1
|
Pesce E, Sodini A, Palmieri E, Valensin S, Tinti C, Rossi M, De Rosa A, Fragai M, Papi F, Cordiglieri C, Berti F, Grifantini R, Micoli F, Nativi C. GMMA decorated with mucin 1 Tn/STn mimetics elicit specific antibodies response and inhibit tumor growth. NPJ Vaccines 2025; 10:71. [PMID: 40234452 PMCID: PMC12000591 DOI: 10.1038/s41541-025-01127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Carbohydrate-based therapeutic vaccines are actively pursued as targeted immunotherapy to treat cancer. Aberrant glycosylation is indeed of paramount importance in tumors, leading to the formation of "neo-epitopes", known as tumor-associated carbohydrate antigens (TACAs), crucial in cancer onset, development and spread. Accordingly, the over-simplified mucin-type O-glycans Tn and STn have been confirmed among the most promising candidates for the development of cancer vaccines. In this work, we first propose genetically manipulated bacteria outer membrane vesicles (OMVs), namely GMMA, as a vaccine formulation platform to display glycan antigens. GMMA were glycosylated with multiple copies of structurally locked Tn mimetic or STn mimetic as cancer vaccine prototypes. These constructs, in non-adjuvanted formulations, showed sounding immunogenic properties in vivo and impressive efficacy in a mouse model of aggressive triple-negative breast cancer. This example of tailor-made therapeutic vaccine might revolutionize the approach to cancer therapy.
Collapse
Affiliation(s)
- Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi' and Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Andrea Sodini
- Department of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI), Florence, 50019, Italy
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100, Siena, Italy
| | - Silvia Valensin
- Laboratory Animal Research Unit (LARU), Fondazione Life Sciences, via Fiorentina, 1, 53100, Siena, Italy
| | - Cristina Tinti
- Laboratory Animal Research Unit (LARU), Fondazione Life Sciences, via Fiorentina, 1, 53100, Siena, Italy
- Hyper Antibody Research & Development Lab (HARD Lab), Fondazione Toscana Life Sciences, via Fiorentina, 1, 53100, Siena, Italy
| | - Marco Rossi
- Hyper Antibody Research & Development Lab (HARD Lab), Fondazione Toscana Life Sciences, via Fiorentina, 1, 53100, Siena, Italy
| | - Antonella De Rosa
- Laboratory Animal Research Unit (LARU), Fondazione Life Sciences, via Fiorentina, 1, 53100, Siena, Italy
| | - Marco Fragai
- Department of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI), Florence, 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto Fiorentino (FI), Florence, 50019, Italy
| | - Francesco Papi
- Department of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI), Florence, 50019, Italy
- GSK, 53100, Siena, Italy
| | - Chiara Cordiglieri
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi' and Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | | | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi' and Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
- CheckmAb Srl, 20122, Milan, Italy.
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100, Siena, Italy.
| | - Cristina Nativi
- Department of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI), Florence, 50019, Italy.
| |
Collapse
|
2
|
Rodriguez E. Tumor Glycosylation: A Main Player in the Modulation of Immune Responses. Eur J Immunol 2025; 55:e202451318. [PMID: 40071681 PMCID: PMC11898543 DOI: 10.1002/eji.202451318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
Tumor immune escape refers to the process by which cancer cells evade detection and destruction by the immune system. Glycosylation, a post-translational modification that is altered in almost all cancer types, plays a crucial role in this process by modulating immune responses. This review examines our current understanding of how aberrant tumor glycosylation contributes to a tolerogenic microenvironment, focusing on specific glycosylation signatures-fucosylation, truncated O-glycans, and sialylation-and the immune receptors involved. Additionally, the clinical significance of tumor glycosylation is discussed, emphasizing its potential in developing novel therapeutic approaches aimed at improving immune system recognition and targeting of cancer cells. The review underscores the importance of ongoing research in this area to identify effective strategies for countering tumor immune escape and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit AmsterdamMolecular Cell Biology and ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer Biology and ImmunologyAmsterdamThe Netherlands
- Amsterdam Institute for Infection and ImmunityCancer ImmunologyAmsterdamThe Netherlands
| |
Collapse
|
3
|
Tomita S, Nagai-Okatani C. Expanding the recognition of monosaccharides and glycans: A comprehensive analytical approach using chemical-nose/tongue technology and a comparison to lectin microarrays. BBA ADVANCES 2024; 7:100129. [PMID: 39790466 PMCID: PMC11714387 DOI: 10.1016/j.bbadva.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Chemical-nose/tongue technologies are emerging as promising analytical tools for glycan analysis. After briefly introducing the importance of glycans and their analytical methods, including the lectin microarray (LMA) as one of the gold standards, the fundamental principles underlying chemical noses/tongues are explained and various applications for monosaccharides and glycans are introduced. Then, the similarities and differences of these two approaches are discussed. While both technologies aim to comprehensively profile biospecimens based on 'interaction patterns' between multiple recognition probes and analytes, each has its own strengths. LMAs excel at specific, targeted analysis based on defined lectin-glycan interactions, whereas chemical nose/tongue offers greater flexibility and expandability in terms of system design, making it well-suited for discovering unknown glycan profiles and detecting broader differences in glycan mixtures. In the future, chemical-nose/tongue technologies may be applied to niche areas in glycan analysis and become powerful tools that complement LMA techniques.
Collapse
Affiliation(s)
- Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Chiaki Nagai-Okatani
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
4
|
Stegmann F, Lepenies B. Myeloid C-type lectin receptors in host-pathogen interactions and glycan-based targeting. Curr Opin Chem Biol 2024; 82:102521. [PMID: 39214069 DOI: 10.1016/j.cbpa.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/30/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Lectin-glycan interactions play a crucial role in the immune system. An important class of lectins in the innate immune system is myeloid C-type lectin receptors (CLRs). Myeloid CLRs act as pattern recognition receptors and are predominantly expressed by myeloid cells, such as macrophages, dendritic cells, and neutrophils. In innate immunity, CLRs contribute to self/non-self discrimination. While the recognition of pathogen-associated molecular patterns (PAMPs) by CLRs may contribute to a protective immune response, CLR engagement can also be exploited by pathogens for immune evasion. Since various CLRs act as endocytic receptors and trigger distinct signaling pathways in myeloid cells, CLR targeting has proven useful for drug/antigen delivery into antigen-presenting cells and the modulation of immune responses. This review covers recent discoveries of pathogen/CLR interactions and novel approaches for CLR targeting within the period of the past two years.
