1
|
Das S, Bhati V, Dewangan BP, Gangal A, Mishra GP, Dikshit HK, Pawar PAM. Combining Fourier-transform infrared spectroscopy and multivariate analysis for chemotyping of cell wall composition in Mungbean (Vigna radiata (L.) Wizcek). PLANT METHODS 2024; 20:135. [PMID: 39223669 PMCID: PMC11367897 DOI: 10.1186/s13007-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Dissection of complex plant cell wall structures demands a sensitive and quantitative method. FTIR is used regularly as a screening method to identify specific linkages in cell walls. However, quantification and assigning spectral bands to particular cell wall components is still a major challenge, specifically in crop species. In this study, we addressed these challenges using ATR-FTIR spectroscopy as it is a high throughput, cost-effective and non-destructive approach to understand the plant cell wall composition. This method was validated by analysing different varieties of mungbean which is one of the most important legume crops grown widely in Asia. RESULTS Using standards and extraction of a specific component of cell wall components, we assigned 1050-1060 cm-1 and 1390-1420 cm-1 wavenumbers that can be widely used to quantify cellulose and lignin, respectively, in Arabidopsis, Populus, rice and mungbean. Also, using KBr as a diluent, we established a method that can relatively quantify the cellulose and lignin composition among different tissue types of the above species. We further used this method to quantify cellulose and lignin in field-grown mungbean genotypes. The ATR-FTIR-based study revealed the cellulose content variation ranges from 27.9% to 52.3%, and the lignin content variation ranges from 13.7% to 31.6% in mungbean genotypes. CONCLUSION Multivariate analysis of FT-IR data revealed differences in total cell wall (600-2000 cm-1), cellulose (1000-1100 cm-1) and lignin (1390-1420 cm-1) among leaf and stem of four plant species. Overall, our data suggested that ATR-FTIR can be used for the relative quantification of lignin and cellulose in different plant species. This method was successfully applied for rapid screening of cell wall composition in mungbean stem, and similarly, it can be used for screening other crops or tree species.
Collapse
Affiliation(s)
- Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| | - Vikrant Bhati
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Apurva Gangal
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prashant Anupama Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
2
|
Li L, Yang X, Tong B, Wang D, Tian X, Liu J, Chen J, Xiao X, Wang S. Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao. Front Microbiol 2023; 14:1078886. [PMID: 36876061 PMCID: PMC9978227 DOI: 10.3389/fmicb.2023.1078886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Rhizobacterial communities and their metabolites can affect plant growth, development, and stress resistance, as well as the biosynthesis and accumulation of bioactive compounds in medicinal plants. This relationship has been well-characterized in many medicinal herbs, although much less commonly in medicinal trees. Methods Here, we analyzed the composition and structure of Cinnamomum migao rhizobacterial communities across nine growing regions in Yunnan, Guizhou and Guangxi, China, as well as differences in soil properties and fruit bioactive compounds. Results Results showed that the C. migao rhizobacterial communities exhibited high species richness, but location-specific differences in structure. Site-specific differences in soil properties and bioactive compounds were also observed. Furthermore, rhizobacterial community compositions were correlated with both soil properties and fruit bioactive compounds, metabolism-related functions were most common in C. migao rhizobacteria. Discussion Several bacterial genera, including Acidothermus, Acidibacter, Bryobacter, Candidatus_Solibacter, and Acidimicrobiales, potentially promote the biosynthesis and accumulation of 1,8-cineole, cypressene, limonene, and α-terpineol, Nitrospira and Alphaproteobacteria may play an inhibitory role. Finally, our results emphasized the critical role that soil pH and nitrogen levels play in driving rhizobacterial community structure, and specific functional bacteria can also counteract with soil properties, Acidibacter and Nitrospira can affect soil pH and nitrogen effectiveness. Overall, this study provides additional insight into the complex correlation of rhizosphere microorganisms with bioactive ingredients and soil properties of medicinal plants.
Collapse
Affiliation(s)
- Lixia Li
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Xuedong Yang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China.,Guizhou Extension Station of Grassland Technology, Guiyang, Guizhou, China
| | - Bingli Tong
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Deng Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Xiu Tian
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Jiming Liu
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Jingzhong Chen
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Xuefeng Xiao
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Shu Wang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| |
Collapse
|
3
|
Talens-Perales D, Nicolau-Sanus M, Polaina J, Daròs JA. Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides. Sci Rep 2022; 12:15743. [PMID: 36131073 PMCID: PMC9492658 DOI: 10.1038/s41598-022-19774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth. The properties of the protein produced by the plant, in terms of resistance to temperature, pH, and enzymatic activity, are equivalent to those observed when Escherichia coli is used as a host. Purification of the plant-produced recombinant xylanase is facilitated by exporting the protein to the apoplastic space. The production of this xylanase by N. benthamiana, which avoids the hindrances derived from the use of E. coli, namely, intracellular production requiring subsequent purification, represents an important step for potential applications in the food industry in which more sustainable and green products are continuously demanded. As an example, the use of the enzyme producing prebiotic xylooligosdaccharides from xylan is here reported.
