1
|
Tomaino G, Pantaleoni C, D’Urzo A, Santambrogio C, Testa F, Ciprandi M, Cotugno D, Frascotti G, Vanoni M, Tortora P. An Efficient Method for Vault Nanoparticle Conjugation with Finely Adjustable Amounts of Antibodies and Small Molecules. Int J Mol Sci 2024; 25:6629. [PMID: 38928334 PMCID: PMC11203631 DOI: 10.3390/ijms25126629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which are produced by the assembly of the sole MVP. Here, we have expressed in Komagataella phaffi and purified an MVP variant carrying a C-terminal Z peptide (vault-Z), which can tightly bind an antibody's Fc portion, in view of targeted delivery. Via surface plasmon resonance analysis, we could determine a 2.5 nM affinity to the monoclonal antibody Trastuzumab (Tz)/vault-Z 1:1 interaction. Then, we characterized the in-solution interaction via co-incubation, ultracentrifugation, and analysis of the pelleted proteins. This showed virtually irreversible binding up to an at least 10:1 Tz/vault-Z ratio. As a proof of concept, we labeled the Fc portion of Tz with a fluorophore and conjugated it with the nanoparticle, along with either Tz or Cetuximab, another monoclonal antibody. Thus, we could demonstrate antibody-dependent, selective uptake by the SKBR3 and MDA-MB 231 breast cancer cell lines. These investigations provide a novel, flexible technological platform that significantly extends vault-Z's applications, in that it can be stably conjugated with finely adjusted amounts of antibodies as well as of other molecules, such as fluorophores, cell-targeting peptides, or drugs, using the Fc portion as a scaffold.
Collapse
Affiliation(s)
- Giulia Tomaino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Camilla Pantaleoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Annalisa D’Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Filippo Testa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Matilde Ciprandi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Davide Cotugno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Gianni Frascotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
- ISBE-SYSBIO Centre for Systems Biology, 20126 Milan, Italy
| | - Paolo Tortora
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.T.); (C.P.); (A.D.); (C.S.); (F.T.); (M.C.); (D.C.); (M.V.)
| |
Collapse
|
2
|
Ye Q, Wang D, Wei N. Engineering biomaterials for the recovery of rare earth elements. Trends Biotechnol 2024; 42:575-590. [PMID: 37985335 DOI: 10.1016/j.tibtech.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The escalating global demand for rare earth elements (REEs) and the overabundance of REE-containing waste require innovative technologies for REE recovery from waste to achieve a sustainable supply of REEs while reducing the environmental burden. Biosorption mediated by peptides or proteins has emerged as a promising approach for selective REE recovery. To date, multiple peptides and proteins with high REE-binding affinity and selectivity have been discovered, and various strategies are being exploited to engineer robust and reusable biosorptive materials for selective REE recovery. This review highlights recent advances in discovering and engineering peptides and proteins for REE recovery. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Wang
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Garrido G, Garrido-Suárez BB, Mieres-Arancibia M, Valdes-Gonzalez M, Ardiles-Rivera A. Modified pectin with anticancer activity in breast cancer: A systematic review. Int J Biol Macromol 2024; 254:127692. [PMID: 37898255 DOI: 10.1016/j.ijbiomac.2023.127692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. The current pharmacological treatments for breast cancer have numerous adverse effects and are not always effective. Recently, the anticancer activity of modified pectins (MPs) against various types of cancers, including breast cancer, has been investigated. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model, including scientific articles from the last 22 years that measured the anticancer activity of MPs on breast cancer. The articles were searched in four databases with the terms: "modified pectin" and "breast cancer". Nine articles were included, five in vitro and four mixed (in vitro and in vivo). Different models and methods by which anticancer activity was measured were analyzed. All the studies reported positive results in both cell lines and in vivo murine models of breast cancer. The extracted data suggest a positive effect and provide mechanistic evidence of MPs in the treatment of breast cancer. However, as limited number of studies were included, further in vivo studies are required to obtain more conclusive preclinical evidence.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile.
| | | | - Mario Mieres-Arancibia
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Marisela Valdes-Gonzalez
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Alejandro Ardiles-Rivera
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile
| |
Collapse
|
4
|
Hou T, Guo Y, Han W, Zhou Y, Netala VR, Li H, Li H, Zhang Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023; 28:6431. [PMID: 37687260 PMCID: PMC10490294 DOI: 10.3390/molecules28176431] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 μg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| | | | | | | | | | | | | | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| |
Collapse
|
5
|
Ye Q, Jin X, Zhu B, Gao H, Wei N. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4276-4285. [PMID: 36790366 DOI: 10.1021/acs.est.2c08971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recovering rare earth elements (REEs) from waste streams represents a sustainable approach to diversify REE supply while alleviating the environmental burden. However, it remains a critical challenge to selectively separate and concentrate REEs from low-grade waste streams. In this study, we developed a new type of biosorbent by immobilizing Lanmodulin-SpyCatcher (LanM-Spycatcher) on the surface of SpyTag-functionalized magnetic nanoparticles (MNPs) for selective separation and recovery of REEs from waste streams. The biosorbent, referred to as MNP-LanM, had an adsorption activity of 6.01 ± 0.11 μmol-terbium/g-sorbent and fast adsorption kinetics. The adsorbed REEs could be desorbed with >90% efficiency. The MNP-LanM selectively adsorbed REEs in the presence of a broad range of non-REEs. The protein storage stability of the MNP-LanM increased by two-fold compared to free LanM-SpyCatcher. The MNP-LanM could be efficiently separated using a magnet and reused with high stability as it retained ∼95% of the initial activity after eight adsorption-desorption cycles. Furthermore, the MNP-LanM selectively adsorbed and concentrated REEs from the leachate of coal fly ash and geothermal brine, resulting in 967-fold increase of REE purity. This study provides a scientific basis for developing innovative biosorptive materials for selective and efficient separation and recovery of REEs from low-grade feedstocks.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiuyu Jin