Collapse
Affiliation(s)
- Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Lower Saxony, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Lower Saxony, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Lower Saxony, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Lower Saxony, Germany.
| |
Collapse
|
5
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
6
|
Niveau C, Sosa Cuevas E, Roubinet B, Pezet M, Thépaut M, Mouret S, Charles J, Fieschi F, Landemarre L, Chaperot L, Saas P, Aspord C. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding. Immunology 2024; 171:286-311. [PMID: 37991344 DOI: 10.1111/imm.13717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Plateforme de Microscopie Photonique-Imagerie Cellulaire et Cytométrie en Flux (Microcell), Inserm U1209-CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Laurence Chaperot
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
7
|
Abikhodr AH, Warnke S, Ben Faleh A, Rizzo TR. Combining Liquid Chromatography and Cryogenic IR Spectroscopy in Real Time for the Analysis of Oligosaccharides. Anal Chem 2024; 96:1462-1467. [PMID: 38211954 PMCID: PMC10831784 DOI: 10.1021/acs.analchem.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
While the combination of liquid chromatography (LC) and mass spectrometry (MS) serves as a robust approach for oligosaccharide analysis, it has difficulty distinguishing the smallest differences between isomers. The integration of infrared (IR) spectroscopy within a mass spectrometer as an additional analytical dimension can effectively address this limitation by providing a molecular fingerprint that is unique to each isomer. However, the direct interfacing of LC-MS with IR spectroscopy presents a technical challenge arising from the mismatch in the operational time scale of each method. In previous studies, this temporal incompatibility was mitigated by employing strategies designed to slow down or broaden the LC elution peaks of interest, but this workaround is applicable only for a few species at a time, necessitating multiple LC runs for comprehensive analysis. In the current work, we directly couple LC with cryogenic IR spectroscopy by acquiring a spectrum in as little as 10 s. This allows us to generate an orthogonal data dimension for molecular identification in the same amount of time that it normally takes for LC analysis. We successfully demonstrate this approach on a commercially available human milk oligosaccharide product, acquiring spectral information on the eluting peaks in real time and using it to identify both the specified constituents and nonspecified product impurities.
Collapse
Affiliation(s)
- Ali H Abikhodr
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Wang B, Liu S, Li H, Dong W, Liu H, Zhang J, Tian C, Dong S. Facile Preparation of Carbohydrate-Containing Adjuvants Based on Self-Assembling Glycopeptide Conjugates. Angew Chem Int Ed Engl 2024; 63:e202309140. [PMID: 37950683 DOI: 10.1002/anie.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/13/2023]
Abstract
Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+ T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haiyun Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chao Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
9
|
Liu L, Fu S, Zhu W, Cai Z, Cao Y, Huang Y, Yang L, Fu X, Jin R, Xia C, Zhang Y, Lui S, Gong Q, Song B, Wen L, Anderson JM, Ai H. Glucosylation endows nanoparticles with TLR4 agonist capability to trigger macrophage polarization and augment antitumor immunity. Biomaterials 2024; 304:122424. [PMID: 38103347 DOI: 10.1016/j.biomaterials.2023.122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Carbohydrates have emerged as promising candidates for immunomodulation, however, how to present them to immune cells and achieve potent immunostimulatory efficacy remains challenging. Here, we proposed and established an effective way of designing unique glyconanoparticles that can amplify macrophage-mediated immune responses through structural mimicry and multiple stimulation. We demonstrate that surface modification with glucose can greatly augment the immunostimulatory efficacy of nanoparticles, comparing to mannose and galactose. In vitro studies show that glucosylation improved the pro-inflammatory efficacy of iron oxide nanoparticles (IONPs) by up to 300-fold, with the immunostimulatory activity of glucosylated IONPs even surpassing that of LPS under certain conditions. In vivo investigation show that glucosylated IONPs elicited increased antitumor immunity and achieved favorable therapeutic outcomes in multiple murine tumor models. Mechanistically, we proposed that glucosylation potentiated the immunostimulatory effect of IONPs by amplifying toll-like receptors 4 (TLR4) activation. Specifically, glucosylated IONPs directly interacted with the TLR4-MD2 complex, resulting in M1 macrophage polarization and enhanced antitumor immunity via activation of NF-κB, MAPK, and STAT1 signaling pathways. Our work provides a simple modification strategy to endow nanoparticles with potent TLR4 agonist effects, which may shed new light on the development of artificial immune modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Li Liu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Yingzi Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Yubing Huang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Longping Wen
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - James M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, PR China; Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
10
|
Fernandes Fidelis C, Silva de Araújo L, Prates-Patarroyo PA, Martins-Kalks KH, Licursi de Oliveira L, Vargas Viloria MI, Tafur-Gómez GA, Patarroyo Salcedo JH. Immunisation with Neospora caninum subunits rsNcSAG4 and rsNcGRA1 (NcSAG4 and NcGRA1 epitopes construct) in BALB/c mice: the profile of the immune response and controlling the vertical transmission. Parasitol Res 2023; 123:58. [PMID: 38110570 PMCID: PMC10728228 DOI: 10.1007/s00436-023-08020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Neospora caninum is an apicomplexan protozoan that causes neosporosis, which has a high economic impact on cattle herds with no available vaccine. During infection, the secretion of dense granules and the expression of surface antigens play an important role in hosting immunomodulation. However, some epitopes of those antigens are immunogenic, and using these fractions could improve the subunit antigens in vaccine design. This study evaluates the recombinant peptides rsNcGRA1 and rsNcSAG4 derived from NcGRA1 and NcSAG4 native antigens as vaccine candidates produced by a fermentative process in the yeast culture system of Komagataella phaffii strain Km71, confirmed by colony PCR, SDS-PAGE, and western blotting. The assay was conducted in BALB/c mice using the peptides at low (25 μg) and standard (50 μg) dosages in monovalent and combined administrations at three time points with saponin as an adjuvant assessing the immunogenicity by antibodies response and cytokine production. We challenge the females after pregnancy confirmation using 2 × 105 NC-1 tachyzoites previously propagated in Vero cells. We assessed the chronic infection in dams and vertical transmission in the offspring by PCR and histopathology. Mice, especially those immunised with combined peptides and monovalent rsNcGRA1 at a standard dose, controlling the chronic infection in dams with the absence of clinical manifestations, showed an immune response with induction of IgG1, a proper balance between Th1/Th2 cytokines and reduced vertical transmission in the pups. In contrast, dams inoculated with a placebo vaccine showed clinical signs, low-scored brain lesions, augmented chronic infection with 80% positivity, 31% mortality in pups, and 81% vertical transmission. These findings indicate that rsNcGRA1 peptides in monovalent and combined with rsNCSAG4 at standard dose are potential vaccine candidates and improve the protective immune response against neosporosis in mice.
