1
|
Jia Z, Li C, Zhang S, Tang Y, Ma S, Liu X, Zhang J. Microbial inoculants modify the functions of soil microbes to optimize plant growth at abandoned mine sites. J Environ Sci (China) 2025; 154:678-690. [PMID: 40049907 DOI: 10.1016/j.jes.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 05/13/2025]
Abstract
Mining activities have caused significant land degradation globally, emphasizing the need for effective restoration. Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrients, enzyme activities, and microbial communities to support plant growth. However, the mechanisms by which inoculants influence soil microbes and their relationship with plant growth require further investigation. Metagenomic sequencing was employed for this study, based on a one-year greenhouse experiment, to elucidate the effects of Bacillus thuringiensis NL-11 on the microbial functions of abandoned mine soils. Our findings revealed that the application of microbial inoculants significantly enhanced the soil total carbon (TC), total sulfur (TS), organic carbon (SOC), available phosphorus (AP), ammonium (NH4+), urease, arylsulfatase, phosphatase, β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG). Moreover, this led to substantial improvements in plant height, as well as aboveground and belowground biomass. Microbial inoculants impacted functional gene structures without altering diversity. The normalized abundance of genes related to the degradation of carbon and nitrogen, methane metabolism, and nitrogen fixation were observed to increase, as well as the functional genes related to phosphorus cycling. Significant correlations were found between nutrient cycling gene abundance and plant biomass. Partial Least Squares Path Model analysis showed that microbial inoculants not only directly influenced plant biomass but also indirectly affected the plant biomass through C cycle modifications. This study highlights the role of microbial inoculants in promoting plant growth and soil restoration by improving soil properties and enhancing normalized abundance of nutrient cycling gene, making them essential for the recovery of abandoned mine sites.
Collapse
Affiliation(s)
- Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China
| | - Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China
| | - Shuifeng Zhang
- Faculty of Information Technology, Nanjing Police College, Nanjing 210023, China
| | - Yingzhou Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Rejuvenation, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Negrelli JGD, de Britto Rafael MR, Gazola VD, Dos Santos MCBR, Pilau EJ, Polli AD, Golias HC, de Almeida TT, Polonio JC. Microbial consortium involving Pseudomonas and Bacillus: strain selection and the effect of co-cultivation on biocontrol activity against phytopathogens and the composition of metabolic extracts. Int Microbiol 2025:10.1007/s10123-025-00668-1. [PMID: 40338459 DOI: 10.1007/s10123-025-00668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Agricultural sustainability is vital to meet the growing global demand for food; therefore, the search for more sustainable options to replace traditional chemical products has gained attention due to their benefits. The sector has applied innovative microbial consortium approaches as a niche for exploring new bioproducts and metabolic pathways through microbial interactions. Thus, this study sought to select two endophytic bacterial strains with biocontrol activity to study their metabolic interactions in culture. For this, co-cultivation and axenic culture assays were carried out to evaluate the inhibition of Corynespora cassiicola, Sclerotinia sclerotiorum, Moniliophthora perniciosa, and Colletotrichum truncatum. After the production of antiphytopathogenic compound tests, two strains were selected: P. putida MG36 and B. amyloliquefaciens SS14. These bacteria were cultivated under three distinct conditions: axenic cultivation of SS14, axenic cultivation of MG36, and co-cultivation. The metabolites were extracted and analyzed by liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). The results showed that both strains exhibited significant antifungal activity. B. amyloliquefaciens SS14 demonstrated 65% inhibition against C. truncatum, while P. putida MG36 showed 58% inhibition against S. sclerotiorum. Analysis of the chemical profiles revealed the presence of exclusive and shared metabolites, such as iturin A4 (antifungal lipopeptide) and macrolactin A (bioactive polyketide), under different culture conditions. In conclusion, P. putida MG36 and B. amyloliquefaciens SS14 show promise as biocontrol agents against phytopathogens, contributing to more sustainable agricultural practices.