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, 3221 Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Ye Q, Jin X, Gao H, Wei N. Site-Specific and Tunable Co-immobilization of Proteins onto Magnetic Nanoparticles via Spy Chemistry. ACS APPLIED BIO MATERIALS 2022; 5:5665-5674. [PMID: 36194637 DOI: 10.1021/acsabm.2c00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Co-immobilization of multiple proteins onto one nanosupport has large potential in mimicking natural multiprotein complexes and constructing efficient cascade biocatalytic systems. However, control of different proteins regarding their spatial arrangement and loading ratio remains a big challenge, and protein co-immobilization often requires the use of purified proteins. Herein, built upon our recently designed SpyTag-functionalized magnetic nanoparticles (MNPs), we established a modular MNP platform for site-specific, tunable, and cost-effective protein co-immobilization. SpyCatcher-fused enhanced green fluorescent protein (i.e., EGFP-SpyCatcher) and mCherry red fluorescent protein (i.e., RFP-SpyCatcher) were designed and conjugated on MNPs, and the immobilized proteins showed 3-7-fold enhancement in storage stability and greatly improved stability against the freeze-thaw process compared to free proteins. The protein-conjugated MNPs also retained desirable colloidal stability and magnetic responsiveness, enabling facile proteins' recovery. Also, one-pot co-immobilization of the two proteins could be fine-tuned with their feed ratios. In addition, MNPs could selectively and efficiently co-immobilize both SpyCatcher-fused proteins from combined cell lysates without purification, offering a convenient and cost-effective approach for multiprotein immobilization. This MNP platform provides a facile and efficient tool to construct bionano hybrid materials (i.e., protein-based MNPs) and multiprotein systems for a variety of industrial and green chemistry applications.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Navarro-Palomares E, García-Hevia L, Galán-Vidal J, Gandarillas A, García-Reija F, Sánchez-Iglesias A, Liz-Marzán LM, Valiente R, Fanarraga ML. Shiga Toxin-B Targeted Gold Nanorods for Local Photothermal Treatment in Oral Cancer Clinical Samples. Int J Nanomedicine 2022; 17:5747-5760. [PMID: 36466783 PMCID: PMC9717601 DOI: 10.2147/ijn.s381628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION A great challenge in nanomedicine, and more specifically in theranostics, is to improve the specificity, selectivity, and targeting of nanomaterials towards target tissues or cells. The topical use of nanomedicines as adjuvants to systemic chemotherapy can significantly improve the survival of patients affected by localized carcinomas, reducing the side effects of traditional drugs and preventing local recurrences. METHODS Here, we have used the Shiga toxin, to design a safe, high-affinity protein-ligand (ShTxB) to bind the globotriaosylceramide receptor (GB3) that is overexpressed on the surfaces of preneoplastic and malignant cancer cells in the head and neck tumors. RESULTS We find that ShTxB functionalized gold nanorods are efficiently retrotranslocated to the GB3-positive cell cytoplasms. After 3 minutes of laser radiation with a wavelength resonant with the AuNR longitudinal localized surface plasmon, the death of the targeted cancer cells is activated. Both preclinical murine models and patient biopsy cells show the non-cytotoxic nature of these functionalized nanoparticles before light activation and their treatment selectivity. DISCUSSION These results show how the use of nanomedicines directed by natural ligands can represent an effective treatment for aggressive localized cancers, such as squamous cell carcinoma of the oral cavity.
Collapse
Affiliation(s)
- Elena Navarro-Palomares
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate & Cancer Laboratory, Valdecilla Health Research Institute IDIVAL, Santander, 39011, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate & Cancer Laboratory, Valdecilla Health Research Institute IDIVAL, Santander, 39011, Spain
| | - Fe García-Reija
- Oral and Maxillofacial Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Rafael Valiente
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
- Dpt. Applied Physics, Facultad de Ciencias, Universidad de Cantabria, Santander, 39005, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| |
Collapse
|
8
|
Jiang X, Yang M, Liu J. Capping Gold Nanoparticles to Achieve a Protein-like Surface for Loop-Mediated Isothermal Amplification Acceleration and Ultrasensitive DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27666-27674. [PMID: 35687651 DOI: 10.1021/acsami.2c06061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a popular DNA amplification method. Gold nanoparticles (AuNPs) were reported to enhance the efficiency of LAMP, although the underlying mechanism remained elusive. Since AuNPs strongly adsorb a range of ligands, preadsorbed ligands cannot be easily displaced. In this work, we systematically investigated the effect of surface-modified AuNPs on LAMP by varying the order of mixing of AuNPs with each reagent in the LAMP system (Mg2+, template DNA, dNTPs, primers, and polymerase). Mixing the AuNPs with the primers delayed the LAMP based on SYBR green I fluorescence. While other orders of mixing had little effect, all accelerated the reaction. We then tested other common ligands including polymers (polyethylene glycol and polyvinylpyrrolidone), inorganic ions (Br-), proteins, glutathione (GSH), and DNA (A15) on AuNP-LAMP. The boosted AuNP performance on LAMP was most obvious when the AuNPs formed a protein-like surface. Finally, using GSH-capped AuNPs, a detection limit of around 100 copies/μL-1 of target DNA was achieved. This work has identified a ligand-capped AuNP strategy to boost LAMP and yielded a higher sensitivity in DNA sensing, which also deepens our understanding of AuNP-assisted LAMP.
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.
Collapse
|
10
|
Development of Neuropeptide Y and Cell-Penetrating Peptide MAP Adsorbed onto Lipid Nanoparticle Surface. Molecules 2022; 27:molecules27092734. [PMID: 35566093 PMCID: PMC9101637 DOI: 10.3390/molecules27092734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.
Collapse
|
11
|
Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022; 33:429-443. [PMID: 35167255 PMCID: PMC8931723 DOI: 10.1021/acs.bioconjchem.1c00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The progress achieved
over the last three decades in the field
of bioconjugation has enabled the preparation of sophisticated nanomaterial–biomolecule
conjugates, referred to herein as bionanoconstructs, for a multitude
of applications including biosensing, diagnostics, and therapeutics.
However, the development of bionanoconstructs for the active targeting
of cells and cellular compartments, both in vitro and in vivo, is challenged by the lack of understanding
of the mechanisms governing nanoscale recognition. In this review,
we highlight fundamental obstacles in designing a successful bionanoconstruct,
considering findings in the field of bionanointeractions. We argue
that the biological recognition of bionanoconstructs is modulated
not only by their molecular composition but also by the collective
architecture presented upon their surface, and we discuss fundamental
aspects of this surface architecture that are central to successful
recognition, such as the mode of biomolecule conjugation and nanomaterial
passivation. We also emphasize the need for thorough characterization
of engineered bionanoconstructs and highlight the significance of
population heterogeneity, which too presents a significant challenge
in the interpretation of in vitro and in
vivo results. Consideration of such issues together will
better define the arena in which bioconjugation, in the future, will
deliver functional and clinically relevant bionanoconstructs.
