1
|
Chen H, Huang B, Han L. Enhanced performance of bacterial laccase via microbial surface display and biomineralization for portable detection of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137957. [PMID: 40120271 DOI: 10.1016/j.jhazmat.2025.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Designing a portable device based on bacterial laccase (BLac) for on-site assay of phenolic contaminants presents significant challenges. Here, we achieved comprehensive performance enhancement of BLac by integrating biomineralization and microbial surface display technologies. The introduction of cell surface-displayed bacterial laccase (CSD-BLac) reduced costs and improved sensitivity compared to detection methods based on free Blac and whole-cell catalyst. Further, the biomineralization dramatically enhanced the catalytic efficiency (Vmax/Km) of mineralized CSD-BLac (M-CSD-BLac), making it 1.98 times higher than that of CSD-BLac. Mineralization conditions could significantly affect the activity of M-CSD-Blac. Moreover, the biomineralization layer also enhanced the resistance of M-CSD-BLac against high temperature, metal ions, ionic strength and storage time. Further, a portable assay device was developed for detection of phenolic pollutants by depositing M-CSD-BLac on a syringe filter membrane, which demonstrated easy operation, rapid detection (10 min), good reusability (20 cycles). The device not only could reliably differentiate three types of phenols but also quantitatively detect them with high sensitivity. For phenol, m-aminophenol, and p-nitrophenol, the limits of detection were 0.09, 0.28 and 0.17 μM, with detection ranges of 10-70, 20-80 and 15-110 μM, respectively. Additionally, the porous structure of M-CSD-BLac layer and the insertion of M-CSD-BLac into the filter membrane pores allowed effective filtration of smaller pigments from real samples, eliminating the need for additional pretreatment. This work not only proposes a strategy for elevating the activity and stability of laccase, but also stimulates the development of portable assay devices for on-site environmental monitoring.
Collapse
Affiliation(s)
- Haiying Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
2
|
Zhang B, Gao X, Zhou Y, You S, Qi W, Wang M. Surface Display Technologies for Whole-Cell Biocatalysts: Advances in Optimization Strategies, Food Applications, and Future Perspectives. Foods 2025; 14:1803. [PMID: 40428582 PMCID: PMC12111073 DOI: 10.3390/foods14101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Surface display technology has revolutionized whole-cell biocatalysis by enabling efficient enzyme immobilization on microbial cell surfaces. Compared with traditional enzyme immobilization, this technology has the advantages of high enzyme activity, mild process, simple operation and low cost, which thus has been widely studied and applied in various fields. This review explores the principles, optimization strategies, applications in the food industry, and future prospects. We summarize the membrane and anchor protein structures of common host cells (Escherichia coli, Bacillus subtilis, and yeast) and discuss cutting-edge optimization approaches, including host strain genetic engineering, rational design of anchor proteins, innovative linker peptide engineering, and precise regulation of signal peptides and promoters, to maximize surface display efficiency. Additionally, we also explore its diverse applications in food processing and manufacturing, additive synthesis, food safety, and other food-related industries (such as animal feed and PET packaging degradation), demonstrating their potential to address key challenges in the food industry. This work bridges fundamental research and industrial applications, offering valuable insights for advancing agricultural and food chemistry.
Collapse
Affiliation(s)
- Baoyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (B.Z.); (Y.Z.); (S.Y.); (W.Q.)
| | - Xing Gao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
| | - Yu Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (B.Z.); (Y.Z.); (S.Y.); (W.Q.)
| | - Shengping You
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (B.Z.); (Y.Z.); (S.Y.); (W.Q.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
| | - Wei Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (B.Z.); (Y.Z.); (S.Y.); (W.Q.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
| | - Mengfan Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Chen H, Wang X, Ge H, Geng S, Liu L, Fang B, Ren L. RmZHD Surface-Displayed Escherichia coli for High Efficiency and Low-Cost Degradation of Zearalenone. ACS APPLIED BIO MATERIALS 2025; 8:3127-3134. [PMID: 40080174 DOI: 10.1021/acsabm.4c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Zearalenone (ZEN) is one of the most prevalent mycotoxins in the world, with estrogenic toxicity leading to significant annual economic losses and environmental pollution. RmZHD, a novel ZEN hydrolase, surpasses the efficiency of its predecessors but faces challenges in large-scale industrial application. In this work, an engineered Escherichia coli that can degrade zearalenone is constructed based on synthetic biology and surface display methods. It can degrade 94% of zearalenone at 30 °C in 1 h (the final concentration was 1.898 μg/mL) and effectively degrade ZEN-derived toxins, including zearalanone, β-zearalanol, α-zearalenol, and β-zearalenol. This engineered E. coli requires no additional manipulation for the surface display of RmZHD and is cost-effective to produce. Moreover, it exhibits the capability to degrade ZEN in maize feed while concurrently mitigating inflammation in animal reproductive and digestive organs. In summary, the engineered E. coli with surface-displayed RmZHD presents a novel approach for environmentally sustainable and industrial-scale treatment of ZEN.
Collapse
Affiliation(s)
- Haoxiang Chen
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China
- XMU-China Team, Innovative Practice Platform for Genetic Engineering Machine Design, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Ge
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361012, P. R. China
| | - Shichen Geng
- XMU-China Team, Innovative Practice Platform for Genetic Engineering Machine Design, Xiamen University, Xiamen, Fujian 361005, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Li Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China
| | - Baishan Fang
- XMU-China Team, Innovative Practice Platform for Genetic Engineering Machine Design, Xiamen University, Xiamen, Fujian 361005, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
4
|
Bae HE, Jung J, Sung JS, Kwon S, Kang MJ, Jose J, Lee M, Pyun JC. Screening of deoxyribonuclease I inhibitors from autodisplayed Fv-antibody library. Int J Biol Macromol 2025; 304:140770. [PMID: 39922350 DOI: 10.1016/j.ijbiomac.2025.140770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Deoxyribonuclease (DNase) I inhibitors have been developed based on proteins, nucleotides and synthetic compounds. In this work, amino acid sequences with the activity of DNase I inhibitor were screened from an Fv-antibody library expressed on the outer membrane of Escherichia coli. The Fv-antibody indicated the heavy chain variable region (VH) of immunoglobulin G (IgG) and the Fv-antibody library was generated with a randomized complementarity-determining region 3 (CDR3). From the Fv-antibody library, two clones were screened for their binding affinity to DNase I and expressed as soluble recombinant proteins as well as peptides. The binding affinity (KD) to DNase I was estimated for the expressed Fv-antibodies (73.4 nM for Fv-1 and 89.0 nM for Fv-19) and synthesized peptides (279.2 nM for Peptide-1 and 243.2 nM for Peptide-19) using SPR biosensor. The inhibitory activity (IC50) of the expressed Fv-antibodies (550.0 nM for Fv-1 and 660.2 nM for Fv-19) and synthetic peptides (864.5 nM for Peptide-1 and 974.6 nM for Peptide-19) was measured using agarose-gel assay and TaqMan-like fluorescence assay. These IC50 values indicated that both expressed Fv-antibodies and synthesized peptides exerted an effective inhibitory activity against DNase I. The interaction between the screened inhibitors and DNase I was analyzed by docking simulation.