Collapse
Affiliation(s)
- João Gabriel Dumont Negrelli
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Maira Rafaela de Britto Rafael
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Vitor Dib Gazola
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Marcus Cesar Bochi Reis Dos Santos
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Eduardo Jorge Pilau
- Department of Chemistry, Maringa State University, Maringá, Paraná, 87020-900, Brazil
| | - Andressa Domingos Polli
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Halison Correia Golias
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Tiago Tognolli de Almeida
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil
| | - Julio Cesar Polonio
- Laboratory of Microbial Biotechnology, Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
3
|
Kaminsky LM, Burghardt L, Bell TH. Evolving a plant-beneficial bacterium in soil vs. nutrient-rich liquid culture has contrasting effects on in-soil fitness. Appl Environ Microbiol 2025; 91:e0208524. [PMID: 40067020 PMCID: PMC12016532 DOI: 10.1128/aem.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 04/24/2025] Open
Abstract
Inoculation of plant-beneficial microbes into agricultural soils can improve crop growth, but such outcomes depend on microbial survival. Here, we assessed how exposure to prior environmental conditions impacts microbial in-soil fitness, particularly focusing on incubation in liquid culture as an unavoidable phase of inoculant production and on pre-incubation in target soils as a potential method to improve performance. We conducted experimental evolution on a phosphorus-solubilizing bacterial species, Priestia megaterium, in (i) soil only, (ii) liquid media only, and (iii) soil followed by liquid media, using population metagenomic sequencing to track mutations over time. Several typical in vitro evolutionary phenomena were observed in liquid media-incubated populations, including clonal interference, genetic hitchhiking, and mutation parallelism between replicate populations, particularly in the sporulation transcription factor spo0A. Liquid media-incubated populations also developed a clear fitness reduction in soil compared to the ancestral isolate. However, soil-incubated populations grew slowly, experienced far fewer generations despite longer absolute time, and accumulated minimal mutational changes. Correspondingly, soil-incubated populations did not display improved survival compared to the ancestral isolate in their target soils, though there did appear to be minor fitness reductions in unfamiliar soil. This work demonstrates that adaptation to liquid media and/or a native soil can impact bacterial fitness in new soil and that bacterial evolution in more complex real-world habitats does not closely resemble bacterial evolution in liquid media. IMPORTANCE Innovative solutions are needed to address emerging challenges in agriculture while reducing its environmental footprint. Management of soil microbiomes could contribute to this effort, as plant growth-promoting microorganisms provide key ecosystem services that support crops. Yet, inoculating beneficial microbes into farm soils yields unreliable results. We require a greater knowledge of the ecology of these taxa to improve their functioning in sustainable agroecosystems. In this report, we demonstrate that exposure to laboratory media and lingering adaptation to another soil can negatively impact the in-soil survival of a phosphorus-solubilizing bacterial species. We go further to highlight the underlying mutations that give rise to these patterns. These insights can be leveraged to improve our understanding of how soil-dwelling beneficial microorganisms adapt to different evolutionary pressures.
Collapse
Affiliation(s)
- Laura M. Kaminsky
- Boyce Thompson Institute, Ithaca, New York, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Liana Burghardt
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Srivastava AK, Singh RD, Pandey GK, Mukherjee PK, Foyer CH. Unravelling the Molecular Dialogue of Beneficial Microbe-Plant Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:2534-2548. [PMID: 39497504 PMCID: PMC11893932 DOI: 10.1111/pce.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 03/12/2025]
Abstract
Plants are an intrinsic part of the soil community, which is comprised of a diverse range of organisms that interact in the rhizosphere through continuous molecular communications. The molecular dialogue within the plant microbiome involves a complex repertoire of primary and secondary metabolites that interact within different liquid matrices and biofilms. Communication functions are likely to involve membrane-less organelles formed by liquid-liquid phase separation of proteins and natural deep eutectic solvents that play a role as alternative media to water. We discuss the chemistry of inter-organism communication and signalling within the biosphere that allows plants to discriminate between harmful, benign and beneficial microorganisms. We summarize current information concerning the chemical repertoire that underpins plant-microbe communication and host-range specificity. We highlight how the regulated production, perception and processing of reactive oxygen species (ROS) is used in the communication between plants and microbes and within the communities that shape the soil microbiome.
