drug resistance with an epigenetic drug library, resulting in reduced apoptosis with histone deacetylase inhibitor (HDACi) treatment versus other epigenetic modifying compounds. Quantitative phosphoproteomic probing of this effect further revealed a metabolic-enriched phosphoproteome including significant up-regulation of acetyl-coenzyme A synthetase (ACSS2, S30) in leukemia-stroma HDACi treated cocultures compared with untreated monocultures. Validating these findings, we show ACSS2 substrate, acetate, promotes leukemic proliferation, ACSS2 knockout in leukemia cells inhibits leukemic proliferation and ACSS2 knockout in the stroma impairs leukemic metabolic fitness. Finally, we identify ACSS1/ACSS2-high expression AML subtype correlating with poor overall survival. Collectively, this study uncovers the leukemia-stroma phosphoproteome emphasizing a role for ACSS2 in mediating AML growth and drug resistance.
Collapse
Affiliation(s)
- Liliana H Mochmann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Denise Treue
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Michael Bockmayr
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Christin Zasada
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Safak Bayram
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Liebig
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Blau
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstanze Schleich
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Thierry M Nordmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Eva K von der Heide
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Veronika Schulze
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Caroline Busch
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Hafsa Siddiq
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Cornelia Schlee
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Svenja Hester
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Lars Fransecky
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany.
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Claudia D Baldus
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany.
| |
Collapse
|
23
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Jing D. Deciphering the dynamics: Exploring the impact of mechanical forces on histone acetylation. FASEB J 2024; 38:e23849. [PMID: 39096133 DOI: 10.1096/fj.202400907rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Living cells navigate a complex landscape of mechanical cues that influence their behavior and fate, originating from both internal and external sources. At the molecular level, the translation of these physical stimuli into cellular responses relies on the intricate coordination of mechanosensors and transducers, ultimately impacting chromatin compaction and gene expression. Notably, epigenetic modifications on histone tails govern the accessibility of gene-regulatory sites, thereby regulating gene expression. Among these modifications, histone acetylation emerges as particularly responsive to the mechanical microenvironment, exerting significant control over cellular activities. However, the precise role of histone acetylation in mechanosensing and transduction remains elusive due to the complexity of the acetylation network. To address this gap, our aim is to systematically explore the key regulators of histone acetylation and their multifaceted roles in response to biomechanical stimuli. In this review, we initially introduce the ubiquitous force experienced by cells and then explore the dynamic alterations in histone acetylation and its associated co-factors, including HDACs, HATs, and acetyl-CoA, in response to these biomechanical cues. Furthermore, we delve into the intricate interactions between histone acetylation and mechanosensors/mechanotransducers, offering a comprehensive analysis. Ultimately, this review aims to provide a holistic understanding of the nuanced interplay between histone acetylation and mechanical forces within an academic framework.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
24
|