Collapse
Affiliation(s)
- Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster 48149, Germany
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Liu W, Sun W, Liang C, Chen T, Zhuang W, Liu D, Chen Y, Ying H. Escherichia coli Surface Display: Advances and Applications in Biocatalysis. ACS Synth Biol 2025; 14:648-661. [PMID: 40047247 DOI: 10.1021/acssynbio.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Escherichia coli surface display technology, which facilitates the stable display of target peptides and proteins on the bacterial surface through fusion with anchor proteins, has become a potent and versatile tool in biotechnology and biomedicine. The E. coli surface display strategy presents a unique alternative to classic intracellular and extracellular expression systems, facilitating the anchorage of target peptides and proteins on the cell surface for functional execution. This distinctive attribute also introduces a novel paradigm in the realm of biocatalysis, harnessing cells with surface-displayed enzymes to catalyze the conversion of substrates. This strategy effectively eliminates the requirement for enzyme purification, overcomes the limitations related to substrate transmembrane transport, improves enzyme activity and stability, and greatly reduces the cost of downstream product purification, thus making it widely used in biocatalysis. Here, we review recent advances in various surface display systems and surface display technology for biocatalytic applications. Additionally, we discuss the current limitations of this technology and several promising alternative display methods.
Collapse
Affiliation(s)
- Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - CaiCe Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
6
|
Yang M, Zhong P, Wei P. Living Bacteria: A New Vehicle for Vaccine Delivery in Cancer Immunotherapy. Int J Mol Sci 2025; 26:2056. [PMID: 40076679 PMCID: PMC11900161 DOI: 10.3390/ijms26052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer vaccines, aimed at evolving the human immune system to eliminate tumor cells, have long been explored as a method of cancer treatment with significant clinical potential. Traditional delivery systems face significant challenges in directly targeting tumor cells and delivering adequate amounts of antigen due to the hostile tumor microenvironment. Emerging evidence suggests that certain bacteria naturally home in on tumors and modulate antitumor immunity, making bacterial vectors a promising vehicle for precision cancer vaccines. Live bacterial vehicles offer several advantages, including tumor colonization, precise drug delivery, and immune stimulation, making them a compelling option for cancer immunotherapy. In this review, we explore the mechanisms of action behind living bacteria-based vaccines, recent progress in popular bacterial chassis, and strategies for specific payload delivery and biocontainment to ensure safety. These approaches will lay the foundation for developing an affordable, widely applicable cancer vaccine delivery system. This review also discusses the challenges and future opportunities in harnessing bacterial-based vaccines for enhanced therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
| | | | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (M.Y.); (P.Z.)
| |
Collapse
|
7
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Popp NA, Powell RL, Wheelock MK, Holmes KJ, Zapp BD, Sheldon KM, Fletcher SN, Wu X, Fayer S, Rubin AF, Lannert KW, Chang AT, Sheehan JP, Johnsen JM, Fowler DM. Multiplex, multimodal mapping of variant effects in secreted proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.01.587474. [PMID: 39975210 PMCID: PMC11838247 DOI: 10.1101/2024.04.01.587474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite widespread advances in DNA sequencing, the functional consequences of most genetic variants remain poorly understood. Multiplexed Assays of Variant Effect (MAVEs) can measure the function of variants at scale, and are beginning to address this problem. However, MAVEs cannot readily be applied to the ~10% of human genes encoding secreted proteins. We developed a flexible, scalable human cell surface display method, Multiplexed Surface Tethering of Extracellular Proteins (MultiSTEP), to measure secreted protein variant effects. We used MultiSTEP to study the consequences of missense variation in coagulation factor IX (FIX), a serine protease where genetic variation can cause hemophilia B. We combined MultiSTEP with a panel of antibodies to detect FIX secretion and post-translational modification, measuring a total of 44,816 effects for 436 synonymous variants and 8,528 of the 8,759 possible missense variants. 49.6% of possible F9 missense variants impacted secretion, post-translational modification, or both. We also identified functional constraints on secretion within the signal peptide and for nearly all variants that caused gain or loss of cysteine. Secretion scores correlated strongly with FIX levels in hemophilia B and revealed that loss of secretion variants are particularly likely to cause severe disease. Integration of the secretion and post-translational modification scores enabled reclassification of 63.1% of F9 variants of uncertain significance in the My Life, Our Future hemophilia genotyping project. Lastly, we showed that MultiSTEP can be applied to a wide variety of secreted proteins. Thus, MultiSTEP is a multiplexed, multimodal, and generalizable method for systematically assessing variant effects in secreted proteins at scale.
Collapse
Affiliation(s)
- Nicholas A. Popp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Rachel L. Powell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Melinda K. Wheelock
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kristen J. Holmes
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Brendan D. Zapp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn M. Sheldon
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Xiaoping Wu
- Cell Marker Laboratory, Seattle Children’s Hospital, Seattle, WA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Alan F. Rubin
- Bioinformatics Division, WEHI, Parkville, VIC, AU
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, AU
| | - Kerry W. Lannert
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alexis T. Chang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - John P. Sheehan
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jill M. Johnsen
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Bloodworks Northwest, Seattle, WA, USA
- Washington Center for Bleeding Disorders, Seattle, WA
| | - Douglas M. Fowler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
9
|
Chamas A, Svensson CM, Maneira C, Sporniak M, Figge MT, Lackner G. Engineering Adhesion of the Probiotic Strain Escherichia coli Nissle to the Fungal Pathogen Candida albicans. ACS Synth Biol 2024; 13:4027-4039. [PMID: 39265099 DOI: 10.1021/acssynbio.4c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Engineering live biotherapeutic products against fungal pathogens such as Candida albicans has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic E. coli Nissle 1917 to adhere specifically to the pathogenic yeast Candida albicans. Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of C. albicans, while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.
Collapse
Affiliation(s)
- Alexandre Chamas
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Carla Maneira
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| | - Marta Sporniak
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
10
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Ramezani Khorsand F, Hakimi Naeini S, Molakarimi M, Dehnavi E, Zeinoddini M, Sajedi RH. Surface display provides an efficient expression system for production of recombinant proteins and bacterial whole cell biosensor in E. coli. Anal Biochem 2024; 694:115599. [PMID: 38964699 DOI: 10.1016/j.ab.2024.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 μM concentration range, respectively, with a 1.3 nM and 0.14 μM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.