Collapse
Affiliation(s)
- Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | - Reema D. Singh
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
| | - Girdhar K. Pandey
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | | |
Collapse
|
5
|
Li J, Alperstein L, Tatsumi M, de Nys R, Nappi J, Egan S. Bacterial Supplements Significantly Improve the Growth Rate of Cultured Asparagopsis armata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:65. [PMID: 40085266 PMCID: PMC11909060 DOI: 10.1007/s10126-025-10440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Seaweed aquaculture is an expanding industry with innovative applications beyond the traditional uses as human foods and phycocolloids. Asparagopsis armata, a red seaweed, is cultivated as a feed supplement to reduce methane emission from ruminants. The manipulation of microbiota with seaweed beneficial microorganisms (SBMs) has shown promise in enhancing disease resistance and growth in seaweeds and has potential to aid the cultivation of A. armata. In this study, we developed a growth assay for the rapid selection of bacteria that promote the growth of A. armata tetrasporophytes. We tested bacterial strains from the genera Phaeobacter and Pseudoalteromonas for their impact on the growth of A. armata, as these bacteria have been recognized for their beneficial traits in other seaweeds. All strains significantly enhanced the specific growth rate (SGR) of A. armata tetrasporophytes compared to controls without bacterial treatment. Bacterial 16S rRNA gene amplicon sequencing confirmed the presence of the inoculated growth-promoting SBMs (SBM-Gs) in A. armata cultures with no significant impacts on the resident microbial community. Co-occurrence network analysis of the resulting communities demonstrated that the inoculated Phaeobacter spp. formed distinct modules, exclusively interacting with resident Phaeobacter species, while the Pseudoalteromonas sp. was absent from the network. These results demonstrate that microbial inoculation is an effective strategy for incorporating SBM-Gs into the A. armata microbiota to promote growth. The tested SBM-Gs may exert their influence by interacting with specific resident species or by directly affecting host physiology, resulting in minimal undesired effects on the microbiome.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
- Poultry Research Foundation, The University of Sydney, Camden, Sydney, NSW, 2570, Australia
| | - Lucien Alperstein
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Masayuki Tatsumi
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, TAS, 7190, Australia
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, TAS, 7190, Australia
- College of Science and Engineering, James Cook University, Townsville, 4810, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Nieto EE, Festa S, Colman D, Macchi M, Morelli IS, Coppotelli BM. Challenging the impact of consortium diversity on bioaugmentation efficiency and native bacterial community structure in an acutely PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5589-5604. [PMID: 39939570 DOI: 10.1007/s11356-025-35987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants. We studied the effect of bioaugmentation using three allochthonous bacterial consortia with increasing diversity: SC AMBk, SC1, and SC4, on the structure and functionality of an artificially and acutely PAH-contaminated soil microbiome. The PAH supplementation increased substrate availability, allowing the inocula to efficiently degrade the supplemented PAHs after 15 days of incubation, become temporarily established, and modify the number of total interactions with soil residents. Sphingobium and Burkholderia, both members of the inoculants, were the major contributors to functional KOs (KEGG orthologs) linked to degradation and were differentially abundant genera in inoculated microcosms, indicating their competitiveness in the soil. Hence, bioaugmentation efficiency relied on them, while further degradation could be carried out by native microorganisms. This is one of the first studies to apply three inocula, designed from naturally occurring bacteria, and to study their effect on the soil's native community through ANCOM-BC. We revealed that when a resource that can be used by the inoculant is added to the soil, a high-diversity inoculant is not necessary to interact with the native community and establish itself. This finding is crucial for the design of microbiome engineering in bioremediation processes.
