1
|
Roothans N, Pabst M, van Diemen M, Herrera Mexicano C, Zandvoort M, Abeel T, van Loosdrecht MCM, Laureni M. Long-term multi-meta-omics resolves the ecophysiological controls of seasonal N 2O emissions during wastewater treatment. NATURE WATER 2025; 3:590-604. [PMID: 40417422 PMCID: PMC12098122 DOI: 10.1038/s44221-025-00430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/20/2025] [Indexed: 05/27/2025]
Abstract
Nitrous oxide (N2O) is the third most important greenhouse gas and originates primarily from natural and engineered microbiomes. Effective emission mitigations are currently hindered by the largely unresolved ecophysiological controls of coexisting N2O-converting metabolisms in complex communities. To address this, we used biological wastewater treatment as a model ecosystem and combined long-term metagenome-resolved metaproteomics with ex situ kinetic and full-scale operational characterization over nearly 2 years. By leveraging the evidence independently obtained at multiple ecophysiological levels, from individual genetic potential to actual metabolism and emergent community phenotype, the cascade of environmental and operational triggers driving seasonal N2O emissions has ultimately been resolved. We identified nitrifier denitrification as the dominant N2O-producing pathway and dissolved O2 as the prime operational parameter, paving the way to the design and fostering of robust emission control strategies. This work exemplifies the untapped potential of multi-meta-omics in the mechanistic understanding and ecological engineering of microbiomes towards reducing anthropogenic impacts and advancing sustainable biotechnological developments.
Collapse
Affiliation(s)
- Nina Roothans
- Delft University of Technology, Delft, the Netherlands
| | - Martin Pabst
- Delft University of Technology, Delft, the Netherlands
| | | | | | | | - Thomas Abeel
- Delft University of Technology, Delft, the Netherlands
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | | | | |
Collapse
|
2
|
Zhang Q, Li J, Tuo J, Liu S, Liu Y, Liu P, Ye L, Zhang XX. Long-term metagenomic insights into the roles of antiviral defense systems in stabilizing activated sludge bacterial communities. THE ISME JOURNAL 2025; 19:wraf051. [PMID: 40096540 PMCID: PMC11980602 DOI: 10.1093/ismejo/wraf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Bacteria have evolved various antiviral defense systems (DSs) to protect themselves, but how DSs respond to the variation of bacteriophages in complex bacterial communities and whether DSs function effectively in maintaining the stability of bacterial community structure and function remain unknown. Here, we conducted a long-term metagenomic investigation on the composition of bacterial and phage communities of monthly collected activated sludge (AS) samples from two full-scale wastewater treatment plants over 6 years and found that DSs were widespread in AS, with 91.1% of metagenome-assembled genomes (MAGs) having more than one complete DS. The stability of the bacterial community was maintained under the fluctuations of the phage community, and DS abundance and phage abundance were strongly positively correlated; there was a 0-3-month time lag in the responses of DSs to phage fluctuations. The rapid turnover of clustered regularly interspaced short palindromic repeat spacer repertoires further highlighted the dynamic nature of bacterial defense mechanisms. A pan-immunity phenomenon was also observed, with nearly identical MAGs showing significant differences in DS composition, which contributed to community stability at the species level. This study provides novel insights into the complexity of phage-bacteria interactions in complex bacterial communities and reveals the key roles of DSs in stabilizing bacterial community structure and function.
Collapse
Affiliation(s)
- Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Wei J, Chen W, Wen D. Rare biosphere drives deterministic community assembly, co-occurrence network stability, and system performance in industrial wastewater treatment system. ENVIRONMENT INTERNATIONAL 2024; 190:108887. [PMID: 39024826 DOI: 10.1016/j.envint.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Bacterial community is strongly associated with activated sludge performance, but there still remains a knowledge gap regarding the rare bacterial community assembly and their influence on the system performance in industrial wastewater treatment plants (IWWTPs). Here, we investigated bacterial communities in 11 full-scale IWWTPs with similar process designs, aiming to uncover ecological processes and functional traits regulating abundant and rare communities. Our findings indicated that abundant bacterial community assembly was governed by stochastic processes; thereby, abundant taxa are generally present in wastewater treatment compartments across different industrial types. On the contrary, rare bacterial taxa were primarily driven by deterministic processes (homogeneous selection 61.9%-79.7%), thus they only exited in specific IWWTPs compartments and wastewater types. The co-occurrence networks analysis showed that the majority of keystone taxa were rare bacterial taxa, with rare taxa contributing more to network stability. Furthermore, rare bacteria rather than abundant bacteria in the oxic compartment contributed more to the degradation of xenobiotics compounds, and they were main potential drivers of pollutant removal. This study demonstrated the irreplaceable roles of rare bacterial taxa in maintaining system performance of IWWTPs, and called for environmental engineers and microbial ecologists to increase their attention on rare biosphere.
Collapse
Affiliation(s)
- Jie Wei
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Kalvapalle PB, Sridhar S, Silberg JJ, Stadler LB. Long-duration environmental biosensing by recording analyte detection in DNA using recombinase memory. Appl Environ Microbiol 2024; 90:e0236323. [PMID: 38551351 PMCID: PMC11022584 DOI: 10.1128/aem.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024] Open
Abstract
Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.
Collapse
Affiliation(s)
| | - Swetha Sridhar
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
6
|
Zibarev N, Toumi A, Politaeva N, Iljin I. Nutrients recovery from dairy wastewater by Chlorella vulgaris and comparison of the lipid's composition with various chlorella strains for biodiesel production. PLoS One 2024; 19:e0297464. [PMID: 38598537 PMCID: PMC11006192 DOI: 10.1371/journal.pone.0297464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/05/2024] [Indexed: 04/12/2024] Open
Abstract
Microalgae biomass is regarded as a promising feedstock for biodiesel production. The biomass lipid content and fatty acids composition are among the main selective criteria when screening microalgae strains for biodiesel production. In this study, three strains of Chlorella microalgae (C. kessleri, C. sorokiniana, C. vulgaris) were cultivated nutrient media with different nitrogen contents, and on a medium with the addition of dairy wastewater. Moreover, microalgae grown on dairy wastewater allowed the removal of azote and phosphorous. The removal efficiency of 90%, 53% and 95% of ammonium nitrogen, total nitrogen and phosphate ions, respectively, were reached. The efficiency of wastewater treatment from inorganic carbon was 55%, while the maximum growth of biomass was achieved. All four samples of microalgae had a similar fatty acid profile. Palmitic acid (C16:0) was the most abundant saturated fatty acid (SFA), and is suitable for the production of biodiesel. The main unsaturated fatty acids (UFA) present in the samples were oleic acid (C18:1 n9); linoleic acid (C18:2 n6) and alpha-linolenic acid (C18:3 n3), which belong to omega-9, omega-6, omega-3, respectively.
Collapse
Affiliation(s)
- Nikita Zibarev
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Amira Toumi
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Natalia Politaeva
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Igor Iljin
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Suarez C, Rosenqvist T, Dimitrova I, Sedlacek CJ, Modin O, Paul CJ, Hermansson M, Persson F. Biofilm colonization and succession in a full-scale partial nitritation-anammox moving bed biofilm reactor. MICROBIOME 2024; 12:51. [PMID: 38475926 DOI: 10.1186/s40168-024-01762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Partial nitritation-anammox (PNA) is a biological nitrogen removal process commonly used in wastewater treatment plants for the treatment of warm and nitrogen-rich sludge liquor from anaerobic digestion, often referred to as sidestream wastewater. In these systems, biofilms are frequently used to retain biomass with aerobic ammonia-oxidizing bacteria (AOB) and anammox bacteria, which together convert ammonium to nitrogen gas. Little is known about how these biofilm communities develop, and whether knowledge about the assembly of biofilms in natural communities can be applied to PNA biofilms. RESULTS We followed the start-up of a full-scale PNA moving bed biofilm reactor for 175 days using shotgun metagenomics. Environmental filtering likely restricted initial biofilm colonization, resulting in low phylogenetic diversity, with the initial microbial community comprised mainly of Proteobacteria. Facilitative priority effects allowed further biofilm colonization, with the growth of initial aerobic colonizers promoting the arrival and growth of anaerobic taxa like methanogens and anammox bacteria. Among the early colonizers were known 'oligotrophic' ammonia oxidizers including comammox Nitrospira and Nitrosomonas cluster 6a AOB. Increasing the nitrogen load in the bioreactor allowed colonization by 'copiotrophic' Nitrosomonas cluster 7 AOB and resulted in the exclusion of the initial ammonia- and nitrite oxidizers. CONCLUSIONS We show that complex dynamic processes occur in PNA microbial communities before a stable bioreactor process is achieved. The results of this study not only contribute to our knowledge about biofilm assembly and PNA bioreactor start-up but could also help guide strategies for the successful implementation of PNA bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Tage Rosenqvist
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Christopher J Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Catherine J Paul
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Yu J, Lee JYY, Tang SN, Lee PKH. Niche differentiation in microbial communities with stable genomic traits over time in engineered systems. THE ISME JOURNAL 2024; 18:wrae042. [PMID: 38470313 PMCID: PMC10987969 DOI: 10.1093/ismejo/wrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Microbial communities in full-scale engineered systems undergo dynamic compositional changes. However, mechanisms governing assembly of such microbes and succession of their functioning and genomic traits under various environmental conditions are unclear. In this study, we used the activated sludge and anaerobic treatment systems of four full-scale industrial wastewater treatment plants as models to investigate the niches of microbes in communities and the temporal succession patterns of community compositions. High-quality representative metagenome-assembled genomes revealed that taxonomic, functional, and trait-based compositions were strongly shaped by environmental selection, with replacement processes primarily driving variations in taxonomic and functional compositions. Plant-specific indicators were associated with system environmental conditions and exhibited strong determinism and trajectory directionality over time. The partitioning of microbes in a co-abundance network according to groups of plant-specific indicators, together with significant between-group differences in genomic traits, indicated the occurrence of niche differentiation. The indicators of the treatment plant with rich nutrient input and high substrate removal efficiency exhibited a faster predicted growth rate, lower guanine-cytosine content, smaller genome size, and higher codon usage bias than the indicators of the other plants. In individual plants, taxonomic composition displayed a more rapid temporal succession than functional and trait-based compositions. The succession of taxonomic, functional, and trait-based compositions was correlated with the kinetics of treatment processes in the activated sludge systems. This study provides insights into ecological niches of microbes in engineered systems and succession patterns of their functions and traits, which will aid microbial community management to improve treatment performance.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Siang Nee Tang
- Facility Management and Environmental Engineering, TAL Group, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Delogu F, Kunath BJ, Queirós PM, Halder R, Lebrun LA, Pope PB, May P, Widder S, Muller EEL, Wilmes P. Forecasting the dynamics of a complex microbial community using integrated meta-omics. Nat Ecol Evol 2024; 8:32-44. [PMID: 37957315 PMCID: PMC10781640 DOI: 10.1038/s41559-023-02241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Predicting the behaviour of complex microbial communities is challenging. However, this is essential for complex biotechnological processes such as those in biological wastewater treatment plants (BWWTPs), which require sustainable operation. Here we summarize 14 months of longitudinal meta-omics data from a BWWTP anaerobic tank into 17 temporal signals, explaining 91.1% of the temporal variance, and link those signals to ecological events within the community. We forecast the signals over the subsequent five years and use 21 extra samples collected at defined time intervals for testing and validation. Our forecasts are correct for six signals and hint on phenomena such as predation cycles. Using all the 17 forecasts and the environmental variables, we predict gene abundance and expression, with a coefficient of determination ≥0.87 for the subsequent three years. Our study demonstrates the ability to forecast the dynamics of open microbial ecosystems using interactions between community cycles and environmental parameters.