Collapse
Affiliation(s)
- Fereshteh Ramezani Khorsand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Saghi Hakimi Naeini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Ehsan Dehnavi
- Gene Transfer Pioneers (GTP) Research Group, Incubation Center of Pharmaceutical Technologies, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
12
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
13
|
Liang B, Yang J, Meng CF, Zhang YR, Wang L, Zhang L, Liu J, Li ZC, Cosnier S, Liu AH, Yang JM. Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia. Nat Commun 2024; 15:8764. [PMID: 39384563 PMCID: PMC11464693 DOI: 10.1038/s41467-024-53129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen-Fei Meng
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ya-Ru Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lu Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jia Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhen-Chao Li
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Serge Cosnier
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- DCM UMR 5250, Université Grenoble-Alpes, F-38000 Grenoble, France; Departement de Chimie ́Moleculaire, UMR CNRS, DCM UMR 5250, F-38000, Grenoble, France.
| | - Ai-Hua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| | - Jian-Ming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Zhang R, Ye N, Wang Z, Yang S, Li J. A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins. Cell Mol Bioeng 2024; 17:453-465. [PMID: 39513006 PMCID: PMC11538204 DOI: 10.1007/s12195-024-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in E. coli as a new strategy to improve the surface display of recombinant proteins. Methods We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out ompA in two E. coli strains, K-12 MG1655 and E. coli BL-21, which have broad research and therapeutic applications. We then combined ompA knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade. Results A total of six different display constructs were tested for their display levels by flow cytometry, showing that the ompA knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains. Conclusions By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology's relevance in the field. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00819-w.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
15
|
Baum ML, Bartley CM. Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. Trends Neurosci 2024; 47:753-765. [PMID: 39242246 PMCID: PMC11656492 DOI: 10.1016/j.tins.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.
Collapse
Affiliation(s)
- Matthew L Baum
- Brigham and Women's Hospital, Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Christopher M Bartley
- Translational Immunopsychiatry Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Yamashita T, Matsumoto T, Yamada R, Ogino H. Display of PETase on the Cell Surface of Escherichia coli Using the Anchor Protein PgsA. Appl Biochem Biotechnol 2024; 196:5471-5483. [PMID: 38165588 DOI: 10.1007/s12010-023-04837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Enzymatic degradation of polyethylene terephthalate (PET) is attracting attention as a new technology because of its mild reaction conditions. However, the cost of purified enzymes is a major challenge for the practical application of this technology. In this study, we attempted to display the surface of the PET-degrading enzyme, PETase, onto Escherichia coli using the membrane anchor, PgsA, from Bacillus subtilis to omit the need for purification of the enzyme. Immunofluorescence staining confirmed that PETase was successfully displayed on the surface of E. coli cells when a fusion of PgsA and PETase was expressed. The surface-displaying E. coli was able to degrade 94.6% of 1 mM bis(2-hydroxyethyl) terephthalate in 60 min, and the PET films were also degraded in trace amounts. These results indicate that PgsA can be used to present active PETase on the cell surface of E. coli. This technique is expected to be applied for efficient PET degradation.
Collapse
Affiliation(s)
- Takuma Yamashita
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
17
|
Beaver K, Dantanarayana A, Liou W, Babst M, Minteer SD. Extracellular Poly(hydroxybutyrate) Bioplastic Production Using Surface Display Techniques. ACS MATERIALS AU 2024; 4:174-178. [PMID: 38496045 PMCID: PMC10941272 DOI: 10.1021/acsmaterialsau.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 03/19/2024]
Abstract
Poly(hydroxybutyrate) is a biocompatible, biodegradable polyester synthesized naturally in a variety of microbial species. A greener alternative to petroleum-based plastics and sought after for biomedical applications, poly(hydroxybutyrate) has failed to break through as a leading material in the plastic industry due to its high cost of production. Specifically, the extraction of this material from within bacterial cells requires lysis of cells, which takes time, uses harsh chemicals, and starts the process again with growing new living cells. Recently, surface display of enzymes on bacterial membranes has become an emerging technique for extracellular biocatalysis. In this work, a fusion protein lpp-ompA-phaC was expressed in Escherichia coli to display the enzyme poly(hydroxyalkanoate) synthase on the cell surface. The resulting poly(hydroxybutyrate) product was chemically characterized by nuclear magnetic resonance and infrared spectroscopy. Finally, the extracellular synthesis of the bioplastic granules was demonstrated qualitatively via microscopy and quantitatively by flow cytometry. The results of this work are the first demonstration of extracellular synthesis of poly(hydroxybutyrate), showing promise for continuous and scalable synthesis of materials using surface display.
Collapse
Affiliation(s)
- Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Willisa Liou
- Electron
Microscopy Core Laboratory, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Markus Babst
- Center
for Cell & Genome Science, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
18
|
Han W, Zhang J, Chen Q, Xie Y, Zhang M, Qu J, Tan Y, Diao Y, Wang Y, Zhang Y. Biodegradation of poly(ethylene terephthalate) through PETase surface-display: From function to structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132632. [PMID: 37804764 DOI: 10.1016/j.jhazmat.2023.132632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Polyethylene terephthalate (PET) is one of the most used plastics which has caused some environmental pollution and social problems. Although many newly discovered or modified PET hydrolases have been reported at present, there is still a lack of comparison between their hydrolytic capacities, as well as the need for new biotechnology to apply them for the PET treatment. Here, we systematically studied the surface-display technology for PET hydrolysis using several PET hydrolases. It is found that anchoring protein types had little influence on the surface-display result under T7 promoter, while the PET hydrolase types were more important. By contrast, the newly reported FAST-PETase showed the strongest hydrolysis effect, achieving 71.3% PET hydrolysis in 24 h by pGSA-FAST-PETase. Via model calculation, FAST-PETase indeed exhibited higher temperature tolerance and catalytic capacity. Besides, smaller particle size and lower crystallinity favored the hydrolysis of PET pellets. Through protein structure comparison, we summarized the common characteristics of efficient PET-hydrolyzing enzymes and proposed three main crystal structures of PET enzymes via crystal structural analysis, with ISPETase being the representative and main structure. Surface co-display of FAST-PETase and MHETase can promote the hydrolysis of PET, and the C-terminal of the fusion protein is crucial for PET hydrolysis. The results of our research can be helpful for PET contamination removal as well as other areas involving the application of enzymes. SYNOPSIS: This research can promote the development of better PET hydrolase and its applications in PET pollution treatment via bacteria surface-display.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Jun Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Yixuan Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang 150030, PR China.
| |
Collapse
|
19
|
Chance R, Kang AS. Eukaryotic ribosome display for antibody discovery: A review. Hum Antibodies 2024; 32:107-120. [PMID: 38788063 DOI: 10.3233/hab-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Monoclonal antibody biologics have significantly transformed the therapeutic landscape within the biopharmaceutical industry, partly due to the utilisation of discovery technologies such as the hybridoma method and phage display. While these established platforms have streamlined the development process to date, their reliance on cell transformation for antibody identification faces limitations related to library diversification and the constraints of host cell physiology. Cell-free systems like ribosome display offer a complementary approach, enabling antibody selection in a completely in vitro setting while harnessing enriched cellular molecular machinery. This review aims to provide an overview of the fundamental principles underlying the ribosome display method and its potential for advancing antibody discovery and development.