Wang Y, Su K, Wang C, Deng T, Liu X, Sun S, Jiang Y, Zhang C, Xing B, Du X. Chemotherapy-induced acetylation of ACLY by NAT10 promotes its nuclear accumulation and acetyl-CoA production to drive chemoresistance in hepatocellular carcinoma. Cell Death Dis 2024; 15:545. [PMID: 39085201 PMCID: PMC11291975 DOI: 10.1038/s41419-024-06951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Chemotherapeutic efficacy is seriously impeded by chemoresistance in more than half of hepatocellular carcinoma (HCC) patients. However, the mechanisms involved in chemotherapy-induced upregulation of chemoresistant genes are not fully understood. Here, this study unravels a novel mechanism controlling nuclear acetyl-CoA production to activate the transcription of chemoresistant genes in HCC. NAT10 is upregulated in HCC tissues and its upregulation is correlated with poor prognosis of HCC patients. NAT10 is also upregulated in chemoresistant HCC cells. Targeting NAT10 increases the cytotoxicity of chemotherapy in HCC cells and mouse xenografts. Upon chemotherapy, NAT10 translocates from the nucleolus to the nucleus to activate the transcription of CYP2C9 and PIK3R1. Additionally, nuclear acetyl-CoA is specifically upregulated by NAT10. Mechanistically, NAT10 binds with ACLY in the nucleus and acetylates ACLY at K468 to counteract the SQSTM1-mediated degradation upon chemotherapy. ACLY K468-Ac specifically accumulates in the nucleus and increases nuclear acetyl-CoA production to activate the transcription of CYP2C9 and PIK3R1 through enhancing H3K27ac. Importantly, K468 is required for nuclear localization of ACLY. Significantly, ACLY K468-Ac is upregulated in HCC tissues, and ablation of ACLY K468-Ac sensitizes HCC cells and mouse xenografts to chemotherapy. Collectively, these findings identify NAT10 as a novel chemoresistant driver and the blockage of NAT10-mediated ACLY K468-Ac possesses the potential to attenuate HCC chemoresistance.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Acetyl Coenzyme A/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Animals
- Acetylation
- Mice
- Cell Nucleus/metabolism
- Cell Line, Tumor
- Mice, Nude
- Coenzyme A Ligases/metabolism
- Coenzyme A Ligases/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- N-Terminal Acetyltransferases/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Mice, Inbred BALB C
- Male
Collapse
Affiliation(s)
- Yuying Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
25
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
26
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
27
|
Liu S, Gammon ST, Tan L, Gao Y, Kim K, Williamson IK, Pham J, Davidian A, Khanna R, Gould BD, Salazar R, Vitrac H, Dinh A, Lien EC, de L Vitorino FN, Gongora JM, Martinez SA, Lawrence CSC, Kransdorf EP, Leffer D, Hanson B, Garcia BA, Vander Heiden MG, Lorenzi PL, Taegtmeyer H, Piwnica-Worms D, Martin JF, Karlstaedt A. ATP-dependent citrate lyase Drives Left Ventricular Dysfunction by Metabolic Remodeling of the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600099. [PMID: 38948703 PMCID: PMC11213012 DOI: 10.1101/2024.06.21.600099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.
Collapse
|
28
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
29
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
30
|
Willnow P, Teleman AA. Nuclear position and local acetyl-CoA production regulate chromatin state. Nature 2024; 630:466-474. [PMID: 38839952 PMCID: PMC11168921 DOI: 10.1038/s41586-024-07471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Histone acetylation regulates gene expression, cell function and cell fate1. Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid β-oxidation, which is also increased in the rim. Inhibition of fatty acid β-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.
Collapse
Affiliation(s)
- Philipp Willnow
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
31
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. Mitochondrial citrate carrier SLC25A1 is a dosage-dependent regulator of metabolic reprogramming and morphogenesis in the developing heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.22.541833. [PMID: 37292906 PMCID: PMC10245819 DOI: 10.1101/2023.05.22.541833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 heterozygous embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.
Collapse
|
32
|
Benej M, Papandreou I, Denko NC. Hypoxic adaptation of mitochondria and its impact on tumor cell function. Semin Cancer Biol 2024; 100:28-38. [PMID: 38556040 PMCID: PMC11320707 DOI: 10.1016/j.semcancer.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C Denko
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
33
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Williams D, Hargrove-Wiley E, Bindeman W, Valent D, Miranda AX, Beckstead J, Fingleton B. Type II Interleukin-4 Receptor Activation in Basal Breast Cancer Cells Promotes Tumor Progression via Metabolic and Epigenetic Modulation. Int J Mol Sci 2024; 25:4647. [PMID: 38731867 PMCID: PMC11083536 DOI: 10.3390/ijms25094647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.