Collapse
Affiliation(s)
- David Talens-Perales
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - María Nicolau-Sanus
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Julio Polaina
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain.
| |
Collapse
|
4
|
van Eerde A, Várnai A, Jameson JK, Paruch L, Moen A, Anonsen JH, Chylenski P, Steen HS, Heldal I, Bock R, Eijsink VGH, Liu‐Clarke J. In-depth characterization of Trichoderma reesei cellobiohydrolase TrCel7A produced in Nicotiana benthamiana reveals limitations of cellulase production in plants by host-specific post-translational modifications. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:631-643. [PMID: 31373133 PMCID: PMC7004914 DOI: 10.1111/pbi.13227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/26/2019] [Indexed: 05/17/2023]
Abstract
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost-effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large-scale protein production, and extensive host-specific post-translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum-based transient expression technology, and this recombinant enzyme (TrCel7Arec ) was compared with the native fungal enzyme (TrCel7Anat ) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N-terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O-mannosylation in the plant host as compared with the native protein. In general, the purified full-length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate-binding properties, which can be attributed to larger N-glycans and lack of O-glycans in TrCel7Arec . All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.
Collapse
Affiliation(s)
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - John Kristian Jameson
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Lisa Paruch
- NIBIONorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Anders Moen
- Department of BiosciencesFaculty of Mathematics and Natural SciencesUniversity of Oslo (UiO)OsloNorway
| | - Jan Haug Anonsen
- Department of BiosciencesFaculty of Mathematics and Natural SciencesUniversity of Oslo (UiO)OsloNorway
| | - Piotr Chylenski
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | | | - Inger Heldal
- NIBIONorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | | |
Collapse
|
5
|
Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. Symposium review: Technologies for improving fiber utilization. J Dairy Sci 2019; 102:5726-5755. [PMID: 30928262 DOI: 10.3168/jds.2018-15334] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.
Collapse
Affiliation(s)
- A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| | - K G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A A Pech-Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - J J Romero
- Animal and Veterinary Sciences Program, School of Food and Agriculture, University of Maine, Orono 04469
| | - L F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
6
|
Van de Wouwer D, Boerjan W, Vanholme B. Plant cell wall sugars: sweeteners for a bio-based economy. PHYSIOLOGIA PLANTARUM 2018; 164:27-44. [PMID: 29430656 DOI: 10.1111/ppl.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| |
Collapse
|
7
|
Xiao Y, He X, Ojeda-Lassalle Y, Poovaiah C, Coleman HD. Expression of a hyperthermophilic endoglucanase in hybrid poplar modifies the plant cell wall and enhances digestibility. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:225. [PMID: 30147748 PMCID: PMC6094567 DOI: 10.1186/s13068-018-1224-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Expression of glycosyl hydrolases in lignocellulosic biomass has been proposed as an alternative to improve efficiency of cellulosic ethanol production. In planta production of hyperthermophilic hydrolytic enzymes could prevent the detrimental effects often seen resulting from the expression of recombinant mesophilic enzymes to plant hosts. Utilizing lignocellulosic feedstocks to produce hyperthermophilic hydrolases provides additional benefits for ethanol production in the way of transgenic feedstocks serving as both enzyme providers and cellulosic substrates. RESULTS In this study, transgenic hybrid poplar (Populus alba × grandidentata) was generated to express a hyperthermophilic endoglucanase from Thermotoga neapolitana with an optimal temperature over 100 °C. Functional hyperthermoactive endoglucanase was successfully produced in the transgenic events, and altered phenotypic growth was observed in transgenic lines. Moreover, the line with the highest TnCelB expression in both leaf and developing xylem had reduced lignin content and cellulose crystallinity, resulting in a more digestible cell wall. The activation of TnCelB by a post-harvest heat treatment resulted in enhanced saccharification efficiencies of transgenic poplar lines with moderate TnCelB expression and without alteration of cellulose and lignin when not heat-treated. In planta high-level overexpression of a hyperthermophilic endoglucanase paired with heat treatment following harvest, resulted in biomass that was comparable with wild-type lines that underwent a traditional pretreatment for saccharification. CONCLUSIONS Overexpression of hyperthermophilic endoglucanase in feedstock had impacts on plant growth and cell wall composition, especially when the enzyme was highly expressed. Improved glucan saccharification efficiencies from transgenic lines before and after heat treatment could reduce both the economic and environmental costs associated with ethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yao Xiao