Collapse
|
20
|
Hu J, Chen Y. Constructing Escherichia coli co-display systems for biodegradation of polyethylene terephthalate. BIORESOUR BIOPROCESS 2023; 10:91. [PMID: 38647917 PMCID: PMC10992762 DOI: 10.1186/s40643-023-00711-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/25/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The accumulation of fast-growing polyethylene terephthalate (PET) wastes has posed numerous threats to the environments and human health. Enzymatic degradation of PET is a promising approach for PET waste treatment. Currently, the efficiency of various PET biodegradation systems requires further improvements. RESULTS In this work, we engineered whole cell systems with co-display of strong adhesive proteins and the most active PETase for PET biodegradation in E. coli cells. Adhesive proteins of cp52k and mfp-3 and Fast-PETase were simultaneously displayed on the surfaces of E. coli cells, and the resulting cells displaying mfp-3 showed 50% increase of adhesion ability compared to those without adhesive proteins. Consequently, the degradation rate of E. coli cells co-displaying mfp-3 and Fast-PETase for amorphous PET exceeded 15% within 24 h, exhibiting fast and thorough PET degradation. CONCLUSIONS Through the engineering of co-display systems in E. coli cells, PET degradation efficiency was significantly increased compared to E. coli cells with sole display of Fast-PETase and free enzyme. This feasible E. coli co-display system could be served as a convenient tool for extending the treatment options for PET biodegradation.
Collapse
Affiliation(s)
- Jiayu Hu
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yijun Chen
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Lässig M, Mustonen V, Nourmohammad A. Steering and controlling evolution - from bioengineering to fighting pathogens. Nat Rev Genet 2023; 24:851-867. [PMID: 37400577 PMCID: PMC11137064 DOI: 10.1038/s41576-023-00623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Control interventions steer the evolution of molecules, viruses, microorganisms or other cells towards a desired outcome. Applications range from engineering biomolecules and synthetic organisms to drug, therapy and vaccine design against pathogens and cancer. In all these instances, a control system alters the eco-evolutionary trajectory of a target system, inducing new functions or suppressing escape evolution. Here, we synthesize the objectives, mechanisms and dynamics of eco-evolutionary control in different biological systems. We discuss how the control system learns and processes information about the target system by sensing or measuring, through adaptive evolution or computational prediction of future trajectories. This information flow distinguishes pre-emptive control strategies by humans from feedback control in biotic systems. We establish a cost-benefit calculus to gauge and optimize control protocols, highlighting the fundamental link between predictability of evolution and efficacy of pre-emptive control.
Collapse
Affiliation(s)
- Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Armita Nourmohammad
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
22
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
23
|
Wegner T, Dombovski A, Gesing K, Köhrer A, Elinkmann M, Karst U, Glorius F, Jose J. Combining lipid-mimicking-enabled transition metal and enzyme-mediated catalysis at the cell surface of E. coli. Chem Sci 2023; 14:11896-11906. [PMID: 37920346 PMCID: PMC10619624 DOI: 10.1039/d3sc02960c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Being an essential multifunctional platform and interface to the extracellular environment, the cell membrane constitutes a valuable target for the modification and manipulation of cells and cellular behavior, as well as for the implementation of artificial, new-to-nature functionality. While bacterial cell surface functionalization via expression and presentation of recombinant proteins has extensively been applied, the corresponding application of functionalizable lipid mimetics has only rarely been reported. Herein, we describe an approach to equip E. coli cells with a lipid-mimicking, readily membrane-integrating imidazolium salt and a corresponding NHC-palladium complex that allows for flexible bacterial membrane surface functionalization and enables E. coli cells to perform cleavage of propargyl ethers present in the surrounding cell medium. We show that this approach can be combined with already established on-surface functionalization, such as bacterial surface display of enzymes, i.e. laccases, leading to a new type of cascade reaction. Overall, we envision the herein presented proof-of-concept studies to lay the foundation for a multifunctional toolbox that allows flexible and broadly applicable functionalization of bacterial membranes.
Collapse
Affiliation(s)
- Tristan Wegner
- University of Münster, Institute of Organic Chemistry Münster Germany
| | - Alexander Dombovski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| | - Katrin Gesing
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| | - Alexander Köhrer
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Matthias Elinkmann
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry Münster Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| |
Collapse
|
24
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
25
|
Butler ND, Sen S, Brown LB, Lin M, Kunjapur AM. A platform for distributed production of synthetic nitrated proteins in live bacteria. Nat Chem Biol 2023; 19:911-920. [PMID: 37188959 DOI: 10.1038/s41589-023-01338-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of the nonstandard amino acid para-nitro-L-phenylalanine (pN-Phe) within proteins has been used for diverse applications, including the termination of immune self-tolerance. However, the requirement for the provision of chemically synthesized pN-Phe to cells limits the contexts where this technology can be harnessed. Here we report the construction of a live bacterial producer of synthetic nitrated proteins by coupling metabolic engineering and genetic code expansion. We achieved the biosynthesis of pN-Phe in Escherichia coli by creating a pathway that features a previously uncharacterized nonheme diiron N-monooxygenase, which resulted in pN-Phe titers of 820 ± 130 µM after optimization. After we identified an orthogonal translation system that exhibited selectivity toward pN-Phe rather than a precursor metabolite, we constructed a single strain that incorporated biosynthesized pN-Phe within a specific site of a reporter protein. Overall, our study has created a foundational technology platform for distributed and autonomous production of nitrated proteins.
Collapse
Affiliation(s)
- Neil D Butler
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sabyasachi Sen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Lucas B Brown
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Minwei Lin
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
26
|
Zhao Y, Yang J, Wu Y, Huang B, Xu L, Yang J, Liang B, Han L. Construction of bacterial laccase displayed on the microbial surface for ultrasensitive biosensing of phenolic pollutants with nanohybrids-enhanced performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131265. [PMID: 36989770 DOI: 10.1016/j.jhazmat.2023.131265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Although bacterial laccase (BLac) has many advantages including short fermentation period and adaptable activity to wide temperature and pH ranges, it is of challenge and significance to apply BLac to the biosensors, due to the intracellular secretion and poor electron transfer efficiency of BLac. Here, cell surface-displayed BLac (CSDBLac) was successfully constructed as whole-cell biocatalyst through microbial surface display technology, eliminating the mass transfer restriction and laborious purification steps. Meanwhile, MXenes/polyetherimide-multiwalled carbon nanotubes (MXenes/PEI-MWCNTs) nanohybrids were designed to immobilize CSDBLac and improve their electrochemical activity. Then, an electrochemical biosensor was successfully constructed to detect common phenolic pollutants (catechol and hydroquinone) by the co-immobilization of CSDBLac and MXenes/PEI-MWCNTs nanohybrids onto a glassy carbon electrode. Subsequently, it was successfully applied to the water samples assay with good reliability and repeatability. This work innovatively used BLac and nanohybrid as the core elements of biosensor, which not only effectively solved the application bottleneck of BLac on biosensors, but also dramatically promote the electro transfer efficiency between whole-cell biocatalyst and electrode. This method is of profound meanings for significantly improving the performance of phenolic biosensors and other biosensors from the origin.