Collapse
Affiliation(s)
- Francesco Delogu
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pedro M Queirós
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stefanie Widder
- Department of Medicine 1, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Emilie E L Muller
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
10
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
11
|
Gad M, Fawzy ME, Al-Herrawy AZ, Abdo SM, Nabet N, Hu A. PacBio next-generation sequencing uncovers Apicomplexa diversity in different habitats. Sci Rep 2023; 13:15063. [PMID: 37699953 PMCID: PMC10497610 DOI: 10.1038/s41598-023-40895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The phylum Apicomplexa comprises a large group of intracellular protozoan parasites. These microorganisms are known to infect a variety of vertebrate and invertebrate hosts, leading to significant medical and veterinary conditions such as toxoplasmosis, cryptosporidiosis, theileriosis, and eimeriosis. Despite their importance, comprehensive data on their diversity and distribution, especially in riverine environments, remain scant. To bridge this knowledge gap, we utilized next-generation high-throughput 18S rRNA amplicon sequencing powered by PacBio technology to explore the diversity and composition of the Apicomplexa taxa. Principal component analysis (PCA) and principal coordinate analysis (PCoA) indicated the habitat heterogeneity for the physicochemical parameters and the Apicomplexa community. These results were supported by PERMANOVA (P < 0.001), ANOSIM (P < 0.001), Cluster analysis, and Venn diagram. Dominant genera of Apicomplexa in inlet samples included Gregarina (38.54%), Cryptosporidium (32.29%), and Leidyana (11.90%). In contrast, outlet samples were dominated by Babesia, Cryptosporidium, and Theileria. While surface water samples revealed 16% and 8.33% relative abundance of Toxoplasma and Cryptosporidium, respectively. To our knowledge, the next-generation high throughput sequencing covered a wide range of parasites in Egypt for the first time, which could be useful for legislation of the standards for drinking water and wastewater reuse.
Collapse
Affiliation(s)
- Mahmoud Gad
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt.
| | - Mariam E Fawzy
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Ahmad Z Al-Herrawy
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Sayeda M Abdo
- Hydrobiology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Noura Nabet
- Zoology Department, Faculty of Science, Menoufia University, Menofia, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
12
|
Pan Y, Sun RZ, Wang Y, Chen GL, Fu YY, Yu HQ. Carbon source shaped microbial ecology, metabolism and performance in denitrification systems. WATER RESEARCH 2023; 243:120330. [PMID: 37482010 DOI: 10.1016/j.watres.2023.120330] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
The limited information on microbial interactions and metabolic patterns in denitrification systems, especially those fed with different carbon sources, has hindered the establishment of ecological linkages between microscale connections and macroscopic reactor performance. In this work, denitrification performance, metabolic patterns, and ecological structure were investigated in parallel well-controlled bioreactors with four representative carbon sources, i.e., methanol, glycerol, acetate, and glucose. After long-term acclimation, significant differences were observed among the four bioreactors in terms of denitrification rates, organic utilization, and heterotrophic bacterial yields. Different carbon sources induced the succession of denitrifying microbiota toward different ecological structures and exhibited distinct metabolic patterns. Methanol-fed reactors showed distinctive microbial carbon utilization pathways and a more intricate microbial interaction network, leading to significant variations in organic utilization and metabolite production compared to other carbon sources. Three keystone taxa belonging to the Verrucomicrobiota phylum, SJA-15 order and the Kineosphaera genus appeared as network hubs in the methanol, glycerol, and acetate-fed systems, playing essential roles in their ecological functions. Several highly connected species were also identified within the glucose-fed system. The close relationship between microbial metabolites, ecological structures, and system performances suggests that this complex network relationship may greatly contribute to the efficient operation of bioreactors.
Collapse
Affiliation(s)
- Yuan Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230026, China
| | - Rui-Zhe Sun
- School of Resources & Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230026, China
| | - Guan-Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying-Ying Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Ariyadasa S, Taylor W, Weaver L, McGill E, Billington C, Pattis I. Nonbacterial Microflora in Wastewater Treatment Plants: an Underappreciated Potential Source of Pathogens. Microbiol Spectr 2023; 11:e0048123. [PMID: 37222623 PMCID: PMC10269893 DOI: 10.1128/spectrum.00481-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Wastewater treatment plants (WWTPs) receive and treat large volumes of domestic, industrial, and urban wastewater containing pathogenic and nonpathogenic microorganisms, chemical compounds, heavy metals, and other potentially hazardous substances. WWTPs play an essential role in preserving human, animal, and environmental health by removing many of these toxic and infectious agents, particularly biological hazards. Wastewater contains complex consortiums of bacterial, viral, archaeal, and eukaryotic species, and while bacteria in WWTP have been extensively studied, the temporal and spatial distribution of nonbacterial microflora (viruses, archaea, and eukaryotes) is less understood. In this study, we analyzed the viral, archaeal, and eukaryotic microflora in wastewater throughout a treatment plant (raw influent, effluent, oxidation pond water, and oxidation pond sediment) in Aotearoa (New Zealand) using Illumina shotgun metagenomic sequencing. Our results suggest a similar trend across many taxa, with an increase in relative abundance in oxidation pond samples compared to influent and effluent samples, except for archaea, which had the opposite trend. Additionally, some microbial families, such as Podoviridae bacteriophages and Apicomplexa alveolates, appeared largely unaffected by the treatment process, with their relative abundance remaining stable throughout. Several groups encompassing pathogenic species, such as Leishmania, Plasmodium, Toxoplasma, Apicomplexa, Cryptococcus, Botrytis, and Ustilago, were identified. If present, these potentially pathogenic species could be a threat to human and animal health and agricultural productivity; therefore, further investigation is warranted. These nonbacterial pathogens should be considered when assessing the potential for vector transmission, distribution of biosolids to land, and discharge of treated wastewater to waterways or land. IMPORTANCE Nonbacterial microflora in wastewater remain understudied compared to their bacterial counterparts despite their importance in the wastewater treatment process. In this study, we report the temporal and spatial distributions of DNA viruses, archaea, protozoa, and fungi in raw wastewater influent, effluent, oxidation pond water, and oxidation pond sediments by using shotgun metagenomic sequencing. Our study indicated the presence of groups of nonbacterial taxa which encompass pathogenic species that may have potential to cause disease in humans, animals, and agricultural crops. We also observed higher alpha diversity in viruses, archaea, and fungi in effluent samples than in influent samples. This suggests that the resident microflora in the wastewater treatment plant may be making a greater contribution to the diversity of taxa observed in wastewater effluent than previously thought. This study provides important insights to better understand the potential human, animal, and environmental health impacts of discharged treated wastewater.