Collapse
Affiliation(s)
- Aisling Fleming
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yan
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zengchun Xie
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Wang J, Wuethrich A, Lobb RJ, Antaw F, Sina AAI, Lane RE, Zhou Q, Zieschank C, Bell C, Bonazzi VF, Aoude LG, Everitt S, Yeo B, Barbour AP, Möller A, Trau M. Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types via an Ultrasensitive Chip. ACS Sens 2021; 6:3182-3194. [PMID: 34264628 DOI: 10.1021/acssensors.1c00358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying small extracellular vesicle (sEV) subpopulations based on their different molecular signatures could potentially reveal the functional roles in physiology and pathology. However, it is a challenge to achieve this aim due to the nano-sized dimensions of sEVs, low quantities of biological cargo each sEV carries, and our incomplete knowledge of identifying features capable of separating heterogeneous sEV subpopulations. Here, a sensitive, multiplexed, and nano-mixing-enhanced sEV subpopulation characterization platform (ESCP) is proposed to precisely determine the sEV phenotypic heterogeneity and understand the role of sEV heterogeneity in cancer progression and metastasis. The ESCP utilizes spatially patterned anti-tetraspanin-functionalized micro-arrays for sEV subpopulation sorting and nanobarcode-based surface-enhanced Raman spectroscopy for multiplexed read-outs. An ESCP has been used for investigating sEV phenotypic heterogeneity in terms of canonical sEV tetraspanin molecules and cancer-associated protein biomarkers in both cancer cell line models and cancer patient samples. Our data explicitly demonstrate the selective enrichment of tetraspanins and cancer-associated protein biomarkers, in particular sEV subpopulations. Therefore, it is believed that the ESCP could enable the evaluation and broader application of sEV subpopulations as potential diagnostic disease biomarkers.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiach Antaw
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chloe Zieschank
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Caroline Bell
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Vanessa F. Bonazzi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Lauren G. Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sarah Everitt
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Belinda Yeo
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
- Austin Health, Heidelberg, Victoria 3084, Australia
| | - Andrew P. Barbour
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Queensland Melanoma Project, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Naganuma C, Moriyama K, Suye SI, Fujita S. One-Step Surface Immobilization of Protein A on Hydrogel Nanofibers by Core-Shell Electrospinning for Capturing Antibodies. Int J Mol Sci 2021; 22:9857. [PMID: 34576021 PMCID: PMC8471760 DOI: 10.3390/ijms22189857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Nanofibers (NFs) are potential candidates as filter materials for affinity separation owing to their high liquid permeability based on their high porosity. Multiple and complex processes were conventionally performed to immobilize proteins for modifying NF surfaces. A simple method must be developed to immobilize proteins without impairing their biological activity. Herein, we succeeded in fabricating NFs with a core of cellulose acetate and a shell of hydrophilic polyvinyl alcohol immobilized with staphylococcal recombinant protein A by a one-step process based on core-shell electrospinning. A total of 12.9 mg/cm3 of antibody was captured in the fiber shell through high affinity with protein A immobilized in an aqueous environment of the hydrogel. The maximum adsorption site and dissociation constant evaluated by the Langmuir model were 87.8 µg and 1.37 µmol/L, respectively. The fiber sheet withstood triplicate use. Thus, our NF exhibited high potential as a material for membrane chromatography.
Collapse
Affiliation(s)
- Chihiro Naganuma
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Kosuke Moriyama
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan; (C.N.); (K.M.); (S.-i.S.)
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
14
|
Abdelraouf AMN, Naguib DM. Nano Defensin: A Promising Antibacterial Agent Against Colorectal Cancer Related Bacteria. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers (Basel) 2021; 13:polym13152464. [PMID: 34372067 PMCID: PMC8348146 DOI: 10.3390/polym13152464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The synthesis of light-responsive nanocarriers (LRNs) with a variety of surface functional groups and/or ligands has been intensively explored for space-temporal controlled cargo release. LRNs have been designed on demand for photodynamic-, photothermal-, chemo-, and radiotherapy, protected delivery of bioactive molecules, such as smart drug delivery systems and for theranostic duties. LRNs trigger the release of cargo by a light stimulus. The idea of modifying LRNs with different moieties and ligands search for site-specific cargo delivery imparting stealth effects and/or eliciting specific cellular interactions to improve the nanosystems’ safety and efficacy. This work reviews photoresponsive polymeric nanocarriers and photo-stimulation mechanisms, surface chemistry to link ligands and characterization of the resultant nanosystems. It summarizes the interesting biomedical applications of functionalized photo-controlled nanocarriers, highlighting the current challenges and opportunities of such high-performance photo-triggered delivery systems.
Collapse
|
16
|
Zhao Z, Li G, Liu QS, Liu W, Qu G, Hu L, Long Y, Cai Z, Zhao X, Jiang G. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125582. [PMID: 34030421 DOI: 10.1016/j.jhazmat.2021.125582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
With the potential biomedical applications of nanomaterials such as silver nanoparticles (SNPs), nanotoxicity concerns are growing, and the importance of NP and protein interactions is far from being addressed enough. Here, we identified the major binding protein on SNPs in blood as human serum albumin (HSA) using polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. By comparing with the previous methods, we emphasized surface area concentration as a new dose metric to address the importance of NP curvature. SNPs interacted with cysteine and cystine, disrupting the secondary structure and conformation of HSA, and this tendency became stronger on small SNPs than large ones. The protein corona significantly alleviated the toxicity and decreased SNPs' internalization in a particle size-dependent manner, where more significant inhibition effects occurred on larger particles at the same area concentration. These findings may shed light on nanotoxicity and also the design of safe nanomaterials by a comprehensive preconsideration of the metrological method.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei Liu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine, Beijing 100124, PR China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanmin Long
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
17
|
Garbujo S, Galbiati E, Salvioni L, Mazzucchelli M, Frascotti G, Sun X, Megahed S, Feliu N, Prosperi D, Parak WJ, Colombo M. Functionalization of colloidal nanoparticles with a discrete number of ligands based on a "HALO-bioclick" reaction. Chem Commun (Camb) 2021; 56:11398-11401. [PMID: 32990290 DOI: 10.1039/d0cc04355a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A recombinant HALO-GFP fusion protein was designed and isolated to demonstrate the feasibility of controlling the number and orientation of protein ligands to be conjugated on colloidal gold nanoparticles. AuNPs functionalized with exactly one or exactly two GFP molecules exhibited fully preserved functionality of the protein. The method is very straightforward and generally provides highly bioactive nanoparticle-protein conjugates.