Collapse
Affiliation(s)
- Cintia Fernandes Fidelis
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Leandro Silva de Araújo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Pablo A Prates-Patarroyo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Karlos H Martins-Kalks
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Laboratório de Imunoquímica e Glicobiologia, Departamento de Biologia Geral, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Marlene Isabel Vargas Viloria
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Gabriel A Tafur-Gómez
- Universidad de Ciencias Aplicadas y Ambientales - U.D.C.A, Bogotá, 111166, Colombia.
| | - Joaquín Hernán Patarroyo Salcedo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil.
- Patsos Biotecnologia, Parque tecnológico de Viçosa, CEP, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
11
|
Szczykutowicz J. Ligand Recognition by the Macrophage Galactose-Type C-Type Lectin: Self or Non-Self?-A Way to Trick the Host's Immune System. Int J Mol Sci 2023; 24:17078. [PMID: 38069400 PMCID: PMC10707269 DOI: 10.3390/ijms242317078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
12
|
Krishnan A, Sendra VG, Patel D, Lad A, Greene MK, Smyth P, Gallaher SA, Herron ÚM, Scott CJ, Genead M, Tolentino M. PolySialic acid-nanoparticles inhibit macrophage mediated inflammation through Siglec agonism: a potential treatment for age related macular degeneration. Front Immunol 2023; 14:1237016. [PMID: 38045700 PMCID: PMC10690618 DOI: 10.3389/fimmu.2023.1237016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic, progressive retinal disease characterized by an inflammatory response mediated by activated macrophages and microglia infiltrating the inner layer of the retina. In this study, we demonstrate that inhibition of macrophages through Siglec binding in the AMD eye can generate therapeutically useful effects. We show that Siglecs-7, -9 and -11 are upregulated in AMD associated M0 and M1 macrophages, and that these can be selectively targeted using polysialic acid (PolySia)-nanoparticles (NPs) to control dampen AMD-associated inflammation. In vitro studies showed that PolySia-NPs bind to macrophages through human Siglecs-7, -9, -11 as well as murine ortholog Siglec-E. Following treatment with PolySia-NPs, we observed that the PolySia-NPs bound and agonized the macrophage Siglecs resulting in a significant decrease in the secretion of IL-6, IL-1β, TNF-α and VEGF, and an increased secretion of IL-10. In vivo intravitreal (IVT) injection of PolySia-NPs was found to be well-tolerated and safe making it effective in preventing thinning of the retinal outer nuclear layer (ONL), inhibiting macrophage infiltration, and restoring electrophysiological retinal function in a model of bright light-induced retinal degeneration. In a clinically validated, laser-induced choroidal neovascularization (CNV) model of exudative AMD, PolySia-NPs reduced the size of neovascular lesions with associated reduction in macrophages. The PolySia-NPs described herein are therefore a promising therapeutic strategy for repolarizing pro-inflammatory macrophages to a more anti-inflammatory, non-angiogenic phenotype, which play a key role in the pathophysiology of non-exudative AMD.