Collapse
Affiliation(s)
- Yanfang Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jing Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Yuqing Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jianming Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Bo Liang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China.
| |
Collapse
|
27
|
Lindow S. History of Discovery and Environmental Role of Ice Nucleating Bacteria. PHYTOPATHOLOGY 2023; 113:605-615. [PMID: 36122194 DOI: 10.1094/phyto-07-22-0256-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phenomenon of biological ice nucleation that is exhibited by a variety of bacteria is a fascinating phenotype, which has been shown to incite frost damage to frost-sensitive plants and has been proposed to contribute to atmospheric processes that affect the water cycle and earth's radiation balance. This review explores the several possible drivers for the evolutionary origin of the ice nucleation phenotype. These bacteria and the gene required for this phenotype have also been exploited in processes as diverse as reporter gene assays to assess environmentally responsive gene expression in various plant pathogenic and environmental bacteria and in the detection of foodborne human pathogens when coupled with host-specific bacteriophage, whereas ice nucleating bacteria themselves have been exploited in the production of artificial snow for recreation and oil exploration and in the process of freezing of various food products. This review also examines the historical development of our understanding of ice nucleating bacteria, details of the genetic determinants of ice nucleation, and features of the aggregates of membrane-bound ice nucleation protein necessary for catalyzing ice. Lastly, this review also explores the role of these bacteria in limiting the supercooling ability of plants and the strategies and limitations of avoiding plant frost damage by managing these bacterial populations by bactericides, antagonistic bacteria, or cultural control strategies.
Collapse
Affiliation(s)
- Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
28
|
Yu T, Fu Y, He J, Zhang J, Xianyu Y. Identification of Antibiotic Resistance in ESKAPE Pathogens through Plasmonic Nanosensors and Machine Learning. ACS NANO 2023; 17:4551-4563. [PMID: 36867448 DOI: 10.1021/acsnano.2c10584] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antibiotic-resistant ESKAPE pathogens cause nosocomial infections that lead to huge morbidity and mortality worldwide. Rapid identification of antibiotic resistance is vital for the prevention and control of nosocomial infections. However, current techniques like genotype identification and antibiotic susceptibility testing are generally time-consuming and require large-scale equipment. Herein, we develop a rapid, facile, and sensitive technique to determine the antibiotic resistance phenotype among ESKAPE pathogens through plasmonic nanosensors and machine learning. Key to this technique is the plasmonic sensor array that contains gold nanoparticles functionalized with peptides differing in hydrophobicity and surface charge. The plasmonic nanosensors can interact with pathogens to generate bacterial fingerprints that alter the surface plasmon resonance (SPR) spectra of nanoparticles. In combination with machine learning, it enables the identification of antibiotic resistance among 12 ESKAPE pathogens in less than 20 min with an overall accuracy of 89.74%. This machine-learning-based approach allows for the identification of antibiotic-resistant pathogens from patients and holds great promise as a clinical tool for biomedical diagnosis.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ying Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jintao He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| |
Collapse
|
29
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
30
|
Suzuki H, Sasabu A. First Example of the Extracellular Surface Expression of Intrinsically Periplasmic Escherichia coli γ-Glutamyltranspeptidase, a Member of the N-Terminal Nucleophile Hydrolase Superfamily, and the Use of Cells as a Catalyst for γ-Glutamylvalylglycine Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1132-1138. [PMID: 36606639 DOI: 10.1021/acs.jafc.2c05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although the purified Escherichia coli γ-glutamyltranspeptidase has much higher transpeptidation activity than hydrolysis activity, almost all γ-glutamyltranspeptidase activity is hydrolysis activity in vivo, that is when measured using the whole cells. By using the Met1 to Arg232 fragment of E. coli YiaT or the CapA of Bacillus subtilis subsp. Natto as an anchor protein, we succeeded in expressing E. coli γ-glutamyltranspeptidase on the extracellular surface of the cells, and these cells showed higher transpeptidation activity than hydrolysis activity in the presence of NaCl. Furthermore, E. coli cells overexpressing γ-glutamyltranspeptidase without an anchor from the T5 promoter maintained γ-glutamyltranspeptidase on the extracellular surface of the cells immediately after being harvested from the culture medium, but the enzyme was released from the extracellular surface of the cells subsequently in the absence of NaCl. Using these cells expressing γ-glutamyltranspeptidase on the extracellular surface, γ-Glu-Val-Gly, a kokumi compound, was successfully produced.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Asuka Sasabu
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
31
|
Lo CH, Zeng J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng Transl Med 2023; 8:e10350. [PMID: 36684106 PMCID: PMC9842050 DOI: 10.1002/btm2.10350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane proteins (MPs) play key roles in cellular signaling pathways and are responsible for intercellular and intracellular interactions. Dysfunctional MPs are directly related to the pathogenesis of various diseases, and they have been exploited as one of the most sought-after targets in the pharmaceutical industry. However, working with MPs is difficult given that their amphiphilic nature requires protection from biological membrane or membrane mimetics. Polymersomes are bilayered nano-vesicles made of self-assembled block copolymers that have been widely used as cell membrane mimetics for MP reconstitution and in engineering of artificial cells. This review highlights the prevailing trend in the application of polymersomes in MP study and drug discovery. We begin with a review on the techniques for synthesis and characterization of polymersomes as well as methods of MP insertion to form proteopolymersomes. Next, we review the structural and functional analysis of the different types of MPs reconstituted in polymersomes, including membrane transport proteins, MP complexes, and membrane receptors. We then summarize the factors affecting reconstitution efficiency and the quality of reconstituted MPs for structural and functional studies. Additionally, we discuss the potential in using proteopolymersomes as platforms for high-throughput screening (HTS) in drug discovery to identify modulators of MPs. We conclude by providing future perspectives and recommendations on advancing the study of MPs and drug development using proteopolymersomes.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jialiu Zeng
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
32
|
Agmatine production by Escherichia coli cells expressing SpeA on the extracellular surface. Enzyme Microb Technol 2023; 162:110139. [DOI: 10.1016/j.enzmictec.2022.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
|
33
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Tsai SL, Sun Q, Chen W. Advances in consolidated bioprocessing using synthetic cellulosomes. Curr Opin Biotechnol 2022; 78:102840. [PMID: 36356377 DOI: 10.1016/j.copbio.2022.102840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.