Collapse
Affiliation(s)
- Stefania Garbujo
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci 2020; 155:105520. [PMID: 32822809 DOI: 10.1016/j.ejps.2020.105520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Functionalization of nanoparticles with ligands is a powerful tool to achieve efficient targeting of receptors expressed on specific cell types. For optimal ligand-receptor interactions, the ligands should be attached on the nanoparticle surface in a predictable manner with specific orientations and density that preserve their bioactivity. While there are many publications on nanoparticles functionalized with small ligands that meet these requirements, achieving these conditions is particularly challenging for protein-based ligands of higher molecular weight. Proteins have complex and often fragile structures with numerous reactive residues, and they generally do not withstand harsh reaction conditions well. They are also prone to non-specific adsorption. Thus, conjugation strategies have to be considered carefully and optimized for each individual protein-based ligand as well as for the particle platform. In this study, we present a comprehensive approach for site-selective conjugation between aminated silica nanoparticles (SiNPs) and the single accessible thiol in human serum albumin (HSA) (66.5 kDa). We varied several reaction parameters including the density of amino groups on the particle surface, protein to amino group molar ratios, and linker length and evaluated their effect on colloidal stability, mode of protein attachment, protein density, and binding capacity of the tethered protein. We demonstrated that particle surface properties strongly impact covalent conjugation. For SiNPs with low amino group density (5,000 NH2/particle), only 25% of the available surface was covered with protein, and up to 90% of HSA was non-specifically adsorbed. Adjusting the molar ratio of HSA and lengthening the linker did not substantially increase the amount of covalently-attached ligand. In contrast, SiNPs with high amino group density (20,000 NH2/particle) showed high protein loading accompanied by low levels of non-specific adsorption. Using a short linker and 1:1 HSA to NH2 molar ratio resulted in 70% surface coverage with HSA molecules. The mode of attachment and protein density strongly impacted the functionality of the immobilized HSA. High non-specific adsorption resulted in the loss of its binding capacity, whereas predominately covalently-conjugated HSA showed binding affinities higher than that of soluble HSA and had a Kd value in the range of about 6 to 12 nM. Our findings indicate that reaction parameters should be carefully assessed to obtain site-selective and specifically oriented conjugation that maintains the protein's binding capacity. The approach presented here may serve as general instruction for the immobilization of high molecular weight targeting proteins to the surfaces of nanoparticles.
Collapse
|
19
|
Nguyen MK, Moon JY, Lee YC. Microalgal ecotoxicity of nanoparticles: An updated review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110781. [PMID: 32497816 DOI: 10.1016/j.ecoenv.2020.110781] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model. In this review, the influences of the physio-chemical properties of NPs and the response mechanisms of the algae on the toxicity of the NPs were discussed focusing on the "assay" studies. Besides, the specific algal toxicities of each type of NPs along with the NP-induced changes in algal cells of these NPs are also assessed. Almost all commonly-used NPs exhibit algal toxicity. Although the algae have similarities in the symptoms under NP exposure, the sensitivity and variability of each algae species to the inherent properties of each NPs are quite different. They depend strongly on the concentration, size, characteristics of NPs, and biochemical nature of algae. Through the assessment, the review identifies several gaps that need to be further studied to make an explicit understanding. The findings in the majority of studies are mostly in laboratory conditions and there are still uncertainties and contradictory/inconsistent results about the behavioral effects of NPs under field conditions. Besides, there remains unsureness about NP-uptake pathways of microalgae. Finally, the toxicity mechanisms of NPs need to be thoughtfully understood which is essential in risk assessment.
Collapse
Affiliation(s)
- Minh Kim Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16 gil, Seoul, 02876, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
20
|
Mukherjee M, Purkayastha P. The exposed amino acids on protein skeleton control protein adsorption on surface-engineered silver nanoparticles. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Sarkar S, Gulati K, Mishra A, Poluri KM. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. Int J Biol Macromol 2020; 151:467-482. [DOI: 10.1016/j.ijbiomac.2020.02.179] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
|
22
|
Basak G, Hazra C, Sen R. Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: A quantum jump in global bioremediation research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109913. [PMID: 31818738 DOI: 10.1016/j.jenvman.2019.109913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Interfacing organic or inorganic nanoparticles with biological entities or molecules or systems with the aim of developing functionalized nano-scale materials or composites for remediation of persistent organic hydrocarbon pollutants (such as monocyclic and polycyclic aromatic hydrocarbons, MAH/PAH) has generated great interest and continues to grow almost unabated. However, the usefulness and potency of these materials or conjugates hinges over several key barriers, including structural assembly with fine-tuned control over nanoparticle/biomolecule ratio, spatial orientation and activity of biomolecules, the nano/bio-interface strategy and hierarchical architecture, water-dispersibility and long term colloidal stability in environmental media, and non-specific toxicity. The present review thus critically analyses, discusses and interprets recently reported attempts and approaches to functionalize nanoparticles with biomolecules. Since there is no comprehensive and critical reviews on the applications of nanotechnology in bioremediation of MAHs/PAHs, this overview essentially captures the current global scenario and vision on the use and future prospects of biofunctionalized nanomaterials with respect to their strategic interactions involved at the nano/bio-interface essential to understand and decipher the structural and functional relationships and their impact on persistent hydrocarbon remediation.
Collapse
Affiliation(s)
- Geetanjali Basak
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
23
|
Zhang X, Wang F, Sheng JL, Sun MX. Advances and Application of DNA-functionalized Nanoparticles. Curr Med Chem 2020; 26:7147-7165. [DOI: 10.2174/0929867325666180501103620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023]
Abstract
DNA-functionalized nanoparticle (DfNP) technology, the integration of DNA with
nanotechnology, has emerged over recent decades as a promising biofunctionalization tool in
the light of biotechnological approaches. The development of DfNPs has exhibited significant
potential for several biological and biomedical applications. In this review, we focus on the
mechanism of a series of DNA-NP nanocomposites and highlight the superstructures of
DNA-based NPs. We also summarize the applications of these nanocomposites in cell imaging,
cancer therapy and bioanalytical detection.
Collapse
Affiliation(s)
- Xun Zhang
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| | - Fei Wang
- Shanghai Tuberculosis Key Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jin-Liang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
24
|
Targeted delivery of nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Saccardo A, Ma W, Soloviev M, Ferrari E. Directed and Modular Protein Immobilization on Gold and Silver Nanoparticles. Methods Mol Biol 2020; 2118:227-234. [PMID: 32152983 DOI: 10.1007/978-1-0716-0319-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conjugation of proteins to gold nanoparticles (AuNP), silver nanoparticles (AgNP), or other metal nanoparticles (NPs) can often be achieved using passive adsorption. Although such an approach is simple and effective, there is usually no control over the orientation of the protein and denaturation due to close contact with the metal surface. The method described here makes use of adapter proteins which have the ability to adsorb to the NP surface in an oriented and stable way and at the same time enable straightforward attachment to other proteins of interest.
Collapse
Affiliation(s)
| | - Wenwei Ma
- College of Science, University of Lincoln, Lincoln, UK
| | - Mikhail Soloviev
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Enrico Ferrari
- College of Science, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, UK.
| |
Collapse
|
26
|
Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells. Biomolecules 2019; 9:biom9120820. [PMID: 31816991 PMCID: PMC6995529 DOI: 10.3390/biom9120820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023] Open
Abstract
Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection.