Collapse
Affiliation(s)
- Demond Williams
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Wendy Bindeman
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Daniel Valent
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Adam X. Miranda
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| | - Jacob Beckstead
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (D.W.); (E.H.-W.); (W.B.); (D.V.); (A.X.M.)
| |
Collapse
|
35
|
Shrestha S, Lee YB, Lee H, Choi YK, Park BY, Kim MJ, Youn YJ, Kim SH, Jung SJ, Song DK, Jin HK, Bae JS, Lee IK, Jeon JH, Hong CW. Diabetes Primes Neutrophils for Neutrophil Extracellular Trap Formation through Trained Immunity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0365. [PMID: 38654733 PMCID: PMC11037460 DOI: 10.34133/research.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Neutrophils are primed for neutrophil extracellular trap (NET) formation during diabetes, and excessive NET formation from primed neutrophils compromises wound healing in patients with diabetes. Here, we demonstrate that trained immunity mediates diabetes-induced NET priming in neutrophils. Under diabetic conditions, neutrophils exhibit robust metabolic reprogramming comprising enhanced glycolysis via the pentose phosphate pathway and fatty acid oxidation, which result in the accumulation of acetyl-coenzyme A. Adenosine 5'-triphosphate-citrate lyase-mediated accumulation of acetyl-coenzyme A and histone acetyltransferases further induce the acetylation of lysine residues on histone 3 (AcH3K9, AcH3K14, and AcH3K27) and histone 4 (AcH4K8). The pharmacological inhibition of adenosine 5'-triphosphate-citrate lyase and histone acetyltransferases completely inhibited high-glucose-induced NET priming. The trained immunity of neutrophils was further confirmed in neutrophils isolated from patients with diabetes. Our findings suggest that trained immunity mediates functional changes in neutrophils in diabetic environments, and targeting neutrophil-trained immunity may be a potential therapeutic target for controlling inflammatory complications of diabetes.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hoyul Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Bo-Yoon Park
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soo-Jung Jung
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine,
Hallym University, Chuncheon 24252, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine,
Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
36
|
Ren J, Ren B, Liu X, Cui M, Fang Y, Wang X, Zhou F, Gu M, Xiao R, Bai J, You L, Zhao Y. Crosstalk between metabolic remodeling and epigenetic reprogramming: A new perspective on pancreatic cancer. Cancer Lett 2024; 587:216649. [PMID: 38311052 DOI: 10.1016/j.canlet.2024.216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
Pancreatic cancer is a highly malignant solid tumor with a poor prognosis and a high mortality rate. Thus, exploring the mechanisms underlying the development and progression of pancreatic cancer is critical for identifying targets for diagnosis and treatment. Two important hallmarks of cancer-metabolic remodeling and epigenetic reprogramming-are interconnected and closely linked to regulate one another, creating a complex interaction landscape that is implicated in tumorigenesis, invasive metastasis, and immune escape. For example, metabolites can be involved in the regulation of epigenetic enzymes as substrates or cofactors, and alterations in epigenetic modifications can in turn regulate the expression of metabolic enzymes. The crosstalk between metabolic remodeling and epigenetic reprogramming in pancreatic cancer has gained considerable attention. Here, we review the emerging data with a focus on the reciprocal regulation of metabolic remodeling and epigenetic reprogramming. We aim to highlight how these mechanisms could be applied to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Jialu Bai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
37
|
Bibbò F, Asadzadeh F, Boccia A, Sorice C, Bianco O, Saccà CD, Majello B, Donofrio V, Bifano D, De Martino L, Quaglietta L, Cristofano A, Covelli EM, Cinalli G, Ferrucci V, De Antonellis P, Zollo M. Targeting Group 3 Medulloblastoma by the Anti-PRUNE-1 and Anti-LSD1/KDM1A Epigenetic Molecules. Int J Mol Sci 2024; 25:3917. [PMID: 38612726 PMCID: PMC11011515 DOI: 10.3390/ijms25073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFβ-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.