Collapse
Affiliation(s)
- Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
35
|
Attenuated Salmonella Typhimurium with truncated LPS and outer membrane-displayed RGD peptide for cancer therapy. Biomed Pharmacother 2022; 155:113682. [PMID: 36095964 DOI: 10.1016/j.biopha.2022.113682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Gram-negative, facultatively anaerobic bacteria Salmonella Typhimurium is a candidate agent or delivery vector for cancer therapy. Effective targeted therapies in addition to radiotherapy, chemotherapy and surgery have been urgently needed as an alternative or supplement. This study expected to further improve the tumor-targeting ability of Salmonella bacteria through genetic modifications. Based on an auxotrophic Salmonella bacterial strain (D2), we constructed Salmonella mutants with altered LPS length to facilitate displaying the RGD4C targeting peptide on the outer membrane surface of Salmonella. The expression of RGD4C peptide in fusion with OmpA was identified by outer membrane protein extraction and WB detection in different mutant strains. However, flow cytometry analysis following immunofluorescence staining demonstrated that the extracellular length of Salmonella LPS did affect the surface display of RGD4C peptide. The strain D2-RGD4C that synthesized intact LPS including lipid A, core oligosaccharides and O antigen polysaccharides could hardly display RGD4C peptide, showing the same fluorescence signal intensity as the strains not expressing RGD4C peptide. Among different strains, D2 ∆rfaJ-RGD4C that synthesized truncated LPS including lipid A and partial core oligosaccharides was capable of displaying RGD4C peptide most efficiently and showed the highest ability to target HUVECs expressing αV integrin and tumor tissue with abundant neovascularization. Animal experiments also demonstrated that this tumor-targeting attenuated Salmonella strain to simultaneously deliver endostatin and TRAIL, two agents with different anti-tumor activities, could significantly inhibit tumor growth and prolong mouse survival. Thus, our studies revealed that Salmonella could be genetically engineered to improve its tumor targeting via the truncation of LPS and surface display of targeting peptides, thereby eliciting superior anti-tumor effects through targeted delivery of drug molecules.
Collapse
|
36
|
Zhou R, Dong S, Feng Y, Cui Q, Xuan J. Development of highly efficient whole-cell catalysts of cis-epoxysuccinic acid hydrolase by surface display. BIORESOUR BIOPROCESS 2022; 9:92. [PMID: 38647583 PMCID: PMC10991663 DOI: 10.1186/s40643-022-00584-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial cis-epoxysuccinic acid hydrolases (CESHs) are intracellular enzymes used in the industrial production of enantiomeric tartaric acids. The enzymes are mainly used as whole-cell catalysts because of the low stability of purified CESHs. However, the low cell permeability is the major drawback of the whole-cell catalyst. To overcome this problem, we developed whole-cell catalysts using various surface display systems for CESH[L] which produces L(+)-tartaric acid. Considering that the display efficiency depends on both the carrier and the passenger, we screened five different anchoring motifs in Escherichia coli. Display efficiencies are significantly different among these five systems and the InaPbN-CESH[L] system has the highest whole-cell enzymatic activity. Conditions for InaPbN-CESH[L] production were optimized and a maturation step was discovered which can increase the whole-cell activity several times. After optimization, the total activity of the InaPbN-CESH[L] surface display system is higher than the total lysate activity of an intracellular CESH[L] overexpression system, indicating a very high CESH[L] display level. Furthermore, the whole-cell InaPbN-CESH[L] biocatalyst exhibited good storage stability at 4 °C and considerable reusability. Thereby, an efficient whole-cell CESH[L] biocatalyst was developed in this study, which solves the cell permeability problem and provides a valuable system for industrial L(+)-tartaric acid production.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
37
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
38
|
Yang SC, Ting WW, Ng IS. Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
40
|
Lim B, Yin Y, Ye H, Cui Z, Papachristodoulou A, Huang WE. Reprogramming Synthetic Cells for Targeted Cancer Therapy. ACS Synth Biol 2022; 11:1349-1360. [PMID: 35255684 PMCID: PMC9084601 DOI: 10.1021/acssynbio.1c00631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Advances
in synthetic biology enable the reprogramming of bacteria
as smart agents to specifically target tumors and locally release
anticancer drugs in a highly controlled manner. However, the bench-to-bedside
translation of engineered bacteria is often impeded by genetic instability
and the potential risk of uncontrollable replication of engineered
bacteria inside the patient. SimCells (simple cells) are chromosome-free
bacteria controlled by designed gene circuits, which can bypass the
interference of the native gene network in bacteria and eliminate
the risk of bacterial uncontrolled growth. Here, we describe the reprogramming
of SimCells and mini-SimCells to serve as “safe and live drugs”
for targeted cancer therapy. We engineer SimCells to display nanobodies
on the surface for the binding of carcinoembryonic antigen (CEA),
which is an important biomarker found commonly in colorectal cancer
cells. We show that SimCells and mini-SimCells with surface display
of anti-CEA nanobody can specifically bind CEA-expressing Caco2 cancer
cells in vitro while leaving the non-CEA-expressing
SW80 cancer cells untouched. These cancer-targeting SimCells and mini-SimCells
induced cancer cell death in vitro by compromising
the plasma membrane of cancer cells. The cancer-killing effect can
be further enhanced by an aspirin/salicylate inducible gene circuit
that converts salicylate into catechol, a potent anticancer. This
work highlights the potential of SimCells and mini-SimCells for targeted
cancer therapy and lays the foundation for the application of synthetic
biology to medicine.
Collapse
Affiliation(s)
- Boon Lim
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | - Yutong Yin
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | - Zhanfeng Cui
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K
| | | | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
| |
Collapse
|
41
|
Xie X, Tan X, Yu Y, Li Y, Wang P, Liang Y, Yan Y. Effectively auto-regulated adsorption and recovery of rare earth elements via an engineered E. coli. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127642. [PMID: 34775317 DOI: 10.1016/j.jhazmat.2021.127642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Conventional mining processes of rare earth elements (REEs) usually produce REEs-rich industrial waterwastes, which leads to a significant waste of REEs resources and causes serious environmental pollution. Biosorption using engineered microorganisms is an attractive technology for the recovery of REEs from aqueous solution. To regulate the REEs' adsorption and recovery by sensing extraneous REEs, an engineered cascaded induction system, pmrCAB operon containing a lanthanide-binding tag (LBT) for sensing REEs, was incorporated into E. coli in conjunction with a silica-binding protein (Si-tag) and dLBT anchored onto the cell membrane. The sensing and adsorption capacities for Terbium (Tb), a typical study subject of REEs, were enhanced by screening an effective LBT and increasing the dLBT copy number. The adsorption capacity for Tb reached the highest reported value of 41.9 mgg-1 dry cell weight (DCW). After adhering the engineered cells onto the silica column surface through overexpressed Si-tag, a high recovering efficiency (> 90%) of Tb desorption could be obtained with 3 bed volumes of citrate solution. In addition, the engineered cells also possessed fairly good adsorption capacity of other tested REEs. Our findings showed that the recovery of REEs with high efficiency, selectivity and controllability from aqueous solution can be well achieved via specifically bio-engineered strains.