Collapse
Affiliation(s)
- Sujani Ariyadasa
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - William Taylor
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Erin McGill
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Craig Billington
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research, Christchurch, New Zealand
| |
Collapse
|
14
|
Crognale S, Massimi A, Sbicego M, Braguglia CM, Gallipoli A, Gazzola G, Gianico A, Tonanzi B, Di Pippo F, Rossetti S. Ecology of food waste chain-elongating microbiome. Front Bioeng Biotechnol 2023; 11:1157243. [PMID: 37113665 PMCID: PMC10126515 DOI: 10.3389/fbioe.2023.1157243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial chain elongation has emerged as a valuable bioprocess for obtaining marketable products, such as medium chain fatty acids usable in several industrial applications, from organic waste. The understanding of the microbiology and microbial ecology in these systems is crucial to apply these microbiomes in reliable production processes controlling microbial pathways to promote favourable metabolic processes, which will in turn increase product specificity and yields. In this research, the dynamics, cooperation/competition and potentialities of bacterial communities involved in the long-term lactate-based chain elongation process from food waste extract were evaluated under different operating conditions by DNA/RNA amplicon sequencing and functional profile prediction. The feeding strategies and the applied organic loading rates strongly affected the microbial community composition. The use of food waste extract promoted the selection of primary fermenters (i.e., Olsenella, Lactobacillus) responsible for the in situ production of electron donors (i.e., lactate). The discontinuous feeding and the organic loading rate 15 gCOD L-1 d-1 selected the best performing microbiome in which microbes coexist and cooperate to complete the chain elongation process. Both at DNA and RNA level, this microbiome was composed by the lactate producer Olsenella, the short chain fatty acids producers Anaerostipes, Clostridium sensu stricto 7, C. sensu stricto 12, Corynebacterium, Erysipelotrichaceae UCG-004, F0332, Leuconostoc, and the chain elongator Caproiciproducens. This microbiome also showed the highest predicted abundance of short-chain acyl-CoA dehydrogenase, the functional enzyme responsible for the chain elongation process. The combined approach herein used allowed to study the microbial ecology of chain elongation process from food waste by identifying the main functional groups, establishing the presence of potential biotic interactions within the microbiomes, and predicting metabolic potentialities. This study provided pivotal indications for the selection of high-performance microbiome involved in caproate production from food waste that can serve as a basis for further improving system performance and engineering the process scale-up.
Collapse
|
15
|
Chen S, Wang M, Russo FM, Gobler CJ, Mao X. Efficient nitrogen removal from onsite wastewater by a novel continuous flow biofilter. CHEMOSPHERE 2022; 300:134642. [PMID: 35439482 DOI: 10.1016/j.chemosphere.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Soil-based passive biofiltration system is an economically feasible technology for nitrogen removal from onsite wastewater. However, the conventional design requires a large system footprint with limited treatment capacity. In this study, a novel continuous flow biofilter (CFB) with adjustable recirculation and continuous flow pattern was developed for onsite wastewater treatment with a small footprint. Efficient total nitrogen removal (80.1-97.5%) was observed at various hydraulic loadings (0.03-0.12 m3 m-2 d-1), nitrogen loadings (1.1-8.6 g N m-2 d-1) and recycle ratios (2-3) when treating septic tank effluent (STE), with low effluent TN (0.7-13.6 mg N L-1). Nitrous oxide was observed in the denitrification effluent indicating incomplete denitrification at elevated dissolved oxygen levels (3.3-5.8 mg L-1). Nitrogen removal rate (2.9-7.0 g N m-2 d-1) and ammonium removal rate (2.4-7.2 g N m-2 d-1) were positively correlated with nitrogen loadings increase (1.1-8.6 g N m-2 d-1) but were not significantly impacted by the hydraulic loading rate change (0.08-0.12 m3 m-2 d-1). The total biomass abundance and nitrifying microorganisms decreased significantly as the nitrification columns depth increased, while homogeneous microbial distribution was observed in the denitrification columns. The abundance of ammonium oxidizing archaea (AOA) increased significantly at increased hydraulic and nitrogen loading rate, while the ammonium oxidizing bacteria (AOB) abundance remained steady. The abundance of functional genes involved in denitrification process (nirS, nirK and nosZ) responded differently when hydraulic and nitrogen loading rate changes. Collectively, this study suggested the CFB could efficiently remove nitrogen from onsite wastewater with fluctuating influent compositions and various hydraulic loadings.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mian Wang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frank M Russo
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher J Gobler
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinwei Mao
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
16
|
Yuan S, Guo S, Huang X, Meng F. Time-lagged interspecies interactions prevail during biofilm development in moving bed biofilm reactor. Biotechnol Bioeng 2022; 119:2770-2783. [PMID: 35837838 DOI: 10.1002/bit.28177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/09/2022]
Abstract
Clarifying the essential succession dynamics of interspecies interactions during biofilm development is crucial for the regulation and application of biofilm-based processes. In this study, regular and time-series phylogenetic molecular ecological networks (pMENs) were constructed to investigate ordinary and time-lagged interspecies interactions during biofilm development in a moving bed biofilm reactor (MBBR). Positive interactions dominated both regular (89.78%) and time-series (77.04%) ecological networks, suggesting that extensive cooperative behaviors facilitated biofilm development. The pronounced directional interactions (72.52%) in the time-series network further indicated that time-lagged interspecies interactions prevailed in the biofilm development process. Specifically, the proportion of directional negative interactions was higher than that of positive interactions, implying that interspecific competition preferred to be time-lagged. The time-series network revealed that module hubs exhibited extensive time-lagged positive interactions with their neighbors, and most of them exhibited altruistic behaviors. Keystone species possessing more positive interactions were positively correlated with biofilm biomass, NO3 - -N concentrations, and the removal efficiencies of NH4 + -N and COD. However, keystone species and peripherals that were negatively targeted by their neighbors showed positive correlations with the concentrations of NO2 - -N, polysaccharides, and proteins in the soluble microbial products. The data highlight that the time-series network can provide directional microbial interactions along with the biofilm development process, which would help to predict the tendency of community shifts and propose efficient strategies for the regulation of biofilm-based processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Sixian Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Xihao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| |
Collapse
|
17
|
Kondrotaite Z, Valk LC, Petriglieri F, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Front Microbiol 2022; 13:917553. [PMID: 35875537 PMCID: PMC9304909 DOI: 10.3389/fmicb.2022.917553] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The Saprospiraceae family within the phylum Bacteroidota is commonly present and highly abundant in wastewater treatment plants (WWTPs) worldwide, but little is known about its role. In this study, we used MiDAS 4 global survey with samples from 30 countries to analyze the abundance and distribution of members of Saprospiraceae. Phylogenomics were used to delineate five new genera from a set of 31 high-quality metagenome-assembled genomes from Danish WWTPs. Newly designed probes for fluorescence in situ hybridization (FISH) revealed rod-shaped morphologies for all genera analyzed, including OLB8, present mostly inside the activated sludge flocs. The genomes revealed potential metabolic capabilities for the degradation of polysaccharides, proteins, and other complex molecules; partial denitrification; and storage of intracellular polymers (glycogen, polyphosphate, and polyhydroxyalkanoates). FISH in combination with Raman microspectroscopy confirmed the presence of intracellular glycogen in Candidatus Brachybacter, Candidatus Parvibacillus calidus (both from the former genus OLB8), and Candidatus Opimibacter, and the presence of polyhydroxyalkanoates in Candidatus Defluviibacterium haderslevense and Candidatus Vicinibacter. These results provide the first overview of the most abundant novel Saprospiraceae genera present in WWTPs across the world and their potential involvement in nutrient removal and the degradation of macromolecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Per H. Nielsen
- Department of Chemistry and Bioscience, Center of Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Criado Monleon AJ, Knappe J, Somlai C, Betancourth CO, Ali M, Curtis TP, Gill LW. Spatial Variation of the Microbial Community Structure of On-Site Soil Treatment Units in a Temperate Climate, and the Role of Pre-treatment of Domestic Effluent in the Development of the Biomat Community. Front Microbiol 2022; 13:915856. [PMID: 35814661 PMCID: PMC9263727 DOI: 10.3389/fmicb.2022.915856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of microbial mats or "biomats" has been identified as an essential component in the attenuation of pollutants within the soil treatment unit (STU) of conventional on-site wastewater treatment systems (OWTSs). This study aimed to characterize the microbial community which colonizes these niches and to determine the influence of the pre-treatment of raw-domestic wastewater on these communities. This was achieved through a detailed sampling campaign of two OWTSs. At each site, the STU areas were split whereby half received effluent directly from septic tanks, and half received more highly treated effluents from packaged aerobic treatment systems [a coconut husk media filter on one site, and a rotating biodisc contactor (RBC) on the other site]. Effluents from the RBC had a higher level of pre-treatment [~90% Total Organic Carbon (TOC) removal], compared to the media filter (~60% TOC removal). A total of 92 samples were obtained from both STU locations and characterized by 16S rRNA gene sequencing analysis. The fully treated effluent from the RBC resulted in greater microbial community richness and diversity within the STUs compared to the STUs receiving partially treated effluents. The microbial community structure found within the STU receiving fully treated effluents was significantly different from its septic tank, primary effluent counterpart. Moreover, the distance along each STU appears to have a greater impact on the community structure than the depth in each STU. Our findings highlight the spatial variability of diversity, Phylum- and Genus-level taxa, and functional groups within the STUs, which supports the assumption that specialized biomes develop around the application of effluents under different degrees of treatment and distance from the source. This research indicates that the application of pre-treated effluents infers significant changes in the microbial community structure, which in turn has important implications for the functionality of the STU, and consequently the potential risks to public health and the environment.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - Jan Knappe
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Mathematics Applications Consortium for Science and Industry (MASCI), Limerick University, Limerick, Ireland
| | - Celia Somlai
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | | | - Muhammad Ali
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas P. Curtis
- Department of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence William Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| |
Collapse
|
19
|
Arora J, Ranjan A, Chauhan A, Biswas R, Rajput VD, Sushkova S, Mandzhieva S, Minkina T, Jindal T. Surfactant Pollution, an Emerging Threat to Ecosystem: Approaches for Effective Bacterial Degradation. J Appl Microbiol 2022; 133:1229-1244. [PMID: 35598183 DOI: 10.1111/jam.15631] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 12/08/2022]
Abstract
The use of surfactants in households and industries is inevitable and so is their discharge into the environment, especially into the water bodies as effluents. Being surface-active agents, their utilization is mostly seen in soaps, detergents, personal care products, emulsifiers, wetting agents, etc. Anionic surfactants are the most used class. These surfactants are responsible for the foam and froth in the water bodies and cause potential adverse effects to both biotic and abiotic components of the ecosystem. Surfactants are capable of penetrating the cell membrane and thus cause toxicity to living organisms. Accumulation of these compounds has been known to cause significant gill damage and loss of sight in fish. Alteration of physiological and biochemical parameters of water decreases the amount of dissolved oxygen and thus affecting the entire ecosystem. Microbes utilizing surfactants as substrates for energy form the basis of the biodegradation of these compounds. The main organisms for surfactant biodegradation, both in sewage and natural waters, are bacteria. Several Pseudomonas and Bacillus spp. have shown efficient degradation of anionic surfactants namely: sodium dodecyl sulphate (SDS), linear alkylbenzene sulphonate (LAS), sodium dodecylbenzenesulphonate (SDBS). Also, several microbial consortia constituting Alcaligenes spp., Citrobacter spp., etc. have shown efficacy in the degradation of surfactants. The biodegradation efficiency studies of these microbes/microbial consortia would be of immense help in formulating better solutions for the bioremediation of surfactants and help to reduce their potential environmental hazards.