Collapse
Affiliation(s)
- Francesca Bibbò
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- SEMM European School of Molecular Medicine, 20139 Milan, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Sorice
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Daniela Saccà
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Barbara Majello
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Delfina Bifano
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Lucia De Martino
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Lucia Quaglietta
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Adriana Cristofano
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy;
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Pasqualino De Antonellis
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico’, 80131 Naples, Italy
| |
Collapse
|
38
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Russo M, Gualdrini F, Vallelonga V, Prosperini E, Noberini R, Pedretti S, Borriero C, Di Chiaro P, Polletti S, Imperato G, Marenda M, Ghirardi C, Bedin F, Cuomo A, Rodighiero S, Bonaldi T, Mitro N, Ghisletti S, Natoli G. Acetyl-CoA production by Mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Mol Cell 2024; 84:967-980.e10. [PMID: 38242130 PMCID: PMC7615796 DOI: 10.1016/j.molcel.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Gabriele Imperato
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; Department of Hematology and Hematology-Oncology (DIPO), Università degli Studi di Milano, Milano 20122, Italy
| | - Nico Mitro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| |
Collapse
|
40
|
Jiang S, Zhang G, Miao J, Wu D, Li X, Li J, Lu J, Gun S. Transcriptome and Metabolome Analyses Provide Insight into the Glucose-Induced Adipogenesis in Porcine Adipocytes. Curr Issues Mol Biol 2024; 46:2027-2042. [PMID: 38534747 DOI: 10.3390/cimb46030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Glucose is a major energy substrate for porcine adipocytes and also serves as a regulatory signal for adipogenesis and lipid metabolism. In this study, we combined transcriptome and metabolome analyses to reveal the underlying regulatory mechanisms of high glucose (HG) on adipogenesis by comparing differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) identified in porcine adipocytes. Results showed that HG (20 mmol/L) significantly increased fat accumulation in porcine adipocytes compared to low glucose (LG, 5 mmol/L). A total of 843 DEGs and 365 DAMs were identified. Functional enrichment analyses of DEGs found that multiple pathways were related to adipogenesis, lipid metabolism, and immune-inflammatory responses. PPARγ, C/EBPα, ChREBP, and FOS were identified as the key hub genes through module 3 analysis, and PPARγ acted as a central regulator by linking genes involved in lipid metabolism and immune-inflammatory responses. Gene-metabolite networks found that PPARγ-13-HODE was the most important interaction relationship. These results revealed that PPARγ could mediate the cross-talk between adipogenesis and the immune-inflammatory response during adipocyte maturation. This work provides a comprehensive view of the regulatory mechanisms of glucose on adipogenesis in porcine adipocytes.
Collapse
Affiliation(s)
- Susu Jiang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jian Miao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Dianhu Wu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
41
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
42
|
Zhou J, Wang T, Zhang H, Liu J, Wei P, Xu R, Yan Q, Chen G, Li W, Gao SJ, Lu C. KSHV vIL-6 promotes SIRT3-induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation. PLoS Pathog 2024; 20:e1012082. [PMID: 38470932 PMCID: PMC10959363 DOI: 10.1371/journal.ppat.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guochun Chen
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
43
|
Buglakova E, Ekelöf M, Schwaiger-Haber M, Schlicker L, Molenaar MR, Mohammed S, Stuart L, Eisenbarth A, Hilsenstein V, Patti GJ, Schulze A, Snaebjornsson MT, Alexandrov T. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553810. [PMID: 38464218 PMCID: PMC10925155 DOI: 10.1101/2023.08.18.553810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.
Collapse
Affiliation(s)
- Elena Buglakova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Måns Ekelöf
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martijn R. Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Shahraz Mohammed
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lachlan Stuart
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Eisenbarth
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Volker Hilsenstein
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marteinn T. Snaebjornsson
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Metabolomics Core Facility, EMBL, Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and Heidelberg University, Heidelberg, Germany
- BioStudio, BioInnovation Institute, Copenhagen, Denmark
| |
Collapse
|
44
|
Smith JJ, Valentino TR, Ablicki AH, Banerjee R, Colligan AR, Eckert DM, Desjardins GA, Diehl KL. A genetically-encoded fluorescent biosensor for visualization of acetyl-CoA in live cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573774. [PMID: 38260544 PMCID: PMC10802309 DOI: 10.1101/2023.12.31.573774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA production and consumption are highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. In this work, we engineer an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). We biochemically characterize the sensor and demonstrate its selectivity for acetyl-CoA over other CoA species. We then deploy the biosensor in E. coli and HeLa cells to demonstrate its utility in living cells. In E. coli, we show that the biosensor enables detection of rapid changes in acetyl-CoA levels. In human cells, we show that the biosensor enables subcellular detection and reveals the compartmentalization of acetyl-CoA metabolism.