Collapse
Affiliation(s)
| | | | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Michelle K. Greene
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Peter Smyth
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Samantha A. Gallaher
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Úna M. Herron
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Christopher J. Scott
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Michael Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL, United States
| |
Collapse
|
13
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Thames AH, Moons SJ, Wong DA, Boltje TJ, Bochner BS, Jewett MC. GlycoCAP: A Cell-Free, Bacterial Glycosylation Platform for Building Clickable Azido-Sialoglycoproteins. ACS Synth Biol 2023; 12:1264-1274. [PMID: 37040463 PMCID: PMC10758250 DOI: 10.1021/acssynbio.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Glycan-binding receptors known as lectins represent a class of potential therapeutic targets. Yet, the therapeutic potential of targeting lectins remains largely untapped due in part to limitations in tools for building glycan-based drugs. One group of desirable structures is proteins with noncanonical glycans. Cell-free protein synthesis systems have matured as a promising approach for making glycoproteins that may overcome current limitations and enable new glycoprotein medicines. Yet, this approach has not been applied to the construction of proteins with noncanonical glycans. To address this limitation, we develop a cell-free glycoprotein synthesis platform for building noncanonical glycans and, specifically, clickable azido-sialoglycoproteins (called GlycoCAP). The GlycoCAP platform uses an Escherichia coli-based cell-free protein synthesis system for the site-specific installation of noncanonical glycans onto proteins with a high degree of homogeneity and efficiency. As a model, we construct four noncanonical glycans onto a dust mite allergen (Der p 2): α2,3 C5-azido-sialyllactose, α2,3 C9-azido-sialyllactose, α2,6 C5-azido-sialyllactose, and α2,6 C9-azido-sialyllactose. Through a series of optimizations, we achieve more than 60% sialylation efficiency with a noncanonical azido-sialic acid. We then show that the azide click handle can be conjugated with a model fluorophore using both strain-promoted and copper-catalyzed click chemistry. We anticipate that GlycoCAP will facilitate the development and discovery of glycan-based drugs by granting access to a wider variety of possible noncanonical glycan structures and also provide an approach for functionalizing glycoproteins by click chemistry conjugation.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Sam J Moons
- Synvenio B.V., Mercator 3, Nijmegen 6525ED, The Netherlands
| | - Derek A Wong
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525AJ, The Netherlands
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
15
|
Melgoza-González EA, Bustamante-Córdova L, Hernández J. Recent advances in antigen targeting to antigen-presenting cells in veterinary medicine. Front Immunol 2023; 14:1080238. [PMID: 36969203 PMCID: PMC10038197 DOI: 10.3389/fimmu.2023.1080238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Advances in antigen targeting in veterinary medicine have gained traction over the years as an alternative approach for diseases that remain a challenge for traditional vaccines. In addition to the nature of the immunogen, antigen-targeting success relies heavily on the chosen receptor for its direct influence on the elicited response that will ensue after antigen uptake. Different approaches using antibodies, natural or synthetic ligands, fused proteins, and DNA vaccines have been explored in various veterinary species, with pigs, cattle, sheep, and poultry as the most frequent models. Antigen-presenting cells can be targeted using a generic approach, such as broadly expressed receptors such as MHC-II, CD80/86, CD40, CD83, etc., or focused on specific cell populations such as dendritic cells or macrophages (Langerin, DC-SIGN, XCR1, DC peptides, sialoadhesin, mannose receptors, etc.) with contrasting results. Interestingly, DC peptides show high specificity to DCs, boosting activation, stimulating cellular and humoral responses, and a higher rate of clinical protection. Likewise, MHC-II targeting shows consistent results in enhancing both immune responses; an example of this strategy of targeting is the approved vaccine against the bovine viral diarrhea virus in South America. This significant milestone opens the door to continuing efforts toward antigen-targeting vaccines to benefit animal health. This review discusses the recent advances in antigen targeting to antigen-presenting cells in veterinary medicine, with a special interest in pigs, sheep, cattle, poultry, and dogs.
Collapse
|
16
|
Barboza BR, Thomaz SMDO, Junior ADC, Espreafico EM, Miyamoto JG, Tashima AK, Camacho MF, Zelanis A, Roque-Barreira MC, da Silva TA. ArtinM Cytotoxicity in B Cells Derived from Non-Hodgkin's Lymphoma Depends on Syk and Src Family Kinases. Int J Mol Sci 2023; 24:ijms24021075. [PMID: 36674590 PMCID: PMC9863955 DOI: 10.3390/ijms24021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin’s lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin’s lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Sandra Maria de Oliveira Thomaz
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Airton de Carvalho Junior
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Thiago Aparecido da Silva
- Laboratory of Immunotherapy of Invasive Fungal Infections, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
17
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, Aspord C. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients. Front Immunol 2022; 13:1040600. [PMID: 36353633 PMCID: PMC9638162 DOI: 10.3389/fimmu.2022.1040600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/15/2023] Open
Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stephane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | | | - Florence de Fraipont
- Medical Unit of Molecular genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
19
|
Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells. Metab Eng 2022; 74:61-71. [PMID: 36152932 DOI: 10.1016/j.ymben.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.
Collapse
|
20
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
21
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
22
|
Ghosh C, Priegue P, Leelayuwapan H, Fuchsberger FF, Rademacher C, Seeberger PH. Synthetic Glyconanoparticles Modulate Innate Immunity but Not the Complement System. ACS APPLIED BIO MATERIALS 2022; 5:2185-2192. [PMID: 35435657 PMCID: PMC9115801 DOI: 10.1021/acsabm.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 01/12/2023]
Abstract
Nanoparticles that modulate innate immunity can act as vaccine adjuvants and antigen carriers and are promising alternatives to conventional anticancer therapy. Nanoparticles might, upon contact with serum, activate the complement system that might in turn result in clearance and allergic reactions. Herein, we report that ultrasmall glyconanoparticles decorated with nonimmunogenic α-(1-6)-oligomannans trigger an innate immune response without drastically affecting the complement system. These negatively charged glyconanoparticles (10-15 nm) are stable in water and secrete proinflammatory cytokines from macrophages via the NF-κB signaling pathway. The glyconanoparticles can be used as immunomodulators for monotherapy or in combination with drugs and vaccines.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Harin Leelayuwapan
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
23
|
Zhou Z, Wang T, Du Y, Deng J, Gao G, Zhang J. Identification of a Novel Glycosyltransferase Prognostic Signature in Hepatocellular Carcinoma Based on LASSO Algorithm. Front Genet 2022; 13:823728. [PMID: 35356430 PMCID: PMC8959637 DOI: 10.3389/fgene.2022.823728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Although many prognostic models have been developed to help determine personalized prognoses and treatments, the predictive efficiency of these prognostic models in hepatocellular carcinoma (HCC), which is a highly heterogeneous malignancy, is less than ideal. Recently, aberrant glycosylation has been demonstrated to universally participate in tumour initiation and progression, suggesting that dysregulation of glycosyltransferases can serve as novel cancer biomarkers. In this study, a total of 568 RNA-sequencing datasets of HCC from the TCGA database and ICGC database were analysed and integrated via bioinformatic methods. LASSO regression analysis was applied to construct a prognostic signature. Kaplan-Meier survival, ROC curve, nomogram, and univariate and multivariate Cox regression analyses were performed to assess the predictive efficiency of the prognostic signature. GSEA and the "CIBERSORT" R package were utilized to further discover the potential biological mechanism of the prognostic signature. Meanwhile, the differential expression of the prognostic signature was verified by western blot, qRT-PCR and immunohistochemical staining derived from the HPA. Ultimately, we constructed a prognostic signature in HCC based on a combination of six glycosyltransferases, whose prognostic value was evaluated and validated successfully in the testing cohort and the validation cohort. The prognostic signature was identified as an independent unfavourable prognostic factor for OS, and a nomogram including the risk score was established and showed the good performance in predicting OS. Further analysis of the underlying mechanism revealed that the prognostic signature may be potentially associated with metabolic disorders and tumour-infiltrating immune cells.