Collapse
Affiliation(s)
- Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Zhang B, Yang T, Sun C, Wen X. Drivers of microbial beta-diversity in wastewater treatment plants in China. J Environ Sci (China) 2022; 115:341-349. [PMID: 34969461 DOI: 10.1016/j.jes.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
As one of the most well-documented biogeographic patterns, the distance-decay relationship provides insights into the underlying mechanisms driving biodiversity distribution. Although wastewater treatment plants (WWTPs) are well-controlled engineered ecosystems, this pattern has been seen among microbial communities in activated sludge (AS). However, little is known about the relative importance of environmental heterogeneity and dispersal limitation in shaping AS microbial community across China; especially they are related to spatial scale and organism types. Here, we assessed the distance-decay relationship based on different spatial scales and microbial phylogenetic groups by analyzing 132 activated sludge (AS) samples across China comprising 3,379,200 16S rRNA sequences. Our results indicated that the drivers of distance-decay pattern in China were scale-dependent. Microbial biogeographic patterns in WWTPs were mainly driven by dispersal limitation at both local and national scales. In contrast, conductivity, SRT, and pH played dominant roles in shaping AS microbial community compositions at the regional scale. Turnover rates and the drivers of beta-diversity also varied with microorganism populations. Moreover, a quantitative relationship between dispersal limitation ratio and AS microbial turnover rate was generated. Collectively, these results highlighted the importance of considering multiple spatial scales and micro-organism types for understanding microbial biogeography in WWTPs and provided new insights into predicting variations in AS community structure in response to environmental disturbance.
Collapse
Affiliation(s)
- Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Mathew MM, Khatana K, Vats V, Dhanker R, Kumar R, Dahms HU, Hwang JS. Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants-A Review. Front Microbiol 2022; 12:801051. [PMID: 35185825 PMCID: PMC8850834 DOI: 10.3389/fmicb.2021.801051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
The traditional approach for biodegradation of organic matter in sewage treatment used a consortium of bacterial spp. that produce untreated or partially treated inorganic contaminants resulting in large amounts of poor-quality sludge. The aeration process of activated sludge treatment requires high energy. So, a sustainable technique for sewage treatment that could produce less amount of sludge and less energy demanding is required for various developed and developing countries. This led to research into using microalgae for wastewater treatment as they reduce concentrations of nutrients like inorganic nitrates and phosphates from the sewage water, hence reducing the associated chemical oxygen demand (COD). The presence of microalgae removes nutrient concentration in water resulting in reduction of chemical oxygen demand (COD) and toxic heavy metals like Al, Ni, and Cu. Their growth also offers opportunity to produce biofuels and bioproducts from algal biomass. To optimize use of microalgae, technologies like high-rate algal ponds (HRAPs) have been developed, that typically use 22% of the electricity used in Sequencing Batch Reactors for activated sludge treatment with added economic and environmental benefits like reduced comparative operation cost per cubic meter, mitigate global warming, and eutrophication potentials. The addition of suitable bacterial species may further enhance the treatment potential in the wastewater medium as the inorganic nutrients are assimilated into the algal biomass, while the organic nutrients are utilized by bacteria. Further, the mutual exchange of CO2 and O2 between the algae and the bacteria helps in enhancing the photosynthetic activity of algae and oxidation by bacteria leading to a higher overall nutrient removal efficiency. Even negative interactions between algae and bacteria mediated by various secondary metabolites (phycotoxins) have proven beneficial as it controls the algal bloom in the eutrophic water bodies. Herein, we attempt to review various opportunities and limitations of using a combination of microalgae and bacteria in wastewater treatment method toward cost effective, eco-friendly, and sustainable method of sewage treatment.
Collapse
Affiliation(s)
- Merwin Mammen Mathew
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Kanchan Khatana
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Vaidehi Vats
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Ram Kumar
- Ecosystem Research Laboratory, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Fatehpur, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
22
|
Han T, Zheng J, Han Y, Xu X, Li M, Schwarz C, Zhu L. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148145. [PMID: 34119788 DOI: 10.1016/j.scitotenv.2021.148145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Microorganisms in activated sludge are widely recognized for their roles in wastewater treatment. However, previous studies were mainly concerned with the diversity and driving factors of microbial communities within domestic wastewater treatment, and those of domestic wastewater treatment systems mixed with industrial wastewater are poorly understood. In this research, three different full-scale aerobic activated sludge (AS) wastewater treatment systems fed with municipal, textile-dyeing, and mixed wastewater, respectively, were monitored over the operation course of three months. 16S rRNA amplicon sequencing analysis revealed that the microbial communities in textile-dyeing wastewater activated sludge (AS) exhibited significantly lower richness and diversity (p < 0.01, Adonis) compared to those fed with municipal wastewater. In contrast, textile-dyeing derived AS selectively enriched microbial taxa with aromatic degradation and denitrification potentials. Further, FARPROTAX and metabolomics indicated the inhibition of 72.5% metabolic functions (p < 0.01) in AS from the system fed with textile-dyeing wastewater, including the pathways of pentose phosphate metabolism, purine metabolism, and glycerophospholipid metabolism. Overall, this study corroborates textile-dyeing wastewater is a novel microbial niche and could suppress sludge performance by inhibiting microbial activity and metabolism, raising concerns on AS-based systems for industrial wastewater treatment.
Collapse
Affiliation(s)
- Taixing Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
23
|
Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, Jain M, Kumar G, Kommedal R, Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front Microbiol 2021; 12:717809. [PMID: 34707579 PMCID: PMC8542863 DOI: 10.3389/fmicb.2021.717809] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems.
Collapse
Affiliation(s)
- Cansu Uluseker
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tiruchendur, India
| | - Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agricultural and Technology, Banda, India
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
24
|
Wang Y, Ye J, Ju F, Liu L, Boyd JA, Deng Y, Parks DH, Jiang X, Yin X, Woodcroft BJ, Tyson GW, Hugenholtz P, Polz MF, Zhang T. Successional dynamics and alternative stable states in a saline activated sludge microbial community over 9 years. MICROBIOME 2021; 9:199. [PMID: 34615557 PMCID: PMC8495973 DOI: 10.1186/s40168-021-01151-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/19/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater treatment plant to answer how complex AS communities evolve in the long term and how the community functions change when there is a disturbance in operational parameters. RESULTS Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance (bleaching). While the taxonomic composition rapidly turned into a new state following the disturbance, the metabolic profile of the community and system performance remained remarkably stable. A total of 920 metagenome-assembled genomes (MAGs), representing approximately 70% of the community in the studied AS ecosystem, were recovered from the 97 monthly AS metagenomes. Comparative genomic analysis revealed an increased ability to aggregate in the cohorts of MAGs with correlated dynamics that are dominant after the bleaching event. Fine-scale analysis of dynamics also revealed cohorts that dominated during different periods and showed successional dynamics on seasonal and longer time scales due to temperature fluctuation and gradual changes in mean residence time in the reactor, respectively. CONCLUSIONS Our work highlights that communities can assume different stable states under highly similar environmental conditions and that a specific disturbance threshold may lead to a rapid shift in community composition. Video Abstract.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Ye
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Feng Ju
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Joel A. Boyd
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Donovan H. Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Xiaotao Jiang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Ben J. Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Martin F. Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Alekseeva AY, Groenenboom AE, Smid EJ, Schoustra SE. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910093. [PMID: 34639397 PMCID: PMC8508538 DOI: 10.3390/ijerph181910093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
Eco-evolutionary forces are the key drivers of ecosystem biodiversity dynamics. This resulted in a large body of theory, which has partially been experimentally tested by mimicking evolutionary processes in the laboratory. In the first part of this perspective, we outline what model systems are used for experimental testing of eco-evolutionary processes, ranging from simple microbial combinations and, more recently, to complex natural communities. Microbial communities of spontaneous fermented foods are a promising model system to study eco-evolutionary dynamics. They combine the complexity of a natural community with extensive knowledge about community members and the ease of manipulating the system in a laboratory setup. Due to rapidly developing sequencing techniques and meta-omics approaches incorporating data in building ecosystem models, the diversity in these communities can be analysed with relative ease while hypotheses developed in simple systems can be tested. Here, we highlight several eco-evolutionary questions that are addressed using microbial communities from fermented foods. These questions relate to analysing species frequencies in space and time, the diversity-stability relationship, niche space and community coalescence. We provide several hypotheses of the influence of these factors on community evolution specifying the experimental setup of studies where microbial communities of spontaneous fermented food are used.