Collapse
Affiliation(s)
- Esteban Emanuel Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Deborah Colman
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Irma Susana Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana Marina Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina.
| |
Collapse
|
7
|
Li C, Sun L, Jia Z, Tang Y, Liu X, Zhang J, Müller C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. PLANT, CELL & ENVIRONMENT 2025; 48:1162-1178. [PMID: 39420635 DOI: 10.1111/pce.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The application of microbial inoculants holds promise for the sustainable restoration of abandoned mine sites by affecting soil nutrients and microbial communities. However, the responses of plant microbial communities to microbial inoculants in mine restoration remain largely unknown. To bridge this knowledge gap, we conducted a 4-year field experiment at an abandoned carbonate mine site to assess the impacts of microbial inoculants on the soil-plant microbiome. Our findings revealed that microbial inoculants significantly changed roots, fine root bacterial and fungal communities. Further, no significant correlations were observed between the soil-plant nutrient content (Z-score) and microbial alpha diversity. However, a significantly positive correlation was found between the relative abundance of the keystone ecological cluster (Module #1) and soil-plant nutrient content. The application of microbial inoculants also increased complexity, albeit decreased stability of plant microbiome networks, alongside a reduction in stochastic assembly. Conversely, they decreased the complexity but increased the stability of soil microbiome networks, accompanied by an increase in stochastic assembly. Notably, the number of specifically enriched microbiome functional traits of roots and root nodules under the microbial inoculant treatments surpassed that of the control. In summary, our findings underscored the potential of microbial inoculants to enhance soil-plant functionality at abandoned mine restoration sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lianhao Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| |
Collapse
|
8
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
9
|
Schmidt JE, Lewis CA, Firl AJ, Umaharan P. Microbial bioindicators associated with cadmium uptake in sixteen genotypes of Theobroma cacao. Heliyon 2025; 11:e41890. [PMID: 39897789 PMCID: PMC11783012 DOI: 10.1016/j.heliyon.2025.e41890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Recent regulatory limits on concentrations of cadmium (Cd), an element of concern for human health, have made Cd reduction a key issue in the global chocolate industry. Research into Cd minimization has investigated soil management, cacao genetic variation, and postharvest processing, but has overlooked the cacao-associated microbiome despite promising evidence in other crops that root-associated microorganisms could help reduce Cd uptake. A novel approach combining both amplicon and metagenomic sequencing identified microbial bioindicators associated with leaf and stem Cd accumulation in sixteen field-grown genotypes of Theobroma cacao. Sequencing highlighted over 200 amplicon sequence variants (ASVs) whose relative abundance was related to cacao leaf and stem Cd content or concentration. The two highest-accumulating genotypes, PA 32 and TRD 94, showed enrichment of four ASVs belonging to the genus Haliangium, the family Gemmataceae, and the order Polyporales. ASVs whose relative abundance was most negatively associated with plant Cd were identified as Paenibacillus sp. (β = -2.21), Candidatus Koribacter (β = -2.17), and Candidatus Solibacter (β = -2.03) for prokaryotes, and Eurotiomycetes (β = -4.58) and two unidentified ASVs (β = -4.32, β = -3.43) for fungi. Only two ASVs were associated with both leaf and stem Cd, both belonging to the Ktedonobacterales. Of 5543 C d-associated gene families, 478 could be assigned to GO terms, including 68 genes related to binding and transport of divalent heavy metals. Screening for Cd-related bioindicators prior to planting or developing microbial bioamendments could complement existing strategies to minimize the presence of Cd in the global cacao supply.
Collapse
Affiliation(s)
| | - Caleb A. Lewis
- Cocoa Research Centre, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | | | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| |
Collapse
|
10
|
Fonseca de Souza L, Oliveira HG, Pellegrinetti TA, Mendes LW, Bonatelli ML, Dumaresq ASR, Sinatti VVC, Pinheiro JB, Azevedo JL, Quecine MC. Co-inoculation with Bacillus thuringiensis RZ2MS9 and rhizobia improves the soybean development and modulates soil functional diversity. FEMS Microbiol Ecol 2025; 101:fiaf013. [PMID: 39844349 PMCID: PMC11796456 DOI: 10.1093/femsec/fiaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Despite the beneficial effects of plant growth-promoting rhizobacteria on agriculture, understanding the consequences of introducing foreign microbes into soil taxonomic and functional diversity is necessary. This study evaluated the effects co-inoculation of soybean with Bacillus thuringiensis (Bt) RZ2MS9 and commercial rhizobia on the natural microbial community structure and functional potential. Our results indicated that soybean development was positively influenced by co-inoculation, plants exhibited greater height and a higher number of pods, and no reductions in productivity estimates. Soil prokaryotic diversity and community structure remained unchanged by Bt RZMS9 inoculation or co-inoculation with rhizobia 147 days after sowing. However, functional diversity was influenced by sole Bt inoculation, potentially due to community quorum sensing disruption by N-acyl homoserine lactone hydrolases. The genes enriched by co-inoculation were mostly related to soil phosphorus cycling, with gcd showing the most pronounced increase. The nifA genes increased when rhizobia alone were inoculated, suggesting that this pathway could be affected by Bt RZ2MS9 inoculation. This study demonstrates the synergistic activity of rhizobia and Bt RZ2MS9 on soybean development, without significantly interfering with natural microbial community, presenting a promising approach for sustainable crop management.