Collapse
Affiliation(s)
- Zhiyang Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junping Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ge Gao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Lavado-García J, Zhang T, Cervera L, Gòdia F, Wuhrer M. Differential N- and O-glycosylation signatures of HIV-1 Gag virus-like particles and coproduced extracellular vesicles. Biotechnol Bioeng 2022; 119:1207-1221. [PMID: 35112714 PMCID: PMC9303603 DOI: 10.1002/bit.28051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being non-infectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence down-stream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this work, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies in order to optimize downstream processing and move forward in VLP-based vaccine production technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
26
|
Wang L, Chen X, Wang L, Wang S, Li W, Liu Y, Zhang J. Knockdown of ST6Gal-I expression in human hepatocellular carcinoma cells inhibits their exosome-mediated proliferation- and migration-promoting effects. IUBMB Life 2021; 73:1378-1391. [PMID: 34559939 DOI: 10.1002/iub.2562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Abnormal sialylation is a distinctive feature of human hepatocellular carcinoma (HCC) and is closely related to its malignant properties. Exosomes have characteristic protein and lipid composition; however, the results concerning glycoprotein composition and glycosylation are scarce. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified multiple microvesicle-related sialylated proteins including CD63, a classic marker of exosomes. The silencing of α2,6-sialyltransferase I (ST6Gal-I) significantly reduced the levels of α2,6-sialylated glycoconjugates on CD63 and the surface of HCC-derived exosomes (HCC-exo). And surface glycoconjugates play important roles in exosomes biogenesis and in their interaction with other cells. Compared to exosomes derived from naive HCC cells, α2,6-sialylation degradation abolished both the proliferation-promoting and migration-promoting effects of HCC-exo. Further analysis revealed that the Akt/GSK-3β or JNK1/2 signaling mediates HCC-exo-mediated proliferation in HCC cells, while ST6Gal-I silencing deactivated this pathway. These findings suggest that a loss of α2,6-sialylation decreases HCC progression through the loss of cancer cell-derived exosomes; furthermore, it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.
Collapse
Affiliation(s)
- Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lingyan Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
27
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
28
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
29
|
Mousavifar L, Abdullayev S, Roy R. Recent Development in the Design of Neoglycoliposomes Bearing Arborescent Architectures. Molecules 2021; 26:molecules26144281. [PMID: 34299556 PMCID: PMC8303545 DOI: 10.3390/molecules26144281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes, they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability. In order to obviate the necessity for these additional stabilizing ingredients, recent investigations have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular arborescent neoglycolipid syntheses coined glycodendrimersomes.
Collapse
Affiliation(s)
| | | | - René Roy
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 2546)
| |
Collapse
|
30
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
31
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
32
|
Santos JVDO, Porto ALF, Cavalcanti IMF. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics (Basel) 2021; 10:antibiotics10050520. [PMID: 34063213 PMCID: PMC8147472 DOI: 10.3390/antibiotics10050520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antibiotic monotherapy may become obsolete mainly due to the continuous emergence of resistance to available antimicrobials, which represents a major uncertainty to human health. Taking into account that natural products have been an inexhaustible source of new compounds with clinical application, lectins are certainly one of the most versatile groups of proteins used in biological processes, emerging as a promising alternative for therapy. The ability of lectins to recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of activities. Currently the number of antimicrobials in research and development does not match the rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance, and highlight the potential of lectins to modulate the host immune response against oxidative stress.
Collapse
Affiliation(s)
- João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology Animal, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil;
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
- Academic Center of Vitória (CAV), Laboratory of Microbiology and Immunology, Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Correspondence: ; Tel.: + 55-81-2101-2501
| |
Collapse
|
33
|
Li RJE, de Haas A, Rodríguez E, Kalay H, Zaal A, Jimenez CR, Piersma SR, Pham TV, Henneman AA, de Goeij-de Haas RR, van Vliet SJ, van Kooyk Y. Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3-Linked Sialic Acid Ligand Binding. Front Immunol 2021; 12:673454. [PMID: 33968084 PMCID: PMC8100677 DOI: 10.3389/fimmu.2021.673454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs). This study explores the early signaling events in DCs upon binding of α2-3 sialic acid (α2-3sia) that are recognized by Immune inhibitory Sialic acid binding immunoglobulin type lectins. α2-3sias are commonly found on bacteria, e.g. Group B Streptococcus, but can also be expressed by tumor cells. We investigated whether α2-3sia conjugated to a dendrimeric core alters DC signaling properties. Through phosphoproteomic analysis, we found differential signaling profiles in DCs after α2-3sia binding alone or in combination with LPS/TLR4 co-stimulation. α2-3sia was able to modulate the TLR4 signaling cascade, resulting in 109 altered phosphoproteins. These phosphoproteins were annotated to seven biological processes, including the regulation of the IL-12 cytokine pathway. Secretion of IL-10, the inhibitory regulator of IL-12 production, by DCs was found upregulated after overnight stimulation with the α2-3sia dendrimer. Analysis of kinase activity revealed altered signatures in the JAK-STAT signaling pathway. PhosphoSTAT3 (Ser727) and phosphoSTAT5A (Ser780), involved in the regulation of the IL-12 pathway, were both downregulated. Flow cytometric quantification indeed revealed de- phosphorylation over time upon stimulation with α2-3sia, but no α2-6sia. Inhibition of both STAT3 and -5A in moDCs resulted in a similar cytokine secretion profile as α-3sia triggered DCs. Conclusively, this study revealed a specific alteration of the JAK-STAT pathway in DCs upon simultaneous α2-3sia and LPS stimulation, altering the IL10:IL-12 cytokine secretion profile associated with reduction of inflammation. Targeted control of the STAT phosphorylation status is therefore an interesting lead for the abrogation of immune escape that bacteria or tumors impose on the host.