Collapse
Affiliation(s)
- Anna Y. Alekseeva
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Correspondence:
| | - Anneloes E. Groenenboom
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
26
|
Cohen Y, Pasternak Z, Müller S, Hübschmann T, Schattenberg F, Sivakala KK, Abed-Rabbo A, Chatzinotas A, Jurkevitch E. Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems. Nat Commun 2021; 12:5481. [PMID: 34531395 PMCID: PMC8446003 DOI: 10.1038/s41467-021-25824-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
A fundamental question in community ecology is the role of predator-prey interactions in food-web stability and species coexistence. Although microbial microcosms offer powerful systems to investigate it, interrogating the environment is much more arduous. Here, we show in a 1-year survey that the obligate predators Bdellovibrio and like organisms (BALOs) can regulate prey populations, possibly in a density-dependent manner, in the naturally complex, species-rich environments of wastewater treatment plants. Abundant as well as rarer prey populations are affected, leading to an oscillating predatory landscape shifting at various temporal scales in which the total population remains stable. Shifts, along with differential prey range, explain co-existence of the numerous predators through niche partitioning. We validate these sequence-based findings using single-cell sorting combined with fluorescent hybridization and community sequencing. Our approach should be applicable for deciphering community interactions in other systems.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Division of Identification and Forensic Science, Israel Police, National Headquarters, Jerusalem, Israel
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Kunjukrishnan Kamalakshi Sivakala
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
- Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
27
|
Yuan S, Xu R, Wang D, Lin Q, Zhou S, Lin J, Xia L, Fu Y, Gan Z, Meng F. Ecological Linkages between a Biofilm Ecosystem and Reactor Performance: The Specificity of Biofilm Development Phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11948-11960. [PMID: 34415760 DOI: 10.1021/acs.est.1c02486] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In biofilm-based engineered ecosystems, the reactor performance was closely linked to interspecies interactions within a biofilm ecosystem, whereas the ecological processes underpinning such linkage were still unenlightened. Herein, the principles of community succession and assembly were integrated to capture the ecological laws of biofilm development by molecular ecological networks and assembly model analysis based on the 16S rRNA sequencing analysis and metagenomics in a well-controlled moving bed biofilm reactor. At the initial colonization phase (days 0-2, driven by initial colonizers), interspecific cooperation (74.18%) facilitated initial biofilm formation, whereas some pioneers, and keystone species disappeared at later phases. At the accumulation phase (days 3-30, rapid biofilm development), interspecific cooperation (81.41 ± 5.07%) contributed to rapid biofilm development and keystone species were mainly involved in quorum sensing or positively correlated with extracellular polymeric substance production. At the maturation phase (days 31-106, a well-adapted quasi-equilibrium state), increased interspecific competition (32.74 ± 4.77%) and higher small-world property facilitated the rapid information transportation and pollutant treatment, and keystone species were positively correlated with the removal of COD and NH4+-N. Homogenizing dispersal diminished the contemporary community dissimilarities, while turnover but rather nestedness governed the temporal variations in the biofilm succession period. This study highlighted the specificity of ecological processes at distinct biofilm development phases, which would advance our understanding on the development-to-function linkages in biofilm-based treatment processes.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shunyi Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Jieying Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
28
|
Fei X, Li S, Wang L, Wang L, Chen F. Impact of light on anoxic/oxic reactors: performance, quorum sensing, and metagenomic characteristics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1452-1463. [PMID: 34559079 DOI: 10.2166/wst.2021.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of light has raised attention on wastewater treatment. However, little research has concentrated on the influences of light on activated sludge. In this study, the influences of light on the performance, quorum sensing (QS) and metagenomic characteristics of anoxic/oxic reactors were investigated. The reactor without light (AO1) showed higher total nitrogen (TN) removal (79.15 ± 1.69%) than the reactor with light (AO2) (74.54 ± 1.30%), and significant differences were observed. It was observed that light facilitated the production of protein-like and tryptophan-like substances by employing parallel factor analysis for extracellular polymeric substance (EPS), resulting in more EPS production in AO2, indicating light was beneficial to EPS production. The concentrations of N-acyl-homoserine lactones (AHLs) were various in the two reactors, so the AHLs-mediated QS behaviors in both reactors were also different. These results revealed that light significantly influenced nitrogen removal, EPS, and QS. Metagenomic analysis based on Tax4Fun demonstrated that light reduced the denitrification, stimulated the polysaccharide and protein biosynthesis pathways and down-regulated the AHLs synthesis pathway, resulting in lower TN removal, more EPS production, and lower AHLs concentrations. Based on the above, the likely mechanism was proposed for the influences of light on the reactor.
Collapse
Affiliation(s)
- Xuening Fei
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Songya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Linpei Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Le Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Fuqiang Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
29
|
Activity-Based Cell Sorting Reveals Resistance of Functionally Degenerate Nitrospira during a Press Disturbance in Nitrifying Activated Sludge. mSystems 2021; 6:e0071221. [PMID: 34282936 PMCID: PMC8407113 DOI: 10.1128/msystems.00712-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Managing and engineering activated sludge wastewater treatment microbiomes for low-energy nitrogen removal requires process control strategies to stop the oxidation of ammonium at nitrite. Our ability to out-select nitrite-oxidizing bacteria (NOB) from activated sludge is challenged by their metabolic and physiological diversity, warranting measurements of their in situ physiology and activity under selective growth pressures. Here, we examined the stability of nitrite oxidation in activated sludge during a press disturbance induced by treating a portion of return activated sludge with a sidestream flow containing free ammonia (FA) at 200 mg NH3-N/liter. The nitrite accumulation ratio peaked at 42% by day 40 in the experimental bioreactor with the press disturbance, while it did not increase in the control bioreactor. A subsequent decrease in nitrite accumulation within the experimental bioreactor coincided with shifts in dominant Nitrospira 16S rRNA amplicon sequence variants (ASVs). We applied bioorthogonal noncanonical amino acid tagging (BONCAT) coupled with fluorescence-activated cell sorting (FACS) to investigate changes in the translational activity of NOB populations throughout batch exposure to FA. BONCAT-FACS confirmed that the single Nitrospira ASV washed out of the experimental bioreactor had reduced translational activity following exposure to FA, whereas the two Nitrospira ASVs that emerged after process acclimation were not impacted by FA. Thus, the coexistence of functionally degenerate and physiologically resistant Nitrospira populations provided resilience to the nitrite-oxidizing function during the press disturbance. These results highlight how BONCAT-FACS can resolve ecological niche differentiation within activated sludge and inform strategies to engineer and control microbiome function. IMPORTANCE Nitrogen removal from activated sludge wastewater treatment systems is an energy-intensive process due to the large aeration requirement for nitrification. This energy footprint could be minimized with engineering control strategies that wash out nitrite-oxidizing bacteria (NOB) to limit oxygen demands. However, NOB populations can have a high degree of physiological diversity, and it is currently difficult to decipher the behavior of individual taxa during applied selective pressures. Here, we utilized a new substrate analog probing approach to measure the activity of NOB at the cellular translational level in the face of a press disturbance applied to the activated sludge process. Substrate analog probing corroborated the time series reactor sampling, showing that coexisting and functionally degenerate Nitrospira populations provided resilience to the nitrite oxidation process. Taken together, these results highlight how substrate analog approaches can illuminate in situ ecophysiologies within shared niches, and can inform strategies to improve microbiome engineering and management.
Collapse
|
30
|
Lee SH, Kim TS, Park HD. Transient-rare Bacterial Taxa Are Assembled Neutrally across Temporal Scales. Microbes Environ 2021; 36. [PMID: 33563869 PMCID: PMC7966942 DOI: 10.1264/jsme2.me20110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite the importance of microbial communities in ecosystem functions, the mechanisms underlying the assembly of rare taxa over time are poorly understood. It remains largely unknown whether rare taxa exhibit similar assembly processes to common taxa in local communities. We herein retrieved the 16S rRNA sequences of bacteria collected bimonthly for 2 years from the Pohang wastewater treatment plant. The transient-rare taxa showed different abundance distributions from the common taxa. Transient-rare taxon assemblages also exhibited higher temporal variations than common taxon assemblages, suggesting the distinct ecological patterns of the two assemblages. A multivariate analysis revealed that environmental parameters accounted for 25.3 and 61.6% of temporal variations in the transient-rare and common taxon assemblages, respectively. The fitting of all observed taxa to a neutral community model revealed that 96.4% of the transient-rare taxa (relative abundance, 71.4%) and 73.3% of the common taxa (relative abundance, 45.6%) followed the model, suggesting that stochastic mechanisms were more important than deterministic ones in the assembly of the transient-rare taxa. Collectively, the present results indicate that the transient-rare bacterial taxa at the Pohang wastewater treatment plant differed from the common taxa in ecological patterns, suggesting that dispersal is a key process in their assembly.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University
| | - Taek-Seung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University
| |
Collapse
|
31
|
Wang M, Chen H, Chang S. Linkage among the combined temperature-retention time condition, microbial interaction, community structure, and process performance in the hydrolysis of waste activated sludge. BIORESOURCE TECHNOLOGY 2021; 331:125029. [PMID: 33831728 DOI: 10.1016/j.biortech.2021.125029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies have revealed the effect of temperature and hydraulic retention time (HRT) on microbiota in sludge biological hydrolysis (BH). However, few scholars have explored the combined effect of these two critical BH parameters. This study explored the BH performance and community structures over 12 combined temperatures-HRT conditions for temperatures from 35 °C to 55 °C and HRTs from 1.5 days to 6.0 days. Results showed that the 12 combined conditions formed only six distinct community structures with each of them relating to a distinctive range of volatile suspended solid reduction rates. The nonmetric multidimensional scaling and species-species association analysis on the DNA sequencing data revealed that the community structure was greatly driven by the microbial interactions (e.g., heterogeneous commensalism and competition) under the effect of temperature and HRT. This study established the linkages among the combined BH temperature-HRT conditions, microbial interaction, microbial community, and BH performance.