Collapse
Affiliation(s)
- Leandro Fonseca de Souza
- Genetics Department, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
- Agronomy Department, Center of Agricultural Science and Engineering, Federal University of Espirito Santo, Alegre, ES, 29075-910, Brazil
| | - Helena Gutierrez Oliveira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Thierry Alexandre Pellegrinetti
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Maria Leticia Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, 04318, Germany
| | - Aline Silva Romão Dumaresq
- SENAI Innovation Institute for Biosynthetics and Fibers, Technology Center for Chemical and Textile Industry,Rio de Janeiro, RJ 21941-857, Brazil
| | - Vanessa V C Sinatti
- SENAI Innovation Institute for Biosynthetics and Fibers, Technology Center for Chemical and Textile Industry,Rio de Janeiro, RJ 21941-857, Brazil
- ATCG Bioinformática e Análise de Dados, Rio de Janeiro, RJ 22410-905, Brazil
| | - José Baldin Pinheiro
- Genetics Department, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - João Lucio Azevedo
- Genetics Department, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Maria Carolina Quecine
- Genetics Department, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| |
Collapse
|
11
|
Kimeklis AK, Gladkov GV, Orlova OV, Lisina TO, Afonin AM, Aksenova TS, Kichko AA, Lapidus AL, Abakumov EV, Andronov EE. Metagenomic insights into the development of microbial communities of straw and leaf composts. Front Microbiol 2025; 15:1485353. [PMID: 39911711 PMCID: PMC11794307 DOI: 10.3389/fmicb.2024.1485353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Soil microbiome is a major source of physiologically active microorganisms, which can be potentially mobilized by adding various nutrients. To study this process, a long-term experiment was conducted on the decomposition of oat straw and leaf litter using soil as a microbial inoculum. Methods Combined analyses of enzymatic activity and NGS data for 16S rRNA gene amplicon and full metagenome sequencing were applied to study taxonomic, carbohydrate-active enzyme (CAZy), and polysaccharide utilization loci (PULs) composition of microbial communities at different stages of decomposition between substrates. Results In straw degradation, the microbial community demonstrated higher amylase, protease, catalase, and cellulase activities, while peroxidase, invertase, and polyphenol oxidase were more active in leaf litter. Consistent with this, the metagenome analysis showed that the microbiome of straw compost was enriched in genes for metabolic pathways of simpler compounds. At the same time, there were more genes for aromatic compound degradation pathways in leaf litter compost. We identified nine metagenome-assembled genomes (MAGs) as the most promising prokaryotic decomposers due to their abnormally high quantity of PULs for their genome sizes, which were confirmed by 16S rRNA gene amplicon sequencing to constitute the bulk of the community at all stages of substrate degradation. MAGs from Bacteroidota (Chitinophaga and Ohtaekwangia) and Actinomycetota (Streptomyces) were found in both composts, while those from Bacillota (Pristimantibacillus) were specific for leaf litter. The most frequently identified PULs were specialized on xylans and pectins, but not cellulose, suggesting that PUL databases may be underrepresented in clusters for complex substrates. Discussion Our study explores microbial communities from natural ecosystems, such as soil and lignocellulosic waste, which are capable of decomposing lignocellulosic substrates. Using a comprehensive approach with chemical analyses of the substrates, amplicon, and full metagenome sequencing data, we have shown that such communities may be a source of identifying the highly effective decomposing species with novel PULs.