- Biology Department, Syracuse University, Syracuse, NY 13244 USA
| | - Xuejun He
- Biology Department, Syracuse University, Syracuse, NY 13244 USA
| | | | - Charleson Poovaiah
- Biology Department, Syracuse University, Syracuse, NY 13244 USA
- Present Address: Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3010 New Zealand
| | | |
Collapse
|
8
|
Song EG, Ryu KH. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants. Arch Virol 2017; 162:3717-3726. [PMID: 28864903 DOI: 10.1007/s00705-017-3539-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Plant-virus-based expression vectors have been used as an alternative to the creation of transgenic plants. Using a virus-based vector, we investigated the feasibility of producing the endoglucanase D (EngD) from Clostridium cellulovorans in Nicotiana benthamiana. This protein has endoglucanase, xylanase, and exoglucanase activities and may be of value for cellulose digestion in the generation of biofuels from plant biomass. The EngD gene was cloned between the nuclear inclusion b (NIb)- and coat protein (CP)-encoding sequences of pSP6PepMoV-Vb1. In vitro transcripts derived from the clone (pSP6PepMoV-Vb1/EngD) were infectious in N. benthamiana but caused milder symptoms than wild-type PepMoV-Vb1. RT-PCR amplification of total RNA from non-inoculated upper leaves infected with PepMoV-Vb1/EngD produced the target band for the CP, partial NIb and EngD-CP regions of PepMoV-V1/EngD, in addition to nonspecific bands. Western blot analysis showed the CP target bands of PepMoV-Vb1/EngD as well as non-target bands. EngD enzymatic activity in infected plants was detected using a glucose assay. The plant leaves showed increased senescence compared with healthy and PepMoV-Vb1-infected plants. Our study suggests the feasibility of using a viral vector for systemic infection of plants for expression of heterologous engD for the purpose of digesting a cellulose substrate in plant cells for biomass production.
Collapse
Affiliation(s)
- Eun Gyeong Song
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Republic of Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Mir BA, Myburg AA, Mizrachi E, Cowan DA. In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep 2017; 7:11462. [PMID: 28904370 PMCID: PMC5597601 DOI: 10.1038/s41598-017-11026-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels and biomaterials suffers from high production costs associated with biomass pretreatment and enzymatic hydrolysis. In-planta expression of lignocellulose-digesting enzymes is a promising approach to reduce these cost elements. However, this approach faces a number of challenges, including auto-hydrolysis of developing cell walls, plant growth and yield penalties, low expression levels and the limited stability of expressed enzymes at the high temperatures generally used for biomass processing to release fermentable sugars. To overcome these challenges we expressed codon-optimized recombinant hyperthermophilic endoglucanase (EG) and xylanase (Xyn) genes in A. thaliana. Transgenic Arabidopsis lines expressing EG and Xyn enzymes at high levels without any obvious plant growth or yield penalties were selected for further analysis. The highest enzyme activities were observed in the dry stems of transgenic lines, indicating that the enzymes were not degraded during stem senescence and storage. Biomass from transgenic lines exhibited improved saccharification efficiency relative to WT control plants. We conclude that the expression of hyperthermophilic enzymes in plants is a promising approach for combining pretreatment and enzymatic hydrolysis processes in lignocellulosic digestion. This study provides a valid foundation for further studies involving in planta co-expression of core and accessory lignocellulose-digesting enzymes.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.,Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.,Department of Botany, School of Life Sciences, Satellite Campus Kargil, University of Kashmir, Jammu & Kashmir, India
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| |
Collapse
|
10
|
Donohoe BS, Wei H, Mittal A, Shollenberger T, Lunin VV, Himmel ME, Brunecky R. Towards an Understanding of Enhanced Biomass Digestibility by In Planta Expression of a Family 5 Glycoside Hydrolase. Sci Rep 2017; 7:4389. [PMID: 28663545 PMCID: PMC5491509 DOI: 10.1038/s41598-017-04502-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
In planta expression of a thermophilic endoglucanase (AcCel5A) reduces recalcitrance by creating voids and other irregularities in cell walls of Arabidopsis thaliana that increase enzyme accessibility without negative impacts on plant growth or cell wall composition. Our results suggest that cellulose β-1-4 linkages can be cut sparingly in the assembling wall and that these minimal changes, made at the proper time, have an impact on plant cell wall recalcitrance without negative effects on overall plant development.