Collapse
Affiliation(s)
- Meiying Wang
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| | - Huibin Chen
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada; College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Sheng Chang
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
32
|
Wang Y, Zhao R, Liu L, Li B, Zhang T. Selective enrichment of comammox from activated sludge using antibiotics. WATER RESEARCH 2021; 197:117087. [PMID: 33819658 DOI: 10.1016/j.watres.2021.117087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/04/2023]
Abstract
While the ubiquitous presence of comammox in engineered systems provides the foundation of developing a novel biological nitrogen removal process, factors contributing to the comammox dynamics in engineered systems have not been well resolved. Here, we investigate the long-term effects of ten different antibiotics on microbial community dynamics in activated sludge and the results show that both types and concentrations of antibiotics affect the taxonomic composition of nitrifiers, including comammox, ammonia-oxidizing bacteria, and canonical nitrite-oxidizing bacteria. Specifically, phylogenetically different comammox Nitrospira were selectively enriched by four types of antibiotics (i.e., ampicillin, kanamycin, lincomycin, and trimethoprim). Comparative genomic analysis of the four newly identified comammox clade A Nitrospira revealed that the comammox enriched by antibiotics shared the conserved key metabolic potentials, such as carbon fixation, complete ammonia oxidation, and utilization of hydrogen as alternative electron donors, among the known comammox organisms. Comammox strains enriched in this study also encoded genes involved in formate and cyanate metabolism that were recently reported in comammox clade A organisms from wastewater treatment systems. Our findings highlight that the comammox in activated sludge ecosystems possess high metabolic versatility than previously recognized and could be selectively enriched by some antibiotics.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
33
|
LaMartina EL, Mohaimani AA, Newton RJ. Urban wastewater bacterial communities assemble into seasonal steady states. MICROBIOME 2021; 9:116. [PMID: 34016155 PMCID: PMC8139061 DOI: 10.1186/s40168-021-01038-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a novel ecosystem. Sewer microorganisms present both an opportunity as a control point for wastewater treatment and a risk to human health. If treatment processes are to be improved and health risks quantified, then it is necessary to understand microbial distributions and dynamics within this community. Here, we use 16S rRNA gene sequencing to characterize raw influent wastewater bacterial communities in a 5-year time series from two wastewater treatment plants in Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and wastewater in 12 Milwaukee residential sewers. RESULTS In Milwaukee, we find that in transit from residences to treatment plants, the human bacterial component of wastewater decreases in proportion and exhibits stochastic temporal variation. In contrast, the resident sewer community increases in abundance during transit and cycles seasonally according to changes in wastewater temperature. The result is a bacterial community that assembles into two distinct community states each year according to the extremes in wastewater temperature. Wastewater bacterial communities from other northern US cities follow temporal trends that mirror those in Milwaukee, but southern US cities have distinct community compositions and differ in their seasonal patterns. CONCLUSIONS Our findings provide evidence that environmental conditions associated with seasonal change and climatic differences related to geography predictably structure the bacterial communities residing in below-ground sewer pipes. Video abstract.
Collapse
Affiliation(s)
- Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
- Present Address: Analytical Technologies, Biogen, 5000 Davis Dr, Morrisville, NC, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| |
Collapse
|
34
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
35
|
Saw NMMT, Suwanchaikasem P, Zuniga-Montanez R, Qiu G, Marzinelli EM, Wuertz S, Williams RBH. Influence of Extraction Solvent on Nontargeted Metabolomics Analysis of Enrichment Reactor Cultures Performing Enhanced Biological Phosphorus Removal (EBPR). Metabolites 2021; 11:269. [PMID: 33925970 PMCID: PMC8145293 DOI: 10.3390/metabo11050269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.
Collapse
Affiliation(s)
- Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Pipob Suwanchaikasem
- Singapore Phenome Centre, Nanyang Technological University, Singapore 636921, Singapore;
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Ezequiel M. Marzinelli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
36
|
Community Composition and Function of Bacteria in Activated Sludge of Municipal Wastewater Treatment Plants. WATER 2021. [DOI: 10.3390/w13060852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) use functional microorganisms in activated sludge (AS) to reduce the environmental threat posed by wastewater. In this study, Illumina NovaSeq sequencing of 16S rRNA genes was performed to explore the microbial communities of AS at different stages of the two WWTP projects in Shenzhen, China. Results showed that Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, and Nitrospirae were the dominant phyla in all the samples, with Proteobacteria being the most abundant and reaching a maximum proportion of 59.63%. There was no significant difference in biodiversity between the two water plants, but Stage 1 and Stage 2 were significantly different. The Mantel test indicated that nitrate, total nitrogen (TN), chemical oxygen demand (COD), and nutrients were essential factors affecting the bacterial community structure. FAPROTAX analysis emphasized that the leading functional gene families include nitrification, aerobic nitrite oxidation, human pathogens, and phototrophy. This study reveals changes in the community structure of AS in different treatment units of Banxuegang WWTP, which can help engineers to optimize the wastewater treatment process.
Collapse
|
37
|
Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:163. [PMID: 33675444 DOI: 10.1007/s10661-021-08952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB. The isolated strains were shown to be capable of producing surfactants, which are important for compound degradation. The ability to reduce benzo(a)pyrene in vitro was tested by gas chromatography. After 20 days of experiment, the consortium that was enriched with 1 mg/L of benzo(a)pyrene was able to reduce 30% of the compound when compared to a control without bacteria. The four isolated strains that significantly reduced benzo(a)pyrene belong to the Burkholderia cepacia complex and were identified within the consortium as the species B. cenocepacia IIIa, B. vietnamiensis, B. cepacia, and B. multivorans. This finding demonstrates the biotechnological potential of the B. cepacia complex strains for use in wastewater treatment and bioremediation. Previous studies on hydrocarbon-degrading strains focused mainly on contaminated soil or marine areas. In this work, the strains were prospected from activated sludge in a WWTP and showed the potential of indigenous samples to be used in both improving treatment systems and bioremediation of areas contaminated with petrochemical waste.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Marcela Marmitt
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Letícia Gomes de Ávila
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Gabriela Kern
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Patrícia Dörr Quadros
- Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, UFRGS, Brazil Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Victor Hugo Valiati
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
38
|
Guerrero LD, Pérez MV, Orellana E, Piuri M, Quiroga C, Erijman L. Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system. THE ISME JOURNAL 2021; 15:636-648. [PMID: 33067586 PMCID: PMC8027832 DOI: 10.1038/s41396-020-00802-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023]
Abstract
Bacterial viruses are widespread and abundant across natural and engineered habitats. They influence ecosystem functioning through interactions with their hosts. Laboratory studies of phage-host pairs have advanced our understanding of phenotypic and genetic diversification in bacteria and phages. However, the dynamics of phage-host interactions have been seldom recorded in complex natural environments. We conducted an observational metagenomic study of the dynamics of interaction between Gordonia and their phages using a three-year data series of samples collected from a full-scale wastewater treatment plant. The aim was to obtain a comprehensive picture of the coevolution dynamics in naturally evolving populations at relatively high time resolution. Coevolution was followed by monitoring changes over time in the CRISPR loci of Gordonia metagenome-assembled genome, and reciprocal changes in the viral genome. Genome-wide analysis indicated low strain variability of Gordonia, and almost clonal conservation of the trailer end of the CRISPR loci. Incorporation of newer spacers gave rise to multiple coexisting bacterial populations. The host population carrying a shorter CRISPR locus that contain only ancestral spacers, which has not acquired newer spacers against the coexisting phages, accounted for more than half of the total host abundance in the majority of samples. Phages genome co-evolved by introducing directional changes, with no preference for mutations within the protospacer and PAM regions. Metagenomic reconstruction of time-resolved variants of host and viral genomes revealed how the complexity at the population level has important consequences for bacteria-phage coexistence.