Collapse
|
45
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
46
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
47
|
Fontes PK, Dos Santos EC, da Rocha HC, de Lima CB, Milazzotto MP. Metabolic stressful environment drives epigenetic modifications in oviduct epithelial cells. Theriogenology 2024; 215:151-157. [PMID: 38070214 DOI: 10.1016/j.theriogenology.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
The oviduct provides a suitable microenvironment from the gametes' final maturation until initial embryo development. Dynamic functional changes are observed in the oviduct cells, mainly controlled by steroid hormones and well-orchestrated during the estrous cycle. However, based on the roles played by the oviduct, additional layers of complexity might be present in its regulatory process. There is a cellular process that includes metabolic adaptation that can guide molecular modifications. This process is known as metaboloepigenetics. Therefore, we aimed to better understand how this crosstalk occurs in oviductal epithelial cells (OEC). Due to limited in situ access to the oviduct, we used the primary in vitro cell culture as a culture model and glucose as a metabolic disturbed factor. For that, cells derived from the oviductal epithelial layer were collected from cows at either follicular or luteal stages (n = 4 animals per group). They were cultured on a monolayer culture system under normoglycemic (2.7 mM glucose) or hyperglycemic conditions (27 mM glucose). On day five of culture, attached cells were submitted to analysis of mitochondrial metabolism (mitochondrial membrane potential - MMP) and epigenetics markers (5- methylcytosine - 5 mC and histone 3 lysine 9 acetylation - H3K9ac). Moreover, the culture media were submitted to the metabolites analysis profile by Raman spectrometry. Data were analyzed considering the effect of glucose level (normoglycemic vs. hyperglycemic), stages when OEC were harvested (follicular vs. luteal), and their interaction (glucose level * cycle stage) by two-way ANOVA. As a result, the high glucose level decreased the H3K9ac and MMP levels but did not affect the 5 mC. Regardless of the metabolic profile of the culture media, the glucose level was the only factor that changed the Raman shifts abundance. Although this present study evaluated oviductal epithelial cells after being submitted to an in vitro monolayer culture system, which is known to lead to cell dedifferentiation, yet, these results provide evidence of a relationship between epigenetic reprogramming and energy metabolism under these cell culture conditions. In conclusion, the levels of metabolites in culture media may be crucial for cellular function and differentiation, meaning that it should be considered in studies culturing oviductal cells.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Erika Cristina Dos Santos
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Heloise Cale da Rocha
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Camila Bruna de Lima
- Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, Canada
| | - Marcella Pecora Milazzotto
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
48
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
49
|
Mishra A, Tavasoli M, Sokolenko S, McMaster CR, Pasumarthi KB. Atrial natriuretic peptide signaling co-regulates lipid metabolism and ventricular conduction system gene expression in the embryonic heart. iScience 2024; 27:108748. [PMID: 38235330 PMCID: PMC10792247 DOI: 10.1016/j.isci.2023.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
It has been shown that atrial natriuretic peptide (ANP) and its high affinity receptor (NPRA) are involved in the formation of ventricular conduction system (VCS). Inherited genetic variants in fatty acid oxidation (FAO) genes are known to cause conduction abnormalities in newborn children. Although the effect of ANP on energy metabolism in noncardiac cell types is well documented, the role of lipid metabolism in VCS cell differentiation via ANP/NPRA signaling is not known. In this study, histological sections and primary cultures obtained from E11.5 mouse ventricles were analyzed to determine the role of metabolic adaptations in VCS cell fate determination and maturation. Exogenous treatment of E11.5 ventricular cells with ANP revealed a significant increase in lipid droplet accumulation, FAO and higher expression of VCS marker Cx40. Using specific inhibitors, we further identified PPARγ and FAO as critical downstream regulators of ANP-mediated regulation of metabolism and VCS formation.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
50
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|