Collapse
Affiliation(s)
- Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Ashutosh Mittal
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado, 80401, United States.
| |
Collapse
|
11
|
Improved transient production of a cellulase enzyme in detached sunflower leaves using plant hormones. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Willis JD, Grant JN, Mazarei M, Kline LM, Rempe CS, Collins AG, Turner GB, Decker SR, Sykes RW, Davis MF, Labbe N, Jurat-Fuentes JL, Stewart CN. The TcEG1 beetle ( Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:230. [PMID: 29213306 PMCID: PMC5707894 DOI: 10.1186/s13068-017-0918-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pH 12.0. RESULTS TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16-0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was "dropped-in" into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. CONCLUSIONS This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua N. Grant
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lindsey M. Kline
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Caroline S. Rempe
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - A. Grace Collins
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Geoffrey B. Turner
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen R. Decker
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Robert W. Sykes
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mark F. Davis
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Nicole Labbe
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Juan L. Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
13
|
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem Rev 2016; 116:9305-74. [DOI: 10.1021/acs.chemrev.6b00225] [Citation(s) in RCA: 876] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongli Zhu
- Department
of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Wei Luo
- Department
of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Peter N. Ciesielski
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Zhiqiang Fang
- Department
of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - J. Y. Zhu
- Forest
Products Laboratory, USDA Forest Service, Madison, Wisconsin 53726, United States
| | - Gunnar Henriksson
- Division
of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer
Technology, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Liangbing Hu
- Department
of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Willis JD, Mazarei M, Stewart CN. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. FRONTIERS IN PLANT SCIENCE 2016; 7:675. [PMID: 27303411 PMCID: PMC4885837 DOI: 10.3389/fpls.2016.00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 05/25/2023]
Abstract
Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| |
Collapse
|
15
|
|
16
|
Zhao S, Wei H, Lin CY, Zeng Y, Tucker MP, Himmel ME, Ding SY. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction. FRONTIERS IN PLANT SCIENCE 2016; 7:24. [PMID: 26858740 PMCID: PMC4731519 DOI: 10.3389/fpls.2016.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.
Collapse
Affiliation(s)
- Shuai Zhao
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Hui Wei
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Chien-Yuan Lin
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Yining Zeng
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Michael E Himmel
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Shi-You Ding
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| |
Collapse
|
17
|
Tan HT, Corbin KR, Fincher GB. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. FRONTIERS IN PLANT SCIENCE 2016; 7:1854. [PMID: 28018390 PMCID: PMC5161040 DOI: 10.3389/fpls.2016.01854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/24/2016] [Indexed: 05/15/2023]
Abstract
Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called 'agnostic' technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries.
Collapse
Affiliation(s)
- Hwei-Ting Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, BrisbaneQLD, Australia
| | - Kendall R. Corbin
- Centre for Marine Bioproducts Development, School of Medicine, Flinders University, Bedford ParkSA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Geoffrey B. Fincher,
| |
Collapse
|
18
|
Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels. Front Bioeng Biotechnol 2015; 3:182. [PMID: 26636072 PMCID: PMC4646955 DOI: 10.3389/fbioe.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels.
Collapse
Affiliation(s)
- Nam V. Hoang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Blake A. Simmons
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
19
|
Harrison MD, Geijskes RJ, Lloyd R, Miles S, Palupe A, Sainz MB, Dale JL. Recombinant cellulase accumulation in the leaves of mature, vegetatively propagated transgenic sugarcane. Mol Biotechnol 2015; 56:795-802. [PMID: 24793894 DOI: 10.1007/s12033-014-9758-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.
Collapse
Affiliation(s)
- Mark D Harrison
- Syngenta Centre for Sugarcane Biofuels Development, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia,
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
21
|
Buanafina MMDO, Dalton S, Langdon T, Timms-Taravella E, Shearer EA, Morris P. Functional co-expression of a fungal ferulic acid esterase and a β-1,4 endoxylanase in Festuca arundinacea (tall fescue) modifies post-harvest cell wall deconstruction. PLANTA 2015; 242:97-111. [PMID: 25854601 DOI: 10.1007/s00425-015-2288-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Improved post-harvest cell wall deconstruction of tall fescue leaves has been demonstrated by in-planta co-expression of a constitutively expressed ferulic acid esterase together with a senescence-induced β-1,4 endoxylanase. Tall fescue plants (Festuca arundinacea) constitutively expressing vacuole- or apoplast-targeted ferulic acid esterase from Aspergillus niger were retransformed with a senescence-induced and apoplast-targeted β-1,4 endo-xylanase from Trichoderma reesei. Enzyme activities in co-expressing plants stabilized after repeated vegetative propagation, with xylanase activity in senescent leaves increasing and ferulic acid esterase activity decreasing after tillering. Plants co-expressing both enzymes in the apoplast, with the lowest levels of ferulate monomers and dimers and the lowest levels of cell wall arabinoxylans, released ten times more cell wall hydroxycinnamic acids and five times more arabinoxylan from the cell wall on autodigestion compared to expression of ferulic acid esterase or xylanase alone. These plants also showed a 31 % increase in cellulase-mediated release of reducing sugars, a 5 % point increase in in vitro dry matter digestibility and a 23 % increase in acetyl bromide-soluble lignin. However, plant growth was adversely affected by expressing FAE in the apoplast, giving plants with narrower shorted leaves, and a 71 % decrease in biomass.