Collapse
|
27
|
Fang T, Zhu W, Li C, Zhang F, Gao D, Zhang ZP, Liang A, Zhang XE, Li F. Role of Surface RGD Patterns on Protein Nanocages in Tumor Targeting Revealed Using Precise Discrete Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904838. [PMID: 31762220 DOI: 10.1002/smll.201904838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/12/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of active targeting in cancer nanomedicine is becoming increasingly more debatable. Here, the role of the ligand functionalization patterns (number and distribution) on nanoparticle surfaces in tumor targeting is investigated using a 9 nm sized miniferritin protein nanocage, Dps modified with Arg-Gly-Asp (RGD) ligands whose functionalization patterns are precisely controlled. In vitro and in vivo experiments show that RGD modification endows Dps with tumor targeting capacity no matter what the surface pattern is. The tumor targeting of 2-ligand Dps, which is better than that of 1-ligand Dps, rivals or surpasses that of the 12- or 24-ligand Dps. The 12-ligand Dps with clustered RGD distribution shows 2.3 times the in vivo targeting efficiency of that with even distribution. The surface ligand pattern effects are correlated at least to receptor clustering and opsonization. This study provides insights into the understanding of the controversial findings on active tumor targeting in the literature and highlights the necessity of precise functionalization to achieve optimal active targeting in developing cancer nanomedicine.
Collapse
Affiliation(s)
- Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-En Zhang
- China National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
28
|
Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Critical design criteria for engineering a nanoparticulate HIV-1 vaccine. J Control Release 2019; 317:322-335. [PMID: 31786187 DOI: 10.1016/j.jconrel.2019.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Inducing a long-lasting as well as broad and potent immune response by generating broadly neutralizing antibodies is a major goal and at the same time the main challenge of preventive HIV-1 vaccine design. Immunization with soluble, stabilized and native-like envelope (Env) glycoprotein so far only led to low neutralization breadth and displayed low immunogenicity. A promising approach to generate a potent immune response is the presentation of Env on the surface of nanoparticles. In this review, we will focus on two key processes essential for the induction of immune response that can be addressed by specific features of nanoparticulate carriers: first, the trafficking to and within distinct compartments of the lymph node, and second, the use of multivalent Env display allowing for high avidity interactions. To optimize these pivotal steps critical design criteria should be considered for the presentation of Env on nanoparticles. These include an optimal particle size below 100 nm, distances between two adjacent Env antigens of approximately 10-15 nm, an appropriate orientation of Env, and finally, the stability of both the Env attachment and the nanoparticle platform. Hence, an interdisciplinary approach that combines a suitable delivery system and a straightforward presentation of the Env antigen may have the potential to drive the immune response towards increased breadth and potency.
Collapse
|
30
|
Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza KK, Dey S, Howard CB, Sina AAI, Trau M. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst 2019; 144:6914-6921. [PMID: 31657376 DOI: 10.1039/c9an01450k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monitoring soluble immune checkpoints in circulating fluids has the potential for minimally-invasive diagnostics and personalised therapy in precision medicine. Yet, the sensitive detection of multiple immune checkpoints from small volumes of liquid biopsy samples is challenging. In this study, we develop a multiplexed immune checkpoint biosensor (MICB) for parallel detection of soluble immune checkpoints PD-1, PD-L1, and LAG-3. MICB integrates a microfluidic sandwich immunoassay using engineered single chain variable fragments and alternating current electrohydrodynamic in situ nanofluidic mixing for promoting biosensor-target interaction and reducing non-specific non-target binding. MICB provides advantages of simultaneous analysis of up to 28 samples in <2 h, requires as little as a single sample drop (i.e., 20 μL) per target immune checkpoint, and applies high-affinity yeast cell-derived single chain variable fragments as a cost-effective alternative to monoclonal antibodies. We investigate the assay performance of MICB and demonstrate its capability for accurate immune checkpoint detection in simulated patient serum samples at clinically-relevant levels. MICB provides a dynamic range of 5 to 200 pg mL-1 for PD-1 and PD-L1, and 50 to 1000 pg mL-1 for LAG-3 with a coefficient of variation <13.8%. Sensitive immune checkpoint detection was achieved with limits of detection values of 5 pg mL-1 for PD-1, 5 pg mL-1 for PD-L1, and 50 pg mL-1 for LAG-3. The multiplexing capability, sensitivity, and relative assay simplicity of MICB make it capable of serving as a bioanalytical tool for immune checkpoint therapy monitoring.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Proshkina G, Deyev S, Ryabova A, Tavanti F, Menziani MC, Cohen R, Katrivas L, Kotlyar A. DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34645-34651. [PMID: 31448887 DOI: 10.1021/acsami.9b10441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have demonstrated that designed ankyrin repeat protein (DARPin) _9-29, which specifically targets human epidermal growth factor receptor 2 (HER2), binds tightly to gold mini nanorods (GNRs). Molecular dynamic simulations showed that a single layer of DARPin_9-29 molecules is formed on the surface of the nanorod and that conjugation with the nanorod does not involve the protein's domain responsible for specific binding to HER2. The nanorod-DARPin (DARPin-GNR) conjugate is specifically bound (in nanomolar concentrations) to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2. Illumination by near-infrared light (850 nm) led to almost complete eradication of the conjugate-treated SK-BR-3 cells; the viability of epithelial human breast cancer cells expressing normal amounts of the receptor was much less affected by the illumination. The results reported here pave the way toward application of DARPin-GNR conjugates in phototherapy of cancer.
Collapse
Affiliation(s)
- Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya St, 16/10 , Moscow 117997 , Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St , Moscow 119991 , Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Roy Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| |
Collapse
|
32
|
Avvakumova S, Pandolfi L, Soprano E, Moretto L, Bellini M, Galbiati E, Rizzuto MA, Colombo M, Allevi R, Corsi F, Sánchez Iglesias A, Prosperi D. Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. NANOSCALE ADVANCES 2019; 1:3626-3638. [PMID: 36133537 PMCID: PMC9419579 DOI: 10.1039/c9na00241c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 06/01/2023]
Abstract
The efficient targeting of cancer cells depends on the success of obtaining the active targeting of overexpressed receptors. A very accurate design of nanoconjugates should be done via the selection of the conjugation strategy to achieve effective targeted nanoconjugates. Here, we present a detailed study of cetuximab-conjugated nonspherical gold nanocages for the active targeting of triple-negative breast cancer cells, including MDA-MB-231 and MDA-MB-468. A few different general strategies were selected for monoclonal antibody conjugation to the nanoparticle surface. By varying the bioconjugation conditions, including antibody orientation or the presence of a polymeric spacer or recombinant protein biolinker, we demonstrate the importance of a rational design of nanoconjugates. A quantitative study of gold content via ICP-AES allowed us to compare the effectiveness of cellular uptake as a function of the conjugation strategy and confirmed the active nature of nanoparticle internalization in cancer cells via epidermal growth factor receptor recognition, corroborating the importance of the rational design of nanomaterials for nanomedicine.