Collapse
Affiliation(s)
- Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xirui Tan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yiyan Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunchong Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Pengbo Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanhao Liang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
42
|
Ding J, Liu Y, Gao Y, Zhang C, Wang Y, Xu B, Yang Y, Wu Q, Huang Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. CHEMOSPHERE 2022; 289:133130. [PMID: 34863720 DOI: 10.1016/j.chemosphere.2021.133130] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrethroids are the third widespread used insecticides globally which have been extensively applied in agricultural or household environments. Due to continuous applications, pyrethroids have been detected both in living cells and environments. The permanent exposure to pyrethroids have caused substantial health risks and ecosystem concerns. In this work, a λ-cyhalothrin (one kind of pyrethroid insecticides) degrading bacterium Bacillus velezensis sd was isolated and a carboxylesterase gene, CarCB2 was characterized. A whole cell biocatalyst was developed for λ-cyhalothrin biodegradation by displaying CarCB2 on the surface of Escherichia coli cells. CarCB2 was successfully displayed and functionally expressed on E. coli cells with optimal pH and temperature of 7.5 and 30 °C, using p-NPC4 as substrate, respectively. The whole cell biocatalyst exhibited better stability than the purified CarCB2, and approximately 120%, 60% or 50% of its original activity at 4 °C, 30 °C or 37 °C over a period of 35 d was retained, respectively. No enzymatic activity was detected when incubated the purified CarCB2 at 30 °C for 120 h, or 37 °C for 72 h, respectively. Additionally, 30 mg/L of λ-cyhalothrin was degraded in citrate-phosphate buffer by 10 U of the whole cell biocatalyst in 150 min. This work reveals that the whole cell biocatalyst affords a promising approach for efficient biodegradation of λ-cyhalothrin, and might have the potential to be applied in further environmental bioremediation of other different kinds of pyrethroid insecticides.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| | - Yan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yanxiu Gao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yafei Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
43
|
Liang B, Liu Y, Zhao Y, Xia T, Chen R, Yang J. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde. Biosens Bioelectron 2021; 193:113566. [PMID: 34416430 DOI: 10.1016/j.bios.2021.113566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
Acetaldehyde is a human carcinogen and widely existed in alcoholic beverages and polluted air. In this study, a simple, fast, convenient and sensitive acetaldehyde biosensor was developed based on an acetaldehyde dehydrogenase (AldDH) bacteria surface display system. The whole-cell catalyst facilitated the dehydrogenation of acetaldehyde, while coenzyme NAD+ was reduced and the resultant NADH can be detected spectrometrically at 340 nm. The correct location of AldDH on the bacteria surface was confirmed by the subcellular fraction and immunofluorescence analysis. By comparing the fusion protein expression level and whole-cell activity, the proper display system for anchoring AldDH on the cell surface was obtained. The results of kinetics analysis towards both surface-displayed AldDH and intracellular expressed AldDH demonstrated that the mass-transport resistance was dramatically alleviated by cell-surface display strategy. Under optimal conditions, AldDH-surface display strain with the highest whole-cell activity (3.41 ± 0.3 mU/OD600) was applied to spectrophotometry acetaldehyde detection system. An excellent linear relationship between the increases of absorbance at 340 nm and acetaldehyde concentration over the range from 1 μM to 300 μM was reached. The proposed approach offered adequate sensitivity for the detection of acetaldehyde at 0.33 μM. Most importantly, the developed biosensor showed the narrowest substrate specificity towards acetaldehyde, which has been employed for quick determination of acetaldehyde in real samples with good accuracy. The total detection time was within 20 min. The method reported here provided a simple, rapid, and low-cost strategy for the sensitive and selective measurement of acetaldehyde. Therefore, genetically engineered cells may find broad application in biosensors and biocatalysts.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Yunhui Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Tianyu Xia
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ruofei Chen
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
44
|
Gallus S, Mittmann E, Rabe KS. A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli. Chembiochem 2021; 23:e202100472. [PMID: 34767678 PMCID: PMC9298812 DOI: 10.1002/cbic.202100472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Comparison of different membrane anchor motifs for the surface display of a protein of interest (passenger) is crucial for achieving the best possible performance. However, generating genetic fusions of the passenger to various membrane anchors is time-consuming. We herein employ a recently developed modular display system, in which the membrane anchor and the passenger are expressed separately and assembled in situ via SpyCatcher and SpyTag interaction, to readily combine a model passenger cytochrome P450 BM3 (BM3) with four different membrane anchors (Lpp-OmpA, PgsA, INP and AIDA-I). This approach has the significant advantage that passengers and membrane anchors can be freely combined in a modular fashion without the need to generate direct genetic fusion constructs in each case. We demonstrate that the membrane anchors impact not only cell growth and membrane integrity, but also the BM3 surface display capacity and whole-cell biocatalytic activity. The previously used Lpp-OmpA as well as PgsA were found to be efficient for the display of BM3 via SpyCatcher/SpyTag interaction. Our strategy can be transferred to other user-defined anchor and passenger combinations and could thus be used for acceleration and improvement of various applications involving cell surface display.
Collapse
Affiliation(s)
- Sabrina Gallus
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Esther Mittmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
45
|
Hyun J, Jun S, Lim H, Cho H, You SH, Ha SJ, Min JJ, Bang D. Engineered Attenuated Salmonella typhimurium Expressing Neoantigen Has Anticancer Effects. ACS Synth Biol 2021; 10:2478-2487. [PMID: 34525796 DOI: 10.1021/acssynbio.1c00097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neoantigen vaccines are an immunotherapy strategy for treating cancer. The vaccine degrades quickly, so the strategy must include protection and precise targeting for immune cell stimulation. In this study, we engineered attenuated Salmonella typhimurium, which is highly infiltrative to tumors, to act as a carrier for Neoantigen peptide vaccine. Our system used a constitutive promoter vector, so that a single injection of Salmonella expressing Neoantigen could be used without requiring additional induction injections. In vivo experiments on bacteria-treated mice showed that Neoantigen expressed by the engineered carrier infiltrated tumors and resulted in suppressed tumor growth, higher survival rates and longer survival times, a relative increase of CD4 and CD8 T cells, and cytokine release. These results indicate that engineered Salmonella can be used as a carrier for Neoantigen immunotherapy.
Collapse
Affiliation(s)
- Jungheun Hyun
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyeong Jun
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeonseob Lim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjun Cho
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hwan You
- Laboratory of In Vivo Molecular Imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam, 58128, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jung-Joon Min
- Laboratory of In Vivo Molecular Imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam, 58128, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
46
|
Baiyoumy A, Vallapurackal J, Schwizer F, Heinisch T, Kardashliev T, Held M, Panke S, Ward TR. Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catal 2021; 11:10705-10712. [PMID: 34504734 PMCID: PMC8419837 DOI: 10.1021/acscatal.1c02405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Indexed: 12/14/2022]
Abstract
Artificial metalloenzymes (ArMs) combine characteristics of both homogeneous catalysts and enzymes. Merging abiotic and biotic features allows for the implementation of new-to-nature reactions in living organisms. Here, we present the directed evolution of an artificial metalloenzyme based on Escherichia coli surface-displayed streptavidin (SavSD hereafter). Through the binding of a ruthenium-pianostool cofactor to SavSD, an artificial allylic deallylase (ADAse hereafter) is assembled, which displays catalytic activity toward the deprotection of alloc-protected 3-hydroxyaniline. The uncaged aminophenol acts as a gene switch and triggers the overexpression of a fluorescent green fluorescent protein (GFP) reporter protein. This straightforward readout of ADAse activity allowed the simultaneous saturation mutagenesis of two amino acid residues in Sav near the ruthenium cofactor, expediting the screening of 2762 individual clones. A 1.7-fold increase of in vivo activity was observed for SavSD S112T-K121G compared to the wild-type SavSD (wt-SavSD). Finally, the best performing Sav isoforms were purified and tested in vitro (SavPP hereafter). For SavPP S112M-K121A, a total turnover number of 372 was achieved, corresponding to a 5.9-fold increase vs wt-SavPP. To analyze the marked difference in activity observed between the surface-displayed and purified ArMs, the oligomeric state of SavSD was determined. For this purpose, crosslinking experiments of E. coli cells overexpressing SavSD were carried out, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. The data suggest that SavSD is most likely displayed as a monomer on the surface of E. coli. We hypothesize that the difference between the in vivo and in vitro screening results may reflect the difference in the oligomeric state of SavSD vs soluble SavPP (monomeric vs tetrameric). Accordingly, care should be applied when evolving oligomeric proteins using E. coli surface display.