Collapse
Affiliation(s)
- Marcia M de O Buanafina
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA,
| | | | | | | | | | | |
Collapse
|
22
|
Longoni P, Leelavathi S, Doria E, Reddy VS, Cella R. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification. BIOMED RESEARCH INTERNATIONAL 2015; 2015:289759. [PMID: 26137472 PMCID: PMC4468278 DOI: 10.1155/2015/289759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.
Collapse
Affiliation(s)
- Paolo Longoni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Dipartimento de Biologie Végétale, Université de Geneva, 30 Quai Ernest Ansermet, Sciences III, 1211 Genève, Switzerland
| | - Sadhu Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Enrico Doria
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Centre of Sustainable Livelihood (CSL), Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | - Vanga Siva Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rino Cella
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
23
|
Jung SK, Lindenmuth BE, McDonald KA, Hwang H, Bui MQN, Falk BW, Uratsu SL, Phu ML, Dandekar AM. Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves. Biotechnol Prog 2015; 30:905-15. [PMID: 25180328 DOI: 10.1002/btpr.1888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For biofuel applications, synthetic endoglucanase E1 and xylanase (Xyn10A) derived from Acidothermus cellulolyticus were transiently expressed in detached whole sunflower (Helianthus annuus L.) leaves using vacuum infiltration. Three different expression systems were tested, including the constitutive CaMV 35S-driven, CMVar (Cucumber mosaic virus advanced replicating), and TRBO (Tobacco mosaic virus RNA-Based Overexpression Vector) systems. For 6-day leaf incubations, codon-optimized E1 and xylanase driven by the CaMV 35S promoter were successfully expressed in sunflower leaves. The two viral expression vectors, CMVar and TRBO, were not successful although we found high expression in Nicotiana benthamiana leaves previously for other recombinant proteins. To further enhance transient expression, we demonstrated two novel methods: using the plant hormone methyl jasmonic acid in the agroinfiltration buffer and two-phase optimization of the leaf incubation temperature. When methyl jasmonic acid was added to Agrobacterium tumefaciens cell suspensions and infiltrated into plant leaves, the functional enzyme production increased 4.6-fold. Production also increased up to 4.2-fold when the leaf incubation temperature was elevated above the typical temperature, 20C, to 30C in the late incubation phase, presumably due to enhanced rate of protein synthesis in plant cells. Finally, we demonstrated co-expression of E1 and xylanase in detached sunflower leaves. To our knowledge, this is the first report of (co)expression of heterologous plant cell wall-degrading enzymes in sunflower.
Collapse
|
24
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC PLANT BIOLOGY 2015; 15:54. [PMID: 25849300 PMCID: PMC4340609 DOI: 10.1186/s12870-015-0443-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The development of transgenic plants as a production platform for biomass-degrading enzymes is a promising tool for an economically feasible allocation of enzymes processing lignocellulose. Previous research has already identified a major limitation of in planta production such as interference with the structure and integrity of the plant cell wall resulting in a negative influence on plant growth and development. RESULTS Here, we describe the in planta expression of endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei with differential intracellular targeting and evaluate its impact on the tobacco cell wall composition. Targeting of the enzyme to the apoplast leads to distinct changes in cell polysaccharides such as glucose level in the matrix polysaccharides (MPS). These effects are combined with severe changes in plant development. Retention of TrCel5A in the endoplasmic reticulum (ER) could avoid visible effects on plant growth under the chosen conditions, but exhibits changes in the composition of the MPS. CONCLUSIONS These results give new insights into the complex interaction of heterologous cellulase expression with cell wall development and it outlines novel promising strategies to engineer plant cell walls for improved biomass processing.
Collapse
Affiliation(s)
- Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Markus Günl
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Björn Usadel
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
25
|
Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Wei H, Brunecky R, Donohoe BS, Ding SY, Ciesielski PN, Yang S, Tucker MP, Himmel ME. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. FRONTIERS IN PLANT SCIENCE 2015; 6:315. [PMID: 26029221 PMCID: PMC4429552 DOI: 10.3389/fpls.2015.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/21/2015] [Indexed: 05/07/2023]
Abstract
Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Shihui Yang
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| |
Collapse
|
27
|
Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ. Modifying plants for biofuel and biomaterial production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1246-58. [PMID: 25431201 DOI: 10.1111/pbi.12300] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 05/08/2023]
Abstract
The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel.