Collapse
Affiliation(s)
- S Avvakumova
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Pandolfi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Fondazione Policlinico San Matteo Pavia Italy
| | - E Soprano
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Moretto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Bellini
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - E Galbiati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M A Rizzuto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - R Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| | - A Sánchez Iglesias
- Bionanoplasmonics Laboratory, CICbiomaGUNE Paseo de Miramón 182 20014 Donostia-San Sebastián Spain
| | - D Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| |
Collapse
|
33
|
Casanova-Carvajal O, Urbano-Bojorge AL, Ramos M, Serrano-Olmedo JJ, Martínez-Murillo R. Slowdown intracranial glioma progression by optical hyperthermia therapy: study on a CT-2A mouse astrocytoma model. NANOTECHNOLOGY 2019; 30:355101. [PMID: 31082814 DOI: 10.1088/1361-6528/ab2164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metallic nanorods are promising agents for a wide range of biomedical applications. We report an optical hyperthermia method capable of inducing slowdown tumor progression of an experimental in vivo CT-2A glioblastoma tumor. The tumor model used in this research is based on the transplantation of mouse astrocytoma CT-2A cells in the striatum of mice by intracranial stereotaxic surgery. Two weeks after cell implant, the resulting tumor is treated by irradiating intratumoral injected gold nanorods, biofunctionalized with CD133 antibody (B-GNRs), using a continuous wave laser. Nanoparticles convert the absorbed light into localized heat (reaching up to 44 °C) due to the effect of surface plasmon resonance. A significant slowdown in CT-2A tumor progression is evident, by histology and magnetic resonance imaging, at one (p = 0.03) and two weeks (p = 0.008) after irradiation treatment. A notable deceleration in tumor size (15%-75%) as compared to the control untreated groups, it is observed. Thus, laser irradiation of B-GNRs is found to be effective for the treatment of CT-2A tumor progression. Similarities between the pre-clinical CT-2A tumor model and the human astrocytoma disease, in terms of anatomy, metastatic behavior and histopathology, suggest that hyperthermic treatment by laser irradiation of B-GNRs administered into high-grade human astrocytoma might constitute a promising alternative treatment to limit the progression of this deadly disease.
Collapse
Affiliation(s)
- Oscar Casanova-Carvajal
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, E-28223, Pozuelo de Alarcón, Madrid, Spain. Consorcio de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain. Universidad Nacional Experimental del Táchira (UNET), San Cristóbal 5001, Táchira, Venezuela
| | | | | | | | | |
Collapse
|
34
|
Rizzuto MA, Salvioni L, Rotem R, Colombo M, Zanoni I, Granucci F, Prosperi D. Are nanotechnological approaches the future of treating inflammatory diseases? Nanomedicine (Lond) 2019; 14:2379-2390. [PMID: 31414616 DOI: 10.2217/nnm-2019-0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The current treatments for chronic inflammatory diseases cause severe side effects due to nonspecific drug accumulation. Nanotechnology opens the way to new therapeutic strategies that exploit the ability of immune cells, and especially of phagocytes, to internalize nanoparticles. The cellular uptake of nanoparticles requires specific interactions and is affected by the chemical and physical properties of the carriers. Therefore, optimizing these properties is crucial for designing nanodrugs for immunotherapy. In perspective, we discuss the nanoparticle-based approaches that have been proposed to induce tolerance in autoimmune disorders and lessen the symptoms of inflammatory diseases.
Collapse
Affiliation(s)
- Maria Antonietta Rizzuto
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rany Rotem
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Ivan Zanoni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Davide Prosperi
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Nanomedicine Laboratory, Surgery Department, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
35
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Chen H, Hu H, Tao C, Clauson RM, Moncion I, Luan X, Hwang S, Sough A, Sansanaphongpricha K, Liao J, Paholak HJ, Stevers NO, Wang G, Liu B, Sun D. Self-Assembled Au@Fe Core/Satellite Magnetic Nanoparticles for Versatile Biomolecule Functionalization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23858-23869. [PMID: 31245984 DOI: 10.1021/acsami.9b05544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal, and versatile platform remains a challenge, which may significantly impact their applications' outcomes. Here, we report a novel MNP platform composed of Au@Fe core/satellite nanoparticles (CSNPs) for versatile and efficient bioconjugations. The engineering of the CSNPs is facilely formed through the self-assembly of ultrasmall gold nanoparticles (AuNPs, 2-3 nm in diameter) around MNPs with a polysiloxane-containing polymer coating. The formation of the hybrid magnetic nanostructure is revealed by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), element analysis using atomic absorption spectroscopy, and vibrating sample magnetometer. The versatility of biomolecule loading to the CSNP is revealed through the bioconjugation of a wide range of relevant biomolecules, including streptavidin, antibodies, peptides, and oligonucleotides. Characterizations including DLS, TEM, lateral flow strip assay, fluorescence assay, giant magnetoresistive nanosensor array, high-performance liquid chromatography, and absorption spectrum are performed to further confirm the efficiency of various bioconjugations to the CSNP. In conclusion, this study demonstrates that the CSNP is a novel MNP-based platform that offers versatile and efficient surface functionalization with various biomolecules.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Chun Tao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ryan M Clauson
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ila Moncion
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xin Luan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sangyeul Hwang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Ashley Sough
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Kanokwan Sansanaphongpricha
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hayley J Paholak
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicholas O Stevers
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Guoping Wang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Bing Liu
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
37
|
Sahu JN, Karri RR, Zabed HM, Shams S, Qi X. Current Perspectives and Future Prospects of Nano-Biotechnology in Wastewater Treatment. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1630430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. N. Sahu
- Institute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, Stuttgart, Germany
- , South Ural State University, Chelyabinsk, Russia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
| | - Hossain M. Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shahriar Shams
- Civil Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei, Darussalam
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
38
|
Lange T, Charpentier T, Gobeaux F, Charton S, Testard F, Thill A. Partial Transformation of Imogolite by Decylphosphonic Acid Yields an Interface Active Composite Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4068-4076. [PMID: 30793904 DOI: 10.1021/acs.langmuir.8b04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The phosphonic acid moiety is commonly used as an anchoring group for the surface modification of imogolite. However, the impact of the reaction on its structure has never been clearly analyzed before. We study the reaction of imogolite and decylphosphonic acid by combining infrared spectroscopy, X-ray scattering, scanning electron microscopy, transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. Instead of a surface functionalization, we observe the formation of a lamellar phase interconnected with imogolite bundles. Although we find no evidence for grafted imogolite tubes, we observe the expected dispersion characteristics and stabilization of water in toluene emulsions described in the literature. Based on the surface chemistry of imogolite, we propose an explanation for the observed reactivity and link the structural features of the obtained composite material to its dispersibility in toluene and its observed properties at the toluene-water interface.