Collapse
Affiliation(s)
- Anastasiia K. Kimeklis
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Grigory V. Gladkov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| | - Olga V. Orlova
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| | - Tatiana O. Lisina
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexey M. Afonin
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tatiana S. Aksenova
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| | - Arina A. Kichko
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| | | | - Evgeny V. Abakumov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Evgeny E. Andronov
- Laboratory of Microbiological Monitoring and Bioremediation of Soils, All-Russian Research Institute of Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
12
|
Beattie GA, Edlund A, Esiobu N, Gilbert J, Nicolaisen MH, Jansson JK, Jensen P, Keiluweit M, Lennon JT, Martiny J, Minnis VR, Newman D, Peixoto R, Schadt C, van der Meer JR. Soil microbiome interventions for carbon sequestration and climate mitigation. mSystems 2025; 10:e0112924. [PMID: 39692482 PMCID: PMC11748500 DOI: 10.1128/msystems.01129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Mitigating climate change in soil ecosystems involves complex plant and microbial processes regulating carbon pools and flows. Here, we advocate for the use of soil microbiome interventions to help increase soil carbon stocks and curb greenhouse gas emissions from managed soils. Direct interventions include the introduction of microbial strains, consortia, phage, and soil transplants, whereas indirect interventions include managing soil conditions or additives to modulate community composition or its activities. Approaches to increase soil carbon stocks using microbially catalyzed processes include increasing carbon inputs from plants, promoting soil organic matter (SOM) formation, and reducing SOM turnover and production of diverse greenhouse gases. Marginal or degraded soils may provide the greatest opportunities for enhancing global soil carbon stocks. Among the many knowledge gaps in this field, crucial gaps include the processes influencing the transformation of plant-derived soil carbon inputs into SOM and the identity of the microbes and microbial activities impacting this transformation. As a critical step forward, we encourage broadening the current widespread screening of potentially beneficial soil microorganisms to encompass functions relevant to stimulating soil carbon stocks. Moreover, in developing these interventions, we must consider the potential ecological ramifications and uncertainties, such as incurred by the widespread introduction of homogenous inoculants and consortia, and the need for site-specificity given the extreme variation among soil habitats. Incentivization and implementation at large spatial scales could effectively harness increases in soil carbon stocks, helping to mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | | - Nwadiuto Esiobu
- Department of Biological Sciences, Microbiome Innovation Cluster, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jack Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, California, USA
| | | | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paul Jensen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Marco Keiluweit
- Soil Biogeochemistry Group, Faculty of Geosciences and the Environment, University of Lausanne, Lausanne, Switzerland
| | - Jay T. Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jennifer Martiny
- School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Vanessa R. Minnis
- Department of Pediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, California, USA
| | - Dianne Newman
- Division of Biology & Biological Engineering and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Raquel Peixoto
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christopher Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
13
|
Joubert O, Arnault G, Barret M, Simonin M. Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. TRENDS IN PLANT SCIENCE 2025; 30:21-34. [PMID: 39406642 DOI: 10.1016/j.tplants.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.