Collapse
Affiliation(s)
- Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
29
|
Mir BA, Mewalal R, Mizrachi E, Myburg AA, Cowan DA. Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends Biotechnol 2014; 32:281-9. [PMID: 24732021 DOI: 10.1016/j.tibtech.2014.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Plant biomass, as an abundant renewable carbon source, is a promising alternative to fossil fuels. However, the enzymes most commonly used for depolymerization of lignocellulosic biomass are expensive, and the development of cost-effective alternative conversion technologies would be desirable. One possible option is the heterologous expression of genes encoding lignocellulose-digesting enzymes in plant tissues. To overcome simultaneously issues of toxicity and incompatibility with high-temperature steam explosion processes, the use of heterologous genes encoding hyperthermophilic enzymes may be an attractive alternative. This approach could reduce the need for exogenous enzyme additions prior to fermentation, reducing the cost of the complete processing operation. This review highlights recent advances and future prospects for using hyperthermophilic enzymes in the biofuels industry.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Center for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private bag X20, Pretoria 0028, South Africa; Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Ritesh Mewalal
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Don A Cowan
- Center for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Private bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
30
|
Badhan A, Jin L, Wang Y, Han S, Kowalczys K, Brown DCW, Ayala CJ, Latoszek-Green M, Miki B, Tsang A, McAllister T. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:39. [PMID: 24650274 PMCID: PMC3999942 DOI: 10.1186/1754-6834-7-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/21/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. RESULTS In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. CONCLUSION Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines.
Collapse
Affiliation(s)
- Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Long Jin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Shuyou Han
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Katarzyna Kowalczys
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Daniel CW Brown
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Carlos Juarez Ayala
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Marysia Latoszek-Green
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Brian Miki
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Adrian Tsang
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
31
|
Enhanced production of reducing sugars from transgenic rice expressing exo-glucanase under the control of a senescence-inducible promoter. Transgenic Res 2014; 23:531-7. [DOI: 10.1007/s11248-014-9786-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 02/15/2014] [Indexed: 01/23/2023]
|
32
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
33
|
Zhang Y, Xu X, Zhou X, Chen R, Yang P, Meng Q, Meng K, Luo H, Yuan J, Yao B, Zhang W. Overexpression of an acidic endo-β-1,3-1,4-glucanase in transgenic maize seed for direct utilization in animal feed. PLoS One 2013; 8:e81993. [PMID: 24391711 PMCID: PMC3876984 DOI: 10.1371/journal.pone.0081993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/19/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Incorporation of exogenous glucanase into animal feed is common practice to remove glucan, one of the anti-nutritional factors, for efficient nutrition absorption. The acidic endo-β-1,3-1,4-glucanase (Bgl7A) from Bispora sp. MEY-1 has excellent properties and represents a potential enzyme supplement to animal feed. METHODOLOGY/PRINCIPAL FINDINGS Here we successfully developed a transgenic maize producing a high level of Bgl7AM (codon modified Bgl7A) by constructing a recombinant vector driven by the embryo-specific promoter ZM-leg1A. Southern and Western blot analysis indicated the stable integration and specific expression of the transgene in maize seeds over four generations. The β-glucanase activity of the transgenic maize seeds reached up to 779,800 U/kg, about 236-fold higher than that of non-transgenic maize. The β-glucanase derived from the transgenic maize seeds had an optimal pH of 4.0 and was stable at pH 1.0-8.0, which is in agreement with the normal environment of digestive tract. CONCLUSION/SIGNIFICANCE Our study offers a transgenic maize line that could be directly used in animal feed without any glucanase production, purification and supplementation, consequently simplifying the feed enzyme processing procedure.
Collapse
Affiliation(s)
- Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaolu Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaojin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rumei Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingchang Meng
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jianhua Yuan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (BY); (ZW)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (BY); (ZW)
| |
Collapse
|
34
|
Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 2013; 31:1575-84. [DOI: 10.1016/j.biotechadv.2013.08.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 01/26/2023]
|
35
|
Sumiyoshi M, Nakamura A, Nakamura H, Hakata M, Ichikawa H, Hirochika H, Ishii T, Satoh S, Iwai H. Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice. PLoS One 2013; 8:e78269. [PMID: 24223786 PMCID: PMC3817243 DOI: 10.1371/journal.pone.0078269] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022] Open
Abstract
Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF) to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX) decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5)-linked l-Ara (LM6) and β-(1,4)-linked d-Xyl (LM10 and LM11) residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.
Collapse
Affiliation(s)
- Minako Sumiyoshi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidemitsu Nakamura
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hakata
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Ichikawa
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hirohiko Hirochika
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Tadashi Ishii
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
36
|
Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ. Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5' amplification promoting sequence. PLANT MOLECULAR BIOLOGY 2013; 83:317-28. [PMID: 23771581 DOI: 10.1007/s11103-013-0088-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.
Collapse
Affiliation(s)
- Sera Jung
- Department of Forest Products and Technology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Nakahira Y, Ishikawa K, Tanaka K, Tozawa Y, Shiina T. Overproduction of hyperthermostable β-1,4-endoglucanase from the archaeon Pyrococcus horikoshii by tobacco chloroplast engineering. Biosci Biotechnol Biochem 2013; 77:2140-3. [PMID: 24096651 DOI: 10.1271/bbb.130413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most cost-effective methods of producing industrial enzymes is by the use of transgenic plants. We demonstrated successful high-level expression of a hyperthermostable archaeal β-1,4-endoglucanase in mature tobacco leaves by transformation of chloroplasts by homologous recombination. The active recombinant enzyme was readily recovered not only from fresh but also from dried leaves.