Collapse
Affiliation(s)
- Rui-Jún Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aram de Haas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anouk Zaal
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard R de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Mousavifar L, Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021; 26:2428. [PMID: 33921945 PMCID: PMC8122629 DOI: 10.3390/molecules26092428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.
Collapse
Affiliation(s)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| |
Collapse
|
35
|
Durán V, Grabski E, Hozsa C, Becker J, Yasar H, Monteiro JT, Costa B, Koller N, Lueder Y, Wiegmann B, Brandes G, Kaever V, Lehr CM, Lepenies B, Tampé R, Förster R, Bošnjak B, Furch M, Graalmann T, Kalinke U. Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. J Control Release 2021; 334:201-212. [PMID: 33865899 DOI: 10.1016/j.jconrel.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Hanzey Yasar
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - João T Monteiro
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Nicole Koller
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.; Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Medical School, Germany; German Centre of Lung Research, 30625, Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany..
| | | | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Clinic of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany..
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany..
| |
Collapse
|
36
|
Chen WH, Wei J, Kundu RT, Adhikari R, Liu Z, Lee J, Versteeg L, Poveda C, Keegan B, Villar MJ, de Araujo Leao AC, Rivera JA, Gillespie PM, Pollet J, Strych U, Zhan B, Hotez PJ, Bottazzi ME. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochim Biophys Acta Gen Subj 2021; 1865:129893. [PMID: 33731300 PMCID: PMC7955913 DOI: 10.1016/j.bbagen.2021.129893] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has now spread worldwide to infect over 110 million people, with approximately 2.5 million reported deaths. A safe and effective vaccine remains urgently needed. METHOD We constructed three variants of the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein (residues 331-549) in yeast as follows: (1) a "wild type" RBD (RBD219-WT), (2) a deglycosylated form (RBD219-N1) by deleting the first N-glycosylation site, and (3) a combined deglycosylated and cysteine-mutagenized form (C538A-mutated variant (RBD219-N1C1)). We compared the expression yields, biophysical characteristics, and functionality of the proteins produced from these constructs. RESULTS AND CONCLUSIONS These three recombinant RBDs showed similar secondary and tertiary structure thermal stability and had the same affinity to their receptor, angiotensin-converting enzyme 2 (ACE-2), suggesting that the selected deletion or mutations did not cause any significant structural changes or alteration of function. However, RBD219-N1C1 had a higher fermentation yield, was easier to purify, was not hyperglycosylated, and had a lower tendency to form oligomers, and thus was selected for further vaccine development and evaluation. GENERAL SIGNIFICANCE By genetic modification, we were able to design a better-controlled and more stable vaccine candidate, which is an essential and important criterion for any process and manufacturing of biologics or drugs for human use.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakhi Tyagi Kundu
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakesh Adhikari
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Jose Villar
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | | | | | - Portia M Gillespie
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA.
| |
Collapse
|
37
|
Cheng L, Liu WL, Tsou YT, Li JC, Chien CH, Su MP, Liu KL, Huang YL, Wu SC, Tsai JJ, Hsieh SL, Chen CH. Transgenic Expression of Human C-Type Lectin Protein CLEC18A Reduces Dengue Virus Type 2 Infectivity in Aedes aegypti. Front Immunol 2021; 12:640367. [PMID: 33767710 PMCID: PMC7985527 DOI: 10.3389/fimmu.2021.640367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
The C-type lectins, one family of lectins featuring carbohydrate binding domains which participate in a variety of bioprocesses in both humans and mosquitoes, including immune response, are known to target DENV. A human C-type lectin protein CLEC18A in particular shows extensive glycan binding abilities and correlates with type-I interferon expression, making CLEC18A a potential player in innate immune responses to DENV infection; this potential may provide additional regulatory point in improving mosquito immunity. Here, we established for the first time a transgenic Aedes aegypti line that expresses human CLEC18A. This expression enhanced the Toll immune pathway responses to DENV infection. Furthermore, viral genome and virus titers were reduced by 70% in the midgut of transgenic mosquitoes. We found significant changes in the composition of the midgut microbiome in CLEC18A expressing mosquitoes, which may result from the Toll pathway enhancement and contribute to DENV inhibition. Transgenic mosquito lines offer a compelling option for studying DENV pathogenesis, and our analyses indicate that modifying the mosquito immune system via expression of a human immune gene can significantly reduce DENV infection.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Ting Tsou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Hao Chien
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya, Japan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
38
|
Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021; 2:713-724. [PMID: 34212148 PMCID: PMC8190906 DOI: 10.1039/d1cb00007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells. In this review, we aim to highlight the recent advances in the field. We will illustrate the advantages of different ARM approaches and emphasize the importance of a multivalent presentation of the binding units. Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells.![]()
Collapse
Affiliation(s)
- Silvia Achilli
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|
39
|
Mousavifar L, Roy R. Recent development in the design of small 'drug-like' and nanoscale glycomimetics against Escherichia coli infections. Drug Discov Today 2021; 26:2124-2137. [PMID: 33667654 DOI: 10.1016/j.drudis.2021.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Glycoconjugates are involved in several pathological processes. Glycomimetics that can favorably emulate complex carbohydrate structures, while competing with natural ligands as inhibitors, are gaining considerable attention owing to their improved hydrolytic stability, binding affinity, and pharmacokinetic (PK) properties. Of particular interest are the families of α-d-mannopyranoside analogs, which can be used as inhibitors against adherent invasive Escherichia coli infections. Bacterial resistance to modern antibiotics triggers the search for new alternative antibacterial strategies that are less susceptible to acquiring resistance. In this review, we highlight recent progress in the chemical syntheses of this family of compounds, one of which having reached clinical trials against Crohn's disease (CD).