Collapse
Affiliation(s)
- Leandro D. Guerrero
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María V. Pérez
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina ,Agua y Saneamientos Argentinos S.A., Tucumán 752, C1049APP Buenos Aires, Argentina
| | - Esteban Orellana
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Leonardo Erijman
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Intendente Güiraldes 2160s, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
39
|
Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, Stahl DA, Zhang T. Seasonal Prevalence of Ammonia-Oxidizing Archaea in a Full-Scale Municipal Wastewater Treatment Plant Treating Saline Wastewater Revealed by a 6-Year Time-Series Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2662-2673. [PMID: 33539079 DOI: 10.1021/acs.est.0c07703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although several molecular-based studies have demonstrated the involvement of ammonia-oxidizing archaea (AOA) in ammonia oxidation in wastewater treatment plants (WWTPs), factors affecting the persistence and growth of AOA in these engineered systems have not been resolved. Here, we show a seasonal prevalence of AOA in a full-scale WWTP (Shatin, Hong Kong SAR) over a 6-year period of observation, even outnumbering ammonia-oxidizing bacteria in the seasonal peaks in 3 years, which may be due to the high bioavailable copper concentrations. Comparative analysis of three metagenome-assembled genomes of group I.1a AOA obtained from the activated sludge and 16S rRNA gene sequences recovered from marine sediments suggested that the seawater used for toilet flushing was the primary source of the WWTP AOA. A rare AOA population in the estuarine source water became transiently abundant in the WWTP with a metagenome-based relative abundance of up to 1.3% over three seasons of observation. Correlation-based network analysis revealed a robust co-occurrence relationship between these AOA and organisms potentially active in nitrite oxidation. Moreover, a strong correlation between the dominant AOA and an abundant proteobacterial organism suggested that capacity for extracellular polymeric substance production by the proteobacterium could provide a niche for AOA within bioaggregates. Together, the study highlights the importance of long-term observation in identifying biotic and abiotic factors governing population dynamics in open systems such as full-scale WWTPs.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle 98195, Washington, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Xiaotao Jiang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Ju
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Anni Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle 98195, Washington, United States
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
40
|
Lee JA, Baugh AC, Shevalier NJ, Strand B, Stolyar S, Marx CJ. Cross-Feeding of a Toxic Metabolite in a Synthetic Lignocellulose-Degrading Microbial Community. Microorganisms 2021; 9:321. [PMID: 33557371 PMCID: PMC7914493 DOI: 10.3390/microorganisms9020321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
The recalcitrance of complex organic polymers such as lignocellulose is one of the major obstacles to sustainable energy production from plant biomass, and the generation of toxic intermediates can negatively impact the efficiency of microbial lignocellulose degradation. Here, we describe the development of a model microbial consortium for studying lignocellulose degradation, with the specific goal of mitigating the production of the toxin formaldehyde during the breakdown of methoxylated aromatic compounds. Included are Pseudomonas putida, a lignin degrader; Cellulomonas fimi, a cellulose degrader; and sometimes Yarrowia lipolytica, an oleaginous yeast. Unique to our system is the inclusion of Methylorubrum extorquens, a methylotroph capable of using formaldehyde for growth. We developed a defined minimal "Model Lignocellulose" growth medium for reproducible coculture experiments. We demonstrated that the formaldehyde produced by P. putida growing on vanillic acid can exceed the minimum inhibitory concentration for C. fimi, and, furthermore, that the presence of M. extorquens lowers those concentrations. We also uncovered unexpected ecological dynamics, including resource competition, and interspecies differences in growth requirements and toxin sensitivities. Finally, we introduced the possibility for a mutualistic interaction between C. fimi and M. extorquens through metabolite exchange. This study lays the foundation to enable future work incorporating metabolomic analysis and modeling, genetic engineering, and laboratory evolution, on a model system that is appropriate both for fundamental eco-evolutionary studies and for the optimization of efficiency and yield in microbially-mediated biomass transformation.
Collapse
Affiliation(s)
- Jessica A. Lee
- NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Alyssa C. Baugh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Nicholas J. Shevalier
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Brandi Strand
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
41
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
42
|
Effect of biomass immobilization and reduced graphene oxide on the microbial community changes and nitrogen removal at low temperatures. Sci Rep 2021; 11:840. [PMID: 33436937 PMCID: PMC7804202 DOI: 10.1038/s41598-020-80747-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
The slow growth rate and high optimal temperatures for the anaerobic ammonium oxidation (anammox) bacteria are significant limitations of the anammox processes application in the treatment of mainstream of wastewater entering wastewater treatment plant (WWTP). In this study, we investigate the nitrogen removal and microbial community changes in sodium alginate (SA) and sodium alginate–reduced graphene oxide (SA-RGO) carriers, depending on the process temperature, with a particular emphasis on the temperature close to the mainstream of wastewater entering the WWTP. The RGO addition to the SA matrix causes suppression of the beads swelling, which intern modifies the mechanical properties of the gel beads. The effect of the temperature drop on the nitrogen removal rate was reduced for biomass entrapped in SA and SA-RGO gel beads in comparison to non-immobilized biomass, this suggests a ‘‘protective” effect caused by immobilization. However, analyses performed using next-generation sequencing (NGS) and qPCR revealed that the microbial community composition and relative gene abundance changed significantly, after the implementation of the new process conditions. The microbial community inside the gel beads was completely remodelled, in comparison with inoculum, and denitrification contributed to the nitrogen transformation inside the beads.
Collapse
|
43
|
Song Y, Mhuantong W, Liu SY, Pisutpaisal N, Wongwilaiwalin S, Kanokratana P, Wang AJ, Jiang CY, Champreda V, Qiu DR, Liu SJ. Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes. Appl Microbiol Biotechnol 2021; 105:853-867. [PMID: 33409607 DOI: 10.1007/s00253-020-11082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 11/24/2022]
Abstract
The diversity and assembly of activated sludge microbiomes play a key role in the performances of municipal wastewater treatment plants (WWTPs), which are the most widely applied biotechnological process systems. In this study, we investigated the microbiomes of municipal WWTPs in Bangkok, Wuhan, and Beijing that respectively represent tropical, subtropical, and temperate climate regions, and also explored how microbiomes assembled in these municipal WWTPs. Our results showed that the microbiomes from these municipal WWTPs were significantly different. The assembly of microbiomes in municipal WWTPs followed deterministic and stochastic processes governed by geographical location, temperature, and nutrients. We found that both taxonomic and phylogenetic α-diversities of tropical Bangkok municipal WWTPs were the highest and were rich in yet-to-be-identified microbial taxa. Nitrospirae and β-Proteobacteria were more abundant in tropical municipal WWTPs, but did not result in better removal efficiencies of ammonium and total nitrogen. Overall, these results suggest that tropical and temperate municipal WWTPs harbored diverse and unique microbial resources, and the municipal WWTP microbiomes were assembled with different processes. Implications of these findings for designing and running tropical municipal WWTPs were discussed. KEY POINTS: • Six WWTPs of tropical Thailand and subtropical and temperate China were investigated. • Tropical Bangkok WWTPs had more diverse and yet-to-be-identified microbial taxa. • Microbiome assembly processes were associated with geographical location.
Collapse
Affiliation(s)
- Yang Song
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuttichai Mhuantong
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Shuang-Yuan Liu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Nipon Pisutpaisal
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sarunyou Wongwilaiwalin
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Pattanop Kanokratana
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Ai-Jie Wang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Jiang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Verawat Champreda
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Dong-Ru Qiu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuang-Jiang Liu
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Nguyen Quoc B, Wei S, Armenta M, Bucher R, Sukapanpotharam P, Stahl DA, Stensel HD, Winkler MKH. Aerobic granular sludge: Impact of size distribution on nitrification capacity. WATER RESEARCH 2021; 188:116445. [PMID: 33039834 DOI: 10.1016/j.watres.2020.116445] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The relationship between ammonia oxidation rate, nitrifiers population, and modelled aerobic zone volume in different granule sizes was investigated using aerobic granular sludge from a pilot-scale reactor. The pilot was fed with centrate and secondary effluent amended with acetate as the main carbon source. The maximum specific ammonia oxidation rates and community composition of different aerobic granular sludge size fractions were evaluated by batch tests, quantitative PCR, and genomic analysis. Small (331µm) granules had a 4.72 ± 0.09 times higher maximum specific ammonia oxidizing rate per 1 gVSS, and a 4.05 ± 0.17 times higher specific amoA gene copy number than large (2225µm) granules per 1 gram of wet biomass. However, when related to surface area, small granules had 1.43 ± 0.01 times lower maximum specific ammonia oxidation rate and a 1.66 ± 0.04 times lower specific amoA gene copy number per unit surface than large granules. Experimental results aligned with modeling results in which smaller granules had a higher specific aerobic zone volume to biomass and lower specific aerobic zone volume to surface area. Aerobic granular sludge reactors having the same average diameter of granules may have very different proportions of granule size fractions and hence possess different nitrification rates. Therefore, instead of the commonly reported average granule diameter, a new method was proposed to determine the aerobic volume density per sample, which correlated well with the nitrification rate. This work provides a roadmap to control nitrification capacity by two methods: (a) crushing larger granules into smaller fractions, or (b) increasing the mixed liquor suspended solid concentration to increase the total aerobic zone volume of the system.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Stephany Wei
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Maxwell Armenta
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Robert Bucher
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, WA, USA.
| | - Pardi Sukapanpotharam
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, WA, USA.
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - H David Stensel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
45
|
ElNaker NA, Sallam AM, El-Sayed ESM, El Ghandoor H, Talaat MS, Yousef AF, Hasan SW. A conceptual framework modeling of functional microbial communities in wastewater treatment electro-bioreactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:3047-3061. [PMID: 33341792 DOI: 10.2166/wst.2020.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the microbial ecology of a system allows linking members of the community and their metabolic functions to the performance of the wastewater bioreactor. This study provided a comprehensive conceptual framework for microbial communities in wastewater treatment electro-bioreactors (EBRs). The model was based on data acquired from monitoring the effect of altering different bioreactor operational parameters, such as current density and hydraulic retention time, on the microbial communities of an EBR and its nutrient removal efficiency. The model was also based on the 16S rRNA gene high-throughput sequencing data analysis and bioreactor efficiency data. The collective data clearly demonstrated that applying various electric currents affected the microbial community composition and stability and the reactor efficiency in terms of chemical oxygen demand, N and P removals. Moreover, a schematic that recommends operating conditions that are tailored to the type of wastewater that needs to be treated based on the functional microbial communities enriched at specific operating conditions was suggested. In this study, a conceptual model as a simplified representation of the behavior of microbial communities in EBRs was developed. The proposed conceptual model can be used to predict how biological treatment of wastewater in EBRs can be improved by varying several operating conditions.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail: ; Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Abdelsattar M Sallam
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - El-Sayed M El-Sayed
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - H El Ghandoor
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - M S Talaat
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail:
| |
Collapse
|
46
|
Wu G, Zhang T, Gu M, Chen Z, Yin Q. Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1742-1757. [PMID: 33201840 DOI: 10.2166/wst.2020.443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater management has experienced different stages, including pollutant removal, resource recovery, and water nexus. Within these stages, anaerobic ammonia oxidation-based biotechnology can be incorporated for nitrogen removal, which can help achieve sustainable wastewater management, such as reclamation and ecologization of wastewater. Here, the physiology, metabolism, reaction kinetics and microbial interactions of anammox bacteria are discussed, and strategies to start-up the anammox system are presented. Anammox bacteria are slow growers with a high doubling time and a low reaction rate. Although most anammox bacteria grow autotrophically, some types can grow mixotrophically. The reaction stoichiometric coefficients can be affected by loading rates and other biological reactions. Microbial interactions also contribute to enhanced biological nitrogen removal and promote activities of anammox bacteria. The start-up of the anammox process is the key aspect for its practical application, which can be realized through seed selection, system stimulation, and biomass concentration enhancement.