Collapse
Affiliation(s)
- Oscar Joubert
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Cedex 07 Lyon, France; Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| |
Collapse
|
14
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:485-513. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
15
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
16
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
17
|
Perkins EM, Mundt CC. Associations Among Cultivar Cropping Sequence, 2,4-Diacetlyphloroglucinol-Producing Pseudomonad Populations, and Take-All Disease of Winter Wheat in Oregon. PLANT DISEASE 2024; 108:3604-3613. [PMID: 39143813 DOI: 10.1094/pdis-02-24-0372-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Take-all of wheat (Triticum aestivum L.), caused by Gaeumannomyces tritici (syn. G. graminis var. tritici), is perhaps the most important soilborne disease of wheat globally and can cause substantial yield losses under several cropping scenarios in Oregon. Although resistance to take-all has not been identified in hexaploid wheat, continuous cropping of wheat for several years can reduce take-all severity through the development of suppressive soils, a process called "take-all decline" (TAD). Extensive work has shown that TAD is driven primarily by members of the Pseudomonas fluorescens complex that produce 2,4-diacetlyphloroglucinol (DAPG), an antibiotic that is associated with antagonism and induced host resistance against multiple pathogens. Field experiments were conducted to determine the influence of agronomically relevant first-year wheat cultivars on take-all levels and ability to accumulate DAPG-producing pseudomonads within their rhizospheres in second-year field trials and in greenhouse trials. One first-year wheat cultivar consistently resulted in less take-all in second-year wheat and accumulated significantly more DAPG-producing pseudomonads than other cultivars, suggesting a potential mechanism for take-all reduction associated with that cultivar. An intermediate level of take-all suppression in other cultivars was not clearly associated with population size of DAPG-producing pseudomonads, however. The first-year cultivar effect on take-all dominated in subsequent plantings, and its impact was not specific to the first-year cultivar. Our results confirm that wheat cultivars may be used to suppress take-all when deployed appropriately over cropping seasons, an approach that is cost-effective, sustainable, and currently being used by some wheat growers in Oregon to reduce take-all.
Collapse
Affiliation(s)
- Evan M Perkins
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333
| | - Christopher C Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333
| |
Collapse
|
18
|
Ma Z, Jiang M, Liu C, Wang E, Bai Y, Yuan MM, Shi S, Zhou J, Ding J, Xie Y, Zhang H, Yang Y, Shen R, Crowther TW, Zhang J, Liang Y. Quinolone-mediated metabolic cross-feeding develops aluminium tolerance in soil microbial consortia. Nat Commun 2024; 15:10148. [PMID: 39578460 PMCID: PMC11584702 DOI: 10.1038/s41467-024-54616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Aluminium (Al)-tolerant beneficial bacteria confer resistance to Al toxicity to crops in widely distributed acidic soils. However, the mechanism by which microbial consortia maintain Al tolerance under acid and Al toxicity stress remains unknown. Here, we demonstrate that a soil bacterial consortium composed of Rhodococcus erythropolis and Pseudomonas aeruginosa exhibit greater Al tolerance than either bacterium alone. P. aeruginosa releases the quorum sensing molecule 2-heptyl-1H-quinolin-4-one (HHQ), which is efficiently degraded by R. erythropolis. This degradation reduces population density limitations and further enhances the metabolic activity of P. aeruginosa under Al stress. Moreover, R. erythropolis converts HHQ into tryptophan, promoting the synthesis of peptidoglycan, a key component for cell wall stability, thereby improving the Al tolerance of R. erythropolis. This study reveals a metabolic cross-feeding mechanism that maintains microbial Al tolerance, offering insights for designing synthetic microbial consortia to sustain food security and sustainable agriculture in acidic soil regions.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meitong Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Yang Bai
- School of Life Sciences, Peking University, Beijing, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Shengjing Shi
- AgResearch Ltd, Lincoln Science Centre, Lincoln, New Zealand
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yimei Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH, Zurich, Switzerland
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Zhaoyu K, Ye J, Pei K, He Y, Wang B, Huang S, Cai Q, Liu Y, Ge G, Wu L. A synthetic bacterial community engineered from Miscanthus floridulus roots enhances ammonia nitrogen removal in ionic rare earth mine tailings. CHEMOSPHERE 2024; 367:143650. [PMID: 39481489 DOI: 10.1016/j.chemosphere.2024.143650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ammonium sulfate, as the primary leaching agent, has caused significant nitrogen pollution in rare earth elements (REEs) mining areas. Phytoremediation is a promising remediation method, relying on the synergistic relationships between plants and their root-associated microbiome. Nevertheless, harnessing the microbiome to accelerate nitrogen transformation and absorption by plants is challenging. Here, we investigated the composition, activities and culturable fraction of the root bacterial microbiome of the pioneer plant Miscanthus floridulus grown in a REEs tailing soil containing a high ammonia nitrogen (AN) concentration at 344.35 mg kg-1. Based on this, we constructed a simplified synthetic microbial community (SynCom) derived from the roots of M. floridulus, possessing nitrification and denitrification capabilities, to help REEs mine plants efficiently convert pollutant AN into nutrients, thereby enhancing plant growth and AN removal. This SynCom, consisting of 10 bacterial strains, included species of the genera Burkholderia (5) Paraburkholderia (1), Curtobacterium (1), Leifsonia (1) and Sinomonas (2). As a result, this SynCom alone achieved a significant reduction of 24.8% in AN content in tailing soil. When the SynCom inoculated with plants, the reduction in AN was even more significant (32.6%), surpassing the reduction achieved solely by plants (25.5%). Moreover, live SynCom inoculation significantly increased shoot and root biomass by 39.8% and 49.7%, respectively, compared to dead SynCom inoculation. These results indicate that the reduction in AN can be attributed to the SynCom's nitrification and denitrification capabilities, as well as its ability to enhance plant nitrogen absorption by stimulating their growth. Notably, seven nitrifying and denitrifying strains of the SynCom are particularly enriched, suggesting that plant roots selectively recruit nitrogen cycle-related bacteria to accelerate nitrogen transformation and absorption. These results provide a practical solution for harnessing the synergistic relationships between plants and their root microbiome in environmental remediation efforts.