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; INRS - Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
40
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Castenmiller C, Keumatio-Doungtsop BC, van Ree R, de Jong EC, van Kooyk Y. Tolerogenic Immunotherapy: Targeting DC Surface Receptors to Induce Antigen-Specific Tolerance. Front Immunol 2021; 12:643240. [PMID: 33679806 PMCID: PMC7933040 DOI: 10.3389/fimmu.2021.643240] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are well-established as major players in the regulation of immune responses. They either induce inflammatory or tolerogenic responses, depending on the DC-subtype and stimuli they receive from the local environment. This dual capacity of DCs has raised therapeutic interest for their use to modify immune-activation via the generation of tolerogenic DCs (tolDCs). Several compounds such as vitamin D3, retinoic acid, dexamethasone, or IL-10 and TGF-β have shown potency in the induction of tolDCs. However, an increasing interest exists in defining tolerance inducing receptors on DCs for new targeting strategies aimed to develop tolerance inducing immunotherapies, on which we focus particular in this review. Ligation of specific cell surface molecules on DCs can result in antigen presentation to T cells in the presence of inhibitory costimulatory molecules and tolerogenic cytokines, giving rise to regulatory T cells. The combination of factors such as antigen structure and conformation, delivery method, and receptor specificity is of paramount importance. During the last decades, research provided many tools that can specifically target various receptors on DCs to induce a tolerogenic phenotype. Based on advances in the knowledge of pathogen recognition receptor expression profiles in human DC subsets, the most promising cell surface receptors that are currently being explored as possible targets for the induction of tolerance in DCs will be discussed. We also review the different strategies that are being tested to target DC receptors such as antigen-carbohydrate conjugates, antibody-antigen fusion proteins and antigen-adjuvant conjugates.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Brigitte-Carole Keumatio-Doungtsop
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Alam MM, Jarvis CM, Hincapie R, McKay CS, Schimer J, Sanhueza-Chavez CA, Xu K, Diehl RC, Finn MG, Kiessling LL. Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses. ACS NANO 2021; 15:309-321. [PMID: 32790346 PMCID: PMC8249087 DOI: 10.1021/acsnano.0c03023] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dendritic cells (DCs) are highly effective antigen-presenting cells that shape immune responses. Vaccines that deliver antigen to the DCs can harness their power. DC surface lectins recognize glycans not typically present on host tissue to facilitate antigen uptake and presentation. Vaccines that target these surface lectins should offer improved antigen delivery, but their efficacy will depend on how lectin targeting influences the T cell subtypes that result. We examined how antigen structure influences uptake and signaling from the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin or CD209). Virus-like particles (VLPs) were engineered from bacteriophage Qβ to present an array of mannoside ligands. The VLPs were taken up by DCs and efficiently trafficked to endosomes. The signaling that ensued depended on the ligand displayed on the VLP: only those particles densely functionalized with an aryl mannoside, Qβ-Man540, elicited DC maturation and induced the expression of the proinflammatory cytokines characteristic of a T helper type 1 (TH1)-like immune response. This effect was traced to differential binding to DC-SIGN at the acidic pH of the endosome. Mice immunized with a VLP bearing the aryl mannoside, and a peptide antigen (Qβ-Ova-Man540) had antigen-specific responses, including the production of CD4+ T cells producing the activating cytokines interferon-γ and tumor necrosis factor-α. A TH1 response is critical for intracellular pathogens (e.g., viruses) and cancer; thus, our data highlight the value of targeting DC lectins for antigen delivery and validate the utility of DC-targeted VLPs as vaccine vehicles that induce cellular immunity.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Cassie M. Jarvis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Robert Hincapie
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Craig S. McKay
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Jiri Schimer
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Carlos A Sanhueza-Chavez
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
- Current address: Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy. Queens, NY 11439, USA
| | - Ke Xu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - M. G. Finn
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- Corresponding Author: Laura L. Kiessling,
| |
Collapse
|
43
|
Wang Y, Zhang P, Wei Y, Shen K, Xiao L, Miron RJ, Zhang Y. Cell-Membrane-Display Nanotechnology. Adv Healthc Mater 2021; 10:e2001014. [PMID: 33000917 DOI: 10.1002/adhm.202001014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Advances in material science have set the stage for nanoparticle-based research with potent applications for the diagnosis, bioimaging, and precise treatment of diseases. Despite the wide range of biomaterials developed, the rational design of biomaterials with predictable bioactivity and safety remains a critical challenge. In recent years, the field of cell-membrane-based therapeutics has emerged as a promising platform for addressing unmet medical needs. The utilization of natural cell membranes endows biomaterials with a remarkable ability to serve as biointerfaces that interact with the host environment. To improve the function and efficacy of cell-membrane-based therapeutics, a series of novel strategies is developed as cell-membrane-display nanotechnology, which utilizes various methods to selectively display therapeutic molecules of cell membranes on nanoparticles. Although cell-membrane-display nanotechnology remains in the early phases, considerable work is currently being conducted in the field. This review discusses details of innovative strategies for displaying cell-membrane molecules, including the following: 1) displaying molecules of cell membranes on biomaterials, 2) pretreating cell membranes to induce increased expression of inherent molecules of cell membranes and enhance their function, and 3) inserting additional functional molecules on cell membranes. For each area, the theoretical basis, application scenarios, and potential development are highlighted.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Leyi Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| |
Collapse
|
44
|
Singh A, Kaur K, Mandal UK, Narang RK. Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis. CURRENT NANOMEDICINE 2020; 10:225-247. [DOI: 10.2174/2468187310999200621200615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a disorder of the gastrointestinal tract,
which is characterized by Crohn’s disease and Ulcerative colitis. Ulcerative colitis (UC) is
a chronic idiopathic relapsing colon disease distinguishes by the interference of epithelial
wall and colonic site tenderness. For the treatment of ulcerative colitis, various side effects
have been reported, due to the non-specific delivery of the targeted drug of the conventional
system. This review will explain the reader about various considerations for the preparation
of orally administered NPs drug delivery systems for the treatment of ulcerative colitis.