Collapse
Affiliation(s)
- Tobias Lange
- CEA, DEN, Research Department on Mining and Fuel Recycling Processes, SA2I , F-30207 Bagnols-sur-Cèze , France
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Thibault Charpentier
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Frédéric Gobeaux
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Sophie Charton
- CEA, DEN, Research Department on Mining and Fuel Recycling Processes, SA2I , F-30207 Bagnols-sur-Cèze , France
| | - Fabienne Testard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Antoine Thill
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| |
Collapse
|
39
|
Yong KW, Yuen D, Chen MZ, Porter CJH, Johnston APR. Pointing in the Right Direction: Controlling the Orientation of Proteins on Nanoparticles Improves Targeting Efficiency. NANO LETTERS 2019; 19:1827-1831. [PMID: 30773887 DOI: 10.1021/acs.nanolett.8b04916] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-conjugated nanoparticles have the potential to precisely deliver therapeutics to target sites in the body by specifically binding to cell surface receptors. To maximize targeting efficiency, the three-dimensional presentation of ligands toward these receptors is crucial. Herein, we demonstrate significantly enhanced targeting of nanoparticles to cancer cells by controlling the protein orientation on the nanoparticle surface. To engineer the point of attachment, we used amber codon reassignment to incorporate a synthetic amino acid, p-azidophenylalanine (azPhe), at specific locations within a single domain antibody (sdAb or nanobody) that recognizes the human epidermal growth factor receptor (EGFR). The azPhe modified sdAb can be tethered to the nanoparticle in a specific orientation using a bioorthogonal click reaction with a strained cyclooctyne. The crystal structure of the sdAb bound to EGFR was used to rationally select sites likely to optimally display the sdAb upon conjugation to a fluorescent nanocrystal (Qdot). Qdots with sdAb attached at the azPhe13 position showed 6 times greater binding affinity to EGFR expressing A549 cells, compared to Qdots with conventionally (succinimidyl ester) conjugated sdAb. As ligand-targeted delivery systems move toward clinical application, this work shows that nanoparticle targeting can be optimized by engineering the site of protein conjugation.
Collapse
Affiliation(s)
- Ken W Yong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Moore Z Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| |
Collapse
|
40
|
Ferrari E. A plug and play approach for the decoration of nanoparticles with recombinant proteins. Nanomedicine (Lond) 2018; 13:2547-2550. [PMID: 30284513 DOI: 10.2217/nnm-2018-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Enrico Ferrari
- College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
41
|
Truffi M, Colombo M, Sorrentino L, Pandolfi L, Mazzucchelli S, Pappalardo F, Pacini C, Allevi R, Bonizzi A, Corsi F, Prosperi D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 2018; 8:6563. [PMID: 29700387 PMCID: PMC5920071 DOI: 10.1038/s41598-018-24968-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Targeted therapies have profoundly changed the clinical prospect in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. In particular, the anti-HER2 monoclonal antibody trastuzumab represents the gold standard for the treatment of HER2+ breast cancer patients. Its contribution in dampening cancer progression is mainly attributed to the antibody-dependent cell-mediated cytotoxicity (ADCC) rather than HER2 blockade. Here, multiple half chains of trastuzumab were conjugated onto magnetic iron oxide nanoparticles (MNP-HC) to develop target-specific and biologically active nanosystems to enhance anti-HER2 therapeutic potential. HER2 targeting was assessed in different human breast cancer cell lines, where nanoparticles triggered site-specific phosphorylation in the catalytic domain of the receptor and cellular uptake by endocytosis. MNP-HC induced remarkable antiproliferative effect in HER2+ breast cancer cells, exhibiting enhanced activity compared to free drug. Accordingly, nanoparticles induced p27kip1 expression and cell cycle arrest in G1 phase, without loosing capability to prime ADCC. Finally, MNP-HC affected viability of trastuzumab-resistant cells, suggesting interference with the resistance machinery. Our findings indicate that multiple arrangement of trastuzumab half chain on the nanoparticle surface enhances anticancer efficacy in HER2+ breast cancer cells. Powerful inhibition of HER2 signaling could promote responsiveness of resistant cells, thus suggesting ways for drug sensitization.
Collapse
Affiliation(s)
- Marta Truffi
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy
| | - Laura Pandolfi
- NanoBioLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy
| | - Francesco Pappalardo
- NanoBioLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Chiara Pacini
- NanoBioLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, via G. B. Grassi 74, 20157, Milano, Italy.
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy.
- Nanomedicine laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy.
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
- Nanomedicine laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy.
| |
Collapse
|
42
|
Ma W, Saccardo A, Roccatano D, Aboagye-Mensah D, Alkaseem M, Jewkes M, Di Nezza F, Baron M, Soloviev M, Ferrari E. Modular assembly of proteins on nanoparticles. Nat Commun 2018; 9:1489. [PMID: 29662234 PMCID: PMC5902510 DOI: 10.1038/s41467-018-03931-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold-sulfur bonds (Au-S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond.
Collapse
Affiliation(s)
- Wenwei Ma
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Angela Saccardo
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Danilo Roccatano
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | | | - Mohammad Alkaseem
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Matthew Jewkes
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Francesca Di Nezza
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090, Pesche, Italy
| | - Mark Baron
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Mikhail Soloviev
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Enrico Ferrari
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
43
|
Bal Öztürk A, Cevher E, Pabuccuoğlu S, Özgümüş S. pH sensitive functionalized hyperbranched polyester based nanoparticulate system for the receptor-mediated targeted cancer therapy. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1452226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayça Bal Öztürk
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, Istanbul, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Serhat Pabuccuoğlu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, Istanbul, Turkey
| |
Collapse
|
44
|
Freund R, Lächelt U, Gruber T, Rühle B, Wuttke S. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. ACS NANO 2018; 12:2094-2105. [PMID: 29533060 DOI: 10.1021/acsnano.8b00932] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as "multifunctional efficiency". This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal-organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs ( e.g., their organic-inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF's scaffold itself lead to a nanocarrier with high multifunctional efficiency.