Collapse
|
38
|
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 2013; 31:581-93. [DOI: 10.1016/j.tibtech.2013.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
39
|
Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, Soetaert W, Boerjan W. Towards a carbon-negative sustainable bio-based economy. FRONTIERS IN PLANT SCIENCE 2013; 4:174. [PMID: 23761802 PMCID: PMC3669761 DOI: 10.3389/fpls.2013.00174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/16/2013] [Indexed: 05/17/2023]
Abstract
The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.
Collapse
Affiliation(s)
- Bartel Vanholme
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Tom Desmet
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Frederik Ronsse
- Department of Biosystems Engineering, Ghent UniversityGent, Belgium
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent UniversityGent, Belgium
- Centre for Microbial Electrosynthesis, The University of QueenslandBrisbane, Australia
- Advanced Water Management Centre, The University of QueenslandBrisbane, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wim Soetaert
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| |
Collapse
|
40
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:53. [PMID: 23587418 PMCID: PMC3643885 DOI: 10.1186/1754-6834-6-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/12/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. RESULTS Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. CONCLUSION We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants.
Collapse
Affiliation(s)
- Holger Klose
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, Aachen, 52074, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| |
Collapse
|
41
|
Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing HC, Zhou F, Gutterson N, Peng L. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. BIORESOURCE TECHNOLOGY 2013; 130:629-37. [PMID: 23334020 DOI: 10.1016/j.biortech.2012.12.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/02/2012] [Accepted: 12/14/2012] [Indexed: 05/03/2023]
Abstract
Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H(2)SO(4) pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses.
Collapse
Affiliation(s)
- Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsai AYL, Canam T, Gorzsás A, Mellerowicz EJ, Campbell MM, Master ER. Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1077-87. [PMID: 22924998 DOI: 10.1111/j.1467-7652.2012.00735.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A family 15 carbohydrate esterase (CE15) from the white-rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col-0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl-4-O-methyl-d-glucopyranuronate and could target ester linkages that contribute to lignin-carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf-yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT-IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross-linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross-linking within plant cell walls.
Collapse
Affiliation(s)
- Alex Y-L Tsai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Buanafina MMDO, Langdon T, Dalton S, Morris P. Expression of a Trichoderma reesei β-1,4 endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses. PLANTA 2012; 236:1757-74. [PMID: 22878642 DOI: 10.1007/s00425-012-1724-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/10/2012] [Indexed: 05/04/2023]
Abstract
An endo-xylanase from Trichoderma reesei (xyn2) has been expressed in tall fescue targeted to the vacuole, apoplast or Golgi, constitutively under the control of the rice actin promoter, and to the apoplast under the control of a senescence enhanced gene promoter. Constitutive xylanase expression in the vacuole, apoplast, and golgi, resulted in only a small number of plants with low enzyme activities and in reduced plant growth in apoplast, and golgi targeted plants. Constitutive expression in the apoplast also resulted in increased levels of cell wall bound hydroxycinnamic acid monomers and dimers, but no significant effect on cell wall xylose or arabinose content. In situ constitutive xylanase expression in the Golgi also resulted in increased ferulate dimers. However, senescence induced xylanase expression in the apoplast was considerably higher and did not affect plant growth or the level of monomeric hydroxycinnamic acids or lignin in the cell walls. These plants also showed increased levels of ferulate dimers, and decreased levels of xylose with increased levels of arabinose in their cell walls. While the release of cell wall hydroxycinnamic acids on self digestion was enhanced in these plants in the presence of exogenously applied ferulic acid esterase, changes in cell wall composition resulted in decreases in both tissue digestibility and cellulase mediated sugar release. In situ detection of H(2)O(2) production mediated by ethylene release in leaves of plants expressing apoplast xylanase could be leading to increased dimerisation. High-level xylanase expression in the apoplast also resulted in necrotic lesions on the leaves. Together these results indicate that xylanase expression in tall fescue may be triggering plant defence responses analogous to foliar pathogen attack mediated by ethylene and H(2)O(2).
Collapse
Affiliation(s)
- Marcia M de O Buanafina
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
44
|
Byrt CS, Cahyanegara R, Grof CPL. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme. FRONTIERS IN PLANT SCIENCE 2012; 3:254. [PMID: 23181066 PMCID: PMC3501001 DOI: 10.3389/fpls.2012.00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/31/2023]
Abstract
A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM) to a synthetic glycosyl hydrolase improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the CBM of the tomato (Solanum lycopersicum) SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using carboxymethylcellulose, MUC, and native crystalline cellulose assays. The presence of the CBM substantially improved the endoglucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum bicolor plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.