Collapse
Affiliation(s)
- Alain Baiyoumy
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Jaicy Vallapurackal
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Fabian Schwizer
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Tillmann Heinisch
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | | | - Martin Held
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sven Panke
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
47
|
Ko HJ, Song H, Choi IG. Development of a Novel Cell Surface Attachment System to Display Multi-Protein Complex Using the Cohesin-Dockerin Binding Pair. J Microbiol Biotechnol 2021; 31:1183-1189. [PMID: 34226404 PMCID: PMC9705933 DOI: 10.4014/jmb.2105.05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Autodisplay of a multimeric protein complex on a cell surface is limited by intrinsic factors such as the types and orientations of anchor modules. Moreover, improper folding of proteins to be displayed often hinders functional cell surface display. While overcoming these drawbacks, we ultimately extended the applicability of the autodisplay platform to the display of a protein complex. We designed and constructed a cell surface attachment (CSA) system that uses a noncovalent protein-protein interaction. We employed the high-affinity interaction mediated by an orthogonal cohesin-dockerin (Coh-Doc) pair from Archaeoglobus fulgidus to build the CSA system. Then, we validated the orthogonal Coh-Doc binding by attaching a monomeric red fluorescent protein to the cell surface. In addition, we evaluated the functional anchoring of proteins fused with the Doc module to the autodisplayed Coh module on the surface of Escherichia coli. The designed CSA system was applied to create a functional attachment of dimeric α-neoagarobiose hydrolase to the surface of E. coli cells.
Collapse
Affiliation(s)
- Hyeok-Jin Ko
- Food Biotech R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
48
|
Zheng Y, Wei L, Duan L, Yang F, Huang G, Xiao T, Wei M, Liang Y, Yang H, Li Z, Wang D. Rapid field testing of mercury pollution by designed fluorescent biosensor and its cells-alginate hydrogel-based paper assay. J Environ Sci (China) 2021; 106:161-170. [PMID: 34210432 DOI: 10.1016/j.jes.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
With increasing industrial activities, mercury has been largely discharged into environment and caused serious environmental problems. The growing level of mercury pollution has become a huge threat to human health due to its significant biotoxicity. Therefore, the simple and fast means for on-site monitoring discharged mercury pollution are highly necessary to protect human beings from its pernicious effects in time. Herein, a "turn off" fluorescent biosensor (mCherry L199C) for sensing Hg2+ was successfully designed based on direct modification of the chromophore environment of fluorescent protein mCherry. For rapid screening and characterization, the designed variant of mCherry (mCherry L199C) was directly expressed on outer-membrane of Escherichia coli cells by cell surface display technique. The fluorescent biosensor was characterized to have favorable response to Hg2+ at micromole level among other metal ions and over a broad pH range. Further, the cells of the fluorescent biosensor were encapsulated in alginate hydrogel to develop the cells-alginate hydrogel-based paper. The cells-alginate hydrogel-based paper could detect mercury pollution in 5 min with simple operation process and inexpensive equipment, and it could keep fluorescence and activity stable at 4 °C for 24 hr, which would be a high-throughput screening tool in preliminarily reporting the presence of mercury pollution in natural setting.
Collapse
Affiliation(s)
- Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Liudan Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Linwei Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China
| | - Fangfang Yang
- Guangxi-ASEAN Food Inspection and Testing Center, China
| | - Guixiang Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Tianyi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yanling Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Huiting Yang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China.
| | - Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
49
|
Feng L, Gao L, Sauer DF, Ji Y, Cui H, Schwaneberg U. Fe(III)-complex mediated bacterial cell surface immobilization of eGFP and enzymes. Chem Commun (Camb) 2021; 57:4460-4463. [PMID: 33949502 DOI: 10.1039/d1cc01575c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile and reversible method to immobilize a broad range of His6-tagged proteins on the E. coli cell surface through Fe(iii)-metal complexes. A His6-tagged eGFP and four His6-tagged enzymes were successfully immobilized on the cell surface. Additionally, a hydrogel sheath around E. coli cells was generated by immobilized His6-tagged HRP.
Collapse
Affiliation(s)
- Lilin Feng
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Liang Gao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Daniel F Sauer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany. and DWI - Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
50
|
Balderas Hernández VE, Salas-Montantes CJ, Barba-De la Rosa AP, De Leon-Rodriguez A. Autodisplay of an endo-1,4-β-xylanase from Clostridium cellulovorans in Escherichia coli for xylans degradation. Enzyme Microb Technol 2021; 149:109834. [PMID: 34311879 DOI: 10.1016/j.enzmictec.2021.109834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
The goal of this work was the autodisplay of the endo β-1,4-xylanase (XynA) from Clostridium cellulovorans in Escherichia coli using the AIDA system to carry out whole-cell biocatalysis and hydrolysate xylans. For this, pAIDA-xynA vector containing a synthetic xynA gene was fused to the signal peptide of the toxin subunit B Vibro cholere (ctxB) and the auto-transporter of the synthetic aida gene, which encodes for the connector peptide and β-barrel of the auto-transporter (AT-AIDA). E. coli TOP10 cells were transformed and the biocatalyst was characterized using beechwood xylans as substrate. Optimal operational conditions were temperature of 55 °C and pH 6.5, and the Michaelis-Menten catalytic constants Vmax and Km were 149 U/gDCW and 6.01 mg/mL, respectively. Xylanase activity was inhibited by Cu2+, Zn2+ and Hg2+ as well as EDTA, detergents, and organic acids, and improved by Ca2+, Co2+ and Mn2+ ions. Ca2+ ion strongly enhanced the xylanolytic activity up to 2.4-fold when 5 mM CaCl2 were added. Also, Ca2+ improved enzyme stability at 60 and 70 °C. Results suggest that pAIDA-xynA vector has the ability to express functional xylanase to perform whole-cell biocatalysis in order to hydrolysate xylans from hemicellulose feedstock.
Collapse
Affiliation(s)
- Victor E Balderas Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055 Lomas 4ª. Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Carlos J Salas-Montantes
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055 Lomas 4ª. Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Ana P Barba-De la Rosa
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055 Lomas 4ª. Sección, C.P. 78216, San Luis Potosí, Mexico
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055 Lomas 4ª. Sección, C.P. 78216, San Luis Potosí, Mexico.
| |
Collapse
|