Collapse
Affiliation(s)
- Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Tianqi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China E-mail:
| |
Collapse
|
47
|
Seasonal Dynamics of the Activated Sludge Microbiome in Sequencing Batch Reactors, Assessed Using 16S rRNA Transcript Amplicon Sequencing. Appl Environ Microbiol 2020; 86:AEM.00597-20. [PMID: 32709723 DOI: 10.1128/aem.00597-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Activated sludge is comprised of diverse microorganisms which remediate wastewater. Previous research has characterized activated sludge using 16S rRNA gene amplicon sequencing, which can help to address questions on the relative abundance of microorganisms. In this study, we used 16S rRNA transcript sequencing in order to characterize "active" populations (via protein synthesis potential) and gain a deeper understanding of microbial activity patterns within activated sludge. Seasonal abundances of individual populations in activated sludge change over time, yet a persistent group of core microorganisms remains throughout the year which are traditionally classified on presence or absence without monitoring of their activity or growth. The goal of this study was to further our understanding of how the activated sludge microbiome changes between seasons with respect to population abundance, activity, and growth. Triplicate sequencing batch reactors were sampled at 10-min intervals throughout reaction cycles during all four seasons. We quantified the gene and transcript copy numbers of 16S rRNA amplicons using real-time PCR and sequenced the products to reveal community abundance and activity changes. We identified 108 operational taxonomic units (OTUs) with stable abundance, activity, and growth throughout the year. Nonproliferating OTUs were commonly human health related, while OTUs that showed seasonal abundance changes have previously been identified as being associated with floc formation and bulking. We observed significant differences in 16S rRNA transcript copy numbers, particularly at lower temperatures in winter and spring. The study provides an analysis of the seasonal dynamics of microbial activity variations in activated sludge based on quantifying and sequencing 16S rRNA transcripts.IMPORTANCE Sequencing batch reactors are a common design for wastewater treatment plants, particularly in smaller municipalities, due to their low footprint and ease of operations. However, like for most treatment plants in temperate/continental climates, the microbial community involved in water treatment is highly seasonal and its biological processes can be sensitive to cold temperatures. The seasonality of these microbial communities has been explored primarily in conventional treatment plants and not in sequencing batch reactors. Furthermore, most studies often only address which organisms are present. However, the activated sludge microbial community is very diverse, and it is often hard to discern which organisms are active and which organisms are simply present. In this study, we applied additional sequencing techniques to also address the issues of which organisms are active and which organisms are growing. By addressing these issues, we gained new insights into seasonal microbial populations dynamics and activity patterns affecting wastewater treatment.
Collapse
|
48
|
Qiu Q, Li G, Dai Y, Xu Y, Bao P. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122733. [PMID: 32361624 DOI: 10.1016/j.jhazmat.2020.122733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Sewage in WWTPs is one of main way to spread antibiotic resistant microbes (ARMs), and beach bay water is in direct contact with human skin. It is necessary to pay attention to remove the ARMs in WWTP sewage and bay water. Our results showed that ARMs and total microbes (TMs) can be effectively removed by S2O82-/Fe2+ in the effluent stage of WWTPs and bay water. Quenching experiments using tert-butyl alcohol, dimethyl sulfoxide and Al2O3 as scavengers confirmed that the primary reactive oxidants responsible for microbes removal during the Fe(II)-activated persulfate oxidation process might be SO4•- and Fe(IV), rather than •OH. The bacterial community shifted and the alpha diversity significantly reduced after treatment. In WWTP group, relative abundance of Firmicutes increased to 8.56%, and potential pathogens such as genus Vibrio decreased to 0.03% in bay water after treatment. The ecological toxicity to the environment of S2O82-/Fe2+ further illustrated that the mortality of indicator species Oryzias latipes did not increase after treatment, and the dosage of 60/30 μM can be potentially ideal dosage of S2O82-/Fe2+. This study revealed Fe(II)-activated persulfate oxidation as an eco-friendly and economical method could reduce TMs and ARMs in WWTP sewage and bay water.
Collapse
Affiliation(s)
- Qianlinglin Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China
| | - Guoxiang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China; Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Sigwartstrasse 10, Tuebingen, 72076, Germany
| | - Yi Dai
- Ningbo Beilun Water Affairs Limited, Ningbo, 315800, P.R. China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China
| | - Peng Bao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China.
| |
Collapse
|
49
|
Santillan E, Constancias F, Wuertz S. Press Disturbance Alters Community Structure and Assembly Mechanisms of Bacterial Taxa and Functional Genes in Mesocosm-Scale Bioreactors. mSystems 2020; 5:e00471-20. [PMID: 32843539 PMCID: PMC7449608 DOI: 10.1128/msystems.00471-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Press disturbances are of interest in microbial ecology, as they can drive microbial communities to alternative stable states. However, the effect of press disturbances in community assembly mechanisms, particularly with regard to taxa and functional genes at different levels of abundance (i.e., common and rare), remains largely unknown. Here, we tested the effect of a continuous alteration in substrate feeding scheme on the structure, function, and assembly of bacterial communities. Two sets of replicate 5-liter sequencing batch reactors were operated at two different organic carbon loads for a period of 74 days, following 53 days of acclimation after inoculation with sludge from a full-scale treatment plant. Temporal dynamics of community taxonomic and functional gene structure were derived from metagenomics and 16S rRNA gene metabarcoding data. Disturbed reactors exhibited different community function, structure, and assembly compared to undisturbed reactors. Bacterial taxa and functional genes showed dissimilar α-diversity and community assembly patterns. Deterministic assembly mechanisms were generally stronger in disturbed reactors and in common fractions compared to rare ones. Function quickly recovered after the disturbance was removed, but community structure did not. Our results highlight that functional gene data from metagenomics can indicate patterns of community assembly that differ from those obtained from taxon data. This study reveals how a joint evaluation of assembly mechanisms and community structure of bacterial taxa and functional genes as well as ecosystem function can unravel the response of complex microbial systems to a press disturbance.IMPORTANCE Ecosystem management must be viewed in the context of increasing frequencies and magnitudes of various disturbances that occur at different scales. This work provides a glimpse of the changes in assembly mechanisms found in microbial communities exposed to sustained changes in their environment. These mechanisms, deterministic or stochastic, can cause communities to reach a similar or variable composition and function. For a comprehensive view, we use a joint evaluation of temporal dynamics in assembly mechanisms and community structure for both bacterial taxa and their functional genes at different abundance levels, in both disturbed and undisturbed states. We further reverted the disturbance state to contrast recovery of function with community structure. Our findings are relevant, as very few studies have employed such an approach, while there is a need to assess the relative importance of assembly mechanisms for microbial communities across different spatial and temporal scales, environmental gradients, and types of disturbance.
Collapse
Affiliation(s)
- Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Department of Civil and Environmental Engineering, University of California, Davis, California, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Department of Civil and Environmental Engineering, University of California, Davis, California, USA
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
50
|
Zhang B, Ning D, Van Nostrand JD, Sun C, Yang Y, Zhou J, Wen X. Biogeography and Assembly of Microbial Communities in Wastewater Treatment Plants in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5884-5892. [PMID: 32259441 DOI: 10.1021/acs.est.9b07950] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scientific understanding of microbial biogeography and assembly is lacking for activated sludge microbial communities, even though the diversity of microbial communities in wastewater treatment plants (WWTPs) is thought to have a direct influence on system performance. Here, utilizing large-scale 16S rRNA gene data generated from 211 activated sludge samples collected from 15 cities across China, we show activated sludge microbes, whose growth and metabolism can be regulated followed with the metabolic theory of ecology with an apparent Ea value (apparent activation energy) of 0.08 eV. WWTPs at a lower latitude tend to harbor a more diverse array of microorganisms. In agreement with the general understanding, the activated sludge microbial assembly was mainly driven by deterministic processes and the mean annual temperature was identified as the most important factor affecting the microbial community structure. The treatment process types with similar microbial growth types and functions had a distinct impact on the activated sludge microbial community structure only when WWTPs were located near each other and received similar influent. Overall, these findings provide us with a deeper understanding of activated sludge microbial communities from an ecological perspective. Moreover, these findings suggest that, for a given set of performance characteristics (e.g., combined nitrification, denitrification, and phosphorus removal), it may be difficult to employ common engineering levers to control additional aspects of community structure due to the influence of natural environmental factors.
Collapse
Affiliation(s)
- Bing Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, P.R. China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, P.R. China
| | - Yunfeng Yang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, P.R. China
| | - Jizhong Zhou
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, P.R. China
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, P.R. China
| |
Collapse
|