Collapse
Affiliation(s)
| | | | | | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter-Str. 11 , 12489 Berlin , Germany
| | | |
Collapse
|
45
|
Son H, Ku J, Kim Y, Li S, Char K. Amine-Reactive Poly(pentafluorophenyl acrylate) Brush Platforms for Cleaner Protein Purification. Biomacromolecules 2018; 19:951-961. [DOI: 10.1021/acs.biomac.7b01736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyunjoo Son
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| | | | | | | | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
46
|
Song HP, Lee Y, Bui VKH, Oh YK, Park HG, Kim MI, Lee YC. Effective Peroxidase-Like Activity of Co-Aminoclay [CoAC] and Its Application for Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E457. [PMID: 29401685 PMCID: PMC5855466 DOI: 10.3390/s18020457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
In this study, we describe a novel peroxidase-like activity of Co-aminoclay [CoAC] present at pH ~5.0 and its application to fluorescent biosensor for the determination of H₂O₂ and glucose. It is synthesized with aminoclays (ACs) entrapping cationic metals such as Fe, Cu, Al, Co., Ce, Ni, Mn, and Zn to find enzyme mimicking ACs by sol-gel ambient conditions. Through the screening of catalytic activities by the typical colorimetric reaction employing 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid)diammonium salt (ABTS) as a substrate with or without H₂O₂, Fe, Cu, and CoACs are found to exhibit peroxidase-like activity, as well as oxidase-like activity was observed from Ce and MnACs. Among them, CoAC shows exceptionally high peroxidase-like activity, presumably due to its ability to induce electron transfer between substrates and H₂O₂. CoAC is then used to catalyze the oxidation of Amplex® UltraRed (AUR) into a fluorescent end product, which enables a sensitive fluorescent detection of H₂O₂. Moreover, a highly sensitive and selective glucose biosensing strategy is developed, based on enzyme cascade reaction between glucose oxidase (GOx) and CoAC. Using this strategy, a highly linear fluorescence enhancement is verified when the concentration of glucose is increased in a wide range from 10 μM to 1 mM with a lower detection limit of 5 μM. The practical diagnostic capability of the assay system is also verified by its use to detect glucose in human blood serum. Based on these results, it is anticipated that CoAC can serve as potent peroxidase mimetics for the detection of clinically important target molecules.
Collapse
Affiliation(s)
- Han Pill Song
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Yongil Lee
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, Gyeonggi-do 16105, Korea.
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Vu Khac Hoang Bui
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - You-Kwon Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-Si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
47
|
Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, Lin H, Zhang Y, Li W, Zhang X, Chen X, Liu G. Genetically Engineered Liposome-like Nanovesicles as Active Targeted Transport Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705350. [PMID: 29280210 DOI: 10.1002/adma.201705350] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/15/2017] [Indexed: 05/26/2023]
Abstract
Ligand-targeted delivery of drug molecules to various types of tumor cells remains a major challenge in precision medicine. Inspired by the secretion process and natural cargo delivery functions of natural exosomes, biomimetic synthetic strategies are exploited to prepare biofunctionalized liposome-like nanovesicles (BLNs) that can artificially display a wide variety of targeting protein/peptide ligands and directly encapsulate medical agents for enhanced drug delivery. Here, as a proof of concept, genetically engineered BLNs, which display human epidermal growth factor (hEGF) or anti-HER2 Affibody as targeting moieties, are developed to, respectively, target two types of tumor cells. Notably, in comparison to synthetic liposomes covalently coupled with hEGF, it is demonstrated in this work that biosynthetically displayed hEGF ligands on BLNs possess higher biological activities and targeting capabilities. Additionally, treatments with doxorubicin-loaded BLNs displaying Affibody ligands exhibit much better antitumor therapeutic outcomes than clinically approved liposomal doxorubicin (Doxil) in HER2-overexpressing BT474 tumor xenograft models. These data suggest that BLN is suitable as a potent surrogate for conventional proteoliposomes or immunoliposomes as a result of excellent targeting capacities and facile production of BLNs.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Long Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, 361005, China
| | - Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Collaborative Innovation Center of Guangxi Biological Medicine and the, Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Suhang Hua
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wengang Li
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, 361005, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
48
|
Braun AC, Gutmann M, Lühmann T, Meinel L. Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins. J Control Release 2018; 273:68-85. [PMID: 29360478 DOI: 10.1016/j.jconrel.2018.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/04/2023]
Abstract
Emerging strategies targeting site-specific protein modifications allow for unprecedented selectivity, fast kinetics and mild reaction conditions with high yield. These advances open exciting novel possibilities for the effective bioorthogonal decoration of biomaterials with therapeutic proteins. Site-specificity is particularly important to the therapeutics' end and translated by targeting specific functional groups or introducing new functional groups into the therapeutic at predefined positions. Biomimetic strategies are designed for modification of therapeutics emulating enzymatic strategies found in Nature. These strategies are suitable for a diverse range of applications - not only for protein-polymer conjugation, particle decoration and surface immobilization, but also for the decoration of complex biomaterials and the synthesis of bioresponsive drug delivery systems. This article reviews latest chemical and enzymatic strategies for the biorthogonal decoration of biomaterials with therapeutic proteins and inter-positioned linker structures. Finally, the numerous reports at the interface of biomaterials, linkers, and therapeutic protein decoration are integrated into practical advice for design considerations intended to support the selection of productive ligation strategies.
Collapse
Affiliation(s)
- Alexandra C Braun
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- Mingling Dong
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, P. R. China
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Wenshu Zheng
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Yiping Chen
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Bei Ran
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, P. R. China
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Zhiyong Qian
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, P. R. China
| | - Xingyu Jiang
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- The University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan
District, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Newman MR, Russell SG, Schmitt CS, Marozas IA, Sheu TJ, Puzas JE, Benoit DSW. Multivalent Presentation of Peptide Targeting Groups Alters Polymer Biodistribution to Target Tissues. Biomacromolecules 2017; 19:71-84. [PMID: 29227674 DOI: 10.1021/acs.biomac.7b01193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug delivery to bone is challenging, whereby drug distribution is commonly <1% of injected dose, despite development of several bone-targeted drug delivery systems specific to hydroxyapatite. These bone-targeted drug delivery systems still suffer from poor target cell localization within bone, as at any given time overall bone volume is far greater than acutely remodeling bone volume, which harbors relevant cell targets (osteoclasts or osteoblasts). Thus, there exists a need to target bone-acting drugs specifically to sites of bone remodeling. To address this need, this study synthesized oligo(ethylene glycol) copolymers based on a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by osteoclasts during the bone resorption phase of bone remodeling, which provides greater specificity relevant for bone cell drugging. Gradient and random peptide orientations, as well as polymer molecular weights, were investigated. TRAP-targeted, high molecular weight (Mn) random copolymers exhibited superior accumulation in remodeling bone, where fracture accumulation was observed for at least 1 week and accounted for 14% of tissue distribution. Intermediate and low Mn random copolymer accumulation was lower, indicating residence time depends on Mn. High Mn gradient polymers were cleared, with only 2% persisting at fractures after 1 week, suggesting TRAP binding depends on peptide density. Peptide density and Mn are easily modified in this versatile targeting platform, which can be applied to a range of bone drug delivery applications.
Collapse
Affiliation(s)
- Maureen R Newman
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Steven G Russell
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Christopher S Schmitt
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Ian A Marozas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Tzong-Jen Sheu
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - J Edward Puzas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| |
Collapse
|