Collapse
Affiliation(s)
- Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, Waite Campus, University of AdelaideAdelaide, SA, Australia
- School of Environmental and Life Sciences, University of NewcastleNewcastle, NSW, Australia
| | - Ricky Cahyanegara
- School of Environmental and Life Sciences, University of NewcastleNewcastle, NSW, Australia
| | - Christopher P. L. Grof
- School of Environmental and Life Sciences, University of NewcastleNewcastle, NSW, Australia
| |
Collapse
|
45
|
Shen B, Sun X, Zuo X, Shilling T, Apgar J, Ross M, Bougri O, Samoylov V, Parker M, Hancock E, Lucero H, Gray B, Ekborg NA, Zhang D, Johnson JCS, Lazar G, Raab RM. Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing. Nat Biotechnol 2012; 30:1131-6. [PMID: 23086202 DOI: 10.1038/nbt.2402] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022]
Abstract
Plant cellulosic biomass is an abundant, low-cost feedstock for producing biofuels and chemicals. Expressing cell wall-degrading (CWD) enzymes (e.g. xylanases) in plant feedstocks could reduce the amount of enzymes required for feedstock pretreatment and hydrolysis during bioprocessing to release soluble sugars. However, in planta expression of xylanases can reduce biomass yield and plant fertility. To overcome this problem, we engineered a thermostable xylanase (XynB) with a thermostable self-splicing bacterial intein to control the xylanase activity. Intein-modified XynB (iXynB) variants were selected that have <10% wild-type enzymatic activity but recover >60% enzymatic activity upon intein self-splicing at temperatures >59 °C. Greenhouse-grown xynB maize expressing XynB has shriveled seeds and low fertility, but ixynB maize had normal seeds and fertility. Processing dried ixynB maize stover by temperature-regulated xylanase activation and hydrolysis in a cocktail of commercial CWD enzymes produced >90% theoretical glucose and >63% theoretical xylose yields.
Collapse
|
46
|
Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm. Transgenic Res 2012; 22:477-88. [PMID: 23080294 DOI: 10.1007/s11248-012-9659-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.
Collapse
|
47
|
Klose H, Röder J, Girfoglio M, Fischer R, Commandeur U. Hyperthermophilic endoglucanase for in planta lignocellulose conversion. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:63. [PMID: 22928996 PMCID: PMC3497586 DOI: 10.1186/1754-6834-5-63] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/06/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. RESULTS Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. CONCLUSION The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.
Collapse
Affiliation(s)
- Holger Klose
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Juliane Röder
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Michele Girfoglio
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Rainer Fischer
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
48
|
Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol (Praha) 2012; 58:163-76. [DOI: 10.1007/s12223-012-0184-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 07/10/2012] [Indexed: 11/27/2022]
|
49
|
Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. J Biomed Biotechnol 2012; 2012:405842. [PMID: 22911272 PMCID: PMC3403577 DOI: 10.1155/2012/405842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/20/2012] [Indexed: 11/17/2022] Open
Abstract
A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies.
Collapse
|
50
|
Nigorikawa M, Watanabe A, Furukawa K, Sonoki T, Ito Y. Enhanced saccharification of rice straw by overexpression of rice exo-glucanase. RICE (NEW YORK, N.Y.) 2012; 5:14. [PMID: 24279714 PMCID: PMC4883724 DOI: 10.1186/1939-8433-5-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND Efficient production of carbon-neutral biofuels is key to resolving global warming and exhaustion of fossil fuels. Cellulose, which is the most abundant biomass, is physically strong and biochemically stable, and these characteristics lead to difficulty of efficient saccharification of cellulosic compounds for production of fermentable glucose and other sugars. RESULTS We transformed rice with overexpressing constructs of rice genes encoding each of three classes of cellulases. The exo-glucanase overexpressing plants showed various abnormalities in leaf such as division of leaf blade, crack on leaf surface, excess lacunae in midrib structure and necrotic colour change. The overexpressing plants also showed sterility. Noticeably, these plants showed enhanced saccharification of stems after maturation. These results indicate that overexpression of the exo-glucanase gene brought about various developmental defects associated with modification of cell wall and enhanced saccharification in rice. On the other hand, endo-glucanase-overexpressing plants could not be obtained, and overexpression of β-glucosidase brought about no effect on plant growth and development. CONCLUSIONS Our results indicate that genetic engineering of cellulosic biomass plants by overexpressing cellulase genes will be one of the approaches to confer enhanced saccharification ability for efficient production of cellulosic biofuels such as ethanol.
Collapse
Affiliation(s)
- Mutsumi Nigorikawa
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Aiko Watanabe
- />Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, 036-8560 Japan
| | - Kayoko Furukawa
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Tomonori Sonoki
- />Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, 036-8560 Japan
| | - Yukihiro Ito
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| |
Collapse
|