Moreover, principles and novel strategies for colon targeting based on the physiology
of colon so that the tract of gastro intestine can be used as the identification marker for a
target site for drugs. Besides this, the role of phytomedicines in controlling and managing
the ulcerative colitis has been discussed. Additionally, the major problem for the smart delivery
of NPs in clinical applications with their difficulties in Intellectual Property Rights
(IPR) was also discussed. Finally, this review provides various potential approaches to NPs
for the treatment of UC.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Uttam Kumar Mandal
- Maharaja Ranjit Singh Punjab Technical University, Department of Pharmaceutics, Bathinda, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
45
|
Raulf MK, Lepenies B. Glycosylation tips the scales: Novel insights into the dual role of type-I interferons in treated HIV infection. EBioMedicine 2020; 60:103003. [PMID: 32980691 PMCID: PMC7522753 DOI: 10.1016/j.ebiom.2020.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marie-Kristin Raulf
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany; Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine, Hannover, Germany
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
46
|
Fmoc N-hydroxysuccinimide ester: A facile and multifunctional role in N-glycan analysis. Anal Chim Acta 2020; 1131:56-67. [PMID: 32928480 DOI: 10.1016/j.aca.2020.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
N-glycans that are fluorescently tagged by glycosylamine acylation have become a promising way for glycan biomarker discovery. Here, we describe a simple and rapid method using Fmoc N-hydroxysuccinimide ester (Fmoc-OSu) to label N-glycans by reacting with their corresponding intermediate glycosylamines produced by microwave-assisted deglycosylation. After optimizing reaction conditions, this derivatization reaction can be effectively achieved under 40 °C for 1 h. Moreover, the comparison of fluorescent intensities for Fmoc-OSu, Fmoc-Cl and 2-AA labeling strategies were also performed. Among which, the fluorescent intensities of Fmoc-OSu labeled glycan derivatives were approximately 5 and 13 times higher than that labeled by Fmoc-Cl and 2-AA respectively. Furthermore, the developed derivatization strategy has also been applied for analyzing serum N-glycans, aiming to screen specific biomarkers for early diagnosis of lung squamous cell cancer. More interestingly, the preparation of free reducing N-glycan standards have been achieved by the combination of HPLC fraction of Fmoc labeled glycan derivatives and Fmoc releasing chemistry. Overall, this proposed method has the potential to be used in functional glycomic study.
Collapse
|
47
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
48
|
Romero-Ben E, Mena Barragán T, García de Dionisio E, Sánchez-Fernández EM, Garcia Fernández JM, Guillén-Mancina E, López-Lázaro M, Khiar N. Mannose-coated polydiacetylene (PDA)-based nanomicelles: synthesis, interaction with concanavalin A and application in the water solubilization and delivery of hydrophobic molecules. J Mater Chem B 2020; 7:5930-5946. [PMID: 31512707 DOI: 10.1039/c9tb01218d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbohydrate-lectin interactions are involved in a number of relevant biological events including fertilization, immune response, cell adhesion, tumour cell metastasis, and pathogen infection. Lectins are also tissue specific, making carbohydrates not only promising drug candidates but also excellent low molecular weight ligands for active drug delivery system decorations. In order for these interactions to be effective multivalency is essential, as the interaction of a lectin with its cognate monovalent carbohydrate epitope usually takes place with low affinity. Unlike the covalent approach, supramolecular self-assembly of glyco-monomers mediated by non-covalent forces allows accessing multivalent systems with diverse topology, composition, and assembly dynamics in a single step. In order to fine-tune the size and sugar adaptability of spherical micelles at the nanoscale for an optimal glycoside cluster effect, herein we report the synthesis of mannose-coated static micelles from diacetylene-based mannopyranosyl glycolipids differing in the length of the poly(ethyleneglycol) (PEG) chains and the oxidation state of the anomeric sulfur atom. The reported shot-gun like synthetic approach for the synthesis of dilution-insensitive micelles is based on the ability of diacetylenic-based neoglycolipids to self-assemble into micelles in water and to undergo an easy photopolymerization by a simple irradiation at 254 nm. The affinity of the obtained 6 nanosystems was assessed by enzyme-linked lectin assay (ELLA) using the mannose-specific concanavalin A lectin as a model receptor. Relative binding potency enhancements, compared to methyl α-d-mannopyranoside used as control, from 20-, to 29- to 300-fold on a sugar molar basis were observed for micelles derived from sulfonyl-, sulfinyl- and thioglycoside monomers with a tatraethyleneglycol spacer, respectively, indicative of a significant cluster glycoside effect. Moreover, pMic1 micelles are able to solubilize and slowly liberate lipophilic clinically relevant drugs, and show the enhanced cytotoxic effect of docetaxel toward prostate cancer cells. These findings highlight the potential of mannose-coated photopolymerized micelles pMic1 as an efficient nanovector for active delivery of cytotoxic hydrophobic molecules.
Collapse
Affiliation(s)
- E Romero-Ben
- Asymmetric Synthesis and Functional Nanosystems Group. Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, C/Américo Vespucio 49, 41092, Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hualong Song
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Simon J. Allison
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Viktor Brabec
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | | | - Jana Kasparkova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Hana Kostrhunova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Vojtech Novohradsky
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Roger M. Phillips
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Jitka Pracharova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
- Department of Biophysics Centre of the Region Hana for Biotechnological and Agricultural Research Faculty of Science Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Nicola J. Rogers
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Peter Scott
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
50
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020; 59:14677-14685. [PMID: 32489012 PMCID: PMC7497174 DOI: 10.1002/anie.202006814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.
Collapse
Affiliation(s)
- Hualong Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Simon J. Allison
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Viktor Brabec
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | | | - Jana Kasparkova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Hana Kostrhunova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Vojtech Novohradsky
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Roger M. Phillips
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Jitka Pracharova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
- Department of BiophysicsCentre of the Region Hana for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 2778371OlomoucCzech Republic
| | | | | | - Peter Scott
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|