Collapse
Affiliation(s)
- Kong Zhaoyu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Jun Ye
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Ke Pei
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Yong He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Binhua Wang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Shaoyi Huang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Qiying Cai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Yizhen Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| |
Collapse
|
20
|
Shi M, Hao S, Wang Y, Zhang S, Cui G, Zhang B, Zhou W, Chen H, Wang M. Plant growth-promoting fungi improve tobacco yield and chemical components by reassembling rhizosphere fungal microbiome and recruiting probiotic taxa. ENVIRONMENTAL MICROBIOME 2024; 19:83. [PMID: 39487540 PMCID: PMC11531166 DOI: 10.1186/s40793-024-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Tobacco production faces ongoing challenges due to soil degradation, leading to a persistent decline in yield. Plant growth-promoting fungi (PGPF) have been recognized as an environmentally friendly agricultural strategy. However, many commercial PGPF products exhibit instability due to insufficient environmental compatibility. RESULTS In this study, Penicillium sp. PQxj3 was isolated and assessed for its potential to enhance tobacco productivity under field conditions. The results demonstrated that Penicillium sp. PQxj3 treatment significantly promoted the tobacco growth and improved the crop yield. The height of tobacco in Penicillium sp. PQxj3 treatment group significantly increased by 50.19% and 24.05% compared with CK at exuberant and maturity period (P < 0.05). The average yield of tobacco significantly increased by 36.16% compared to CK (P < 0.05). Fungal microbiome analysis revealed that phylogenetically similar probiotic taxa were recruited by Penicillium sp. PQxj3 and reassembled tobacco rhizosphere fungal microbiome. The key chemical indicators of tobacco such as alkaloid, total sugar, and phosphorus were significantly enhanced in Penicillium sp. PQxj3 treatment. The recruited probiotic taxa (Penicillium brasilianum, Penicillium simplicissimum, Penicillium macrosclerotiorum and Penicillium senticosum) were significantly associated with alkaloid, total sugar etc. (P < 0.05), which were identified as the key drivers for improving the chemical components of tobacco. Transcriptome analysis indicated that Penicillium sp. PQxj3 promoted up-regulation of key functional genes involved in alkaloid, indoleacetic, and gibberellin biosynthesis pathways. CONCLUSION In summary, this study assessed the biopromotion mechanism of PGPF Penicillium sp. PQxj3 linking chemical traits, rhizosphere fungal microbiome, and transcriptome profiling. The findings provide a fundamental basis and a sustainable solution for developing fungal fertilizers to enhance agricultural sustainability.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Shanghua Hao
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Yuhe Wang
- Department of Genomic and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sen Zhang
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Guangzhou Cui
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Bin Zhang
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Wang Zhou
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Hongge Chen
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Mingdao Wang
- College of Life Science, Henan Agricultural University, Henan, 450046, China.
| |
Collapse
|
21
|
L’Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 2024; 27:110973. [PMID: 39391734 PMCID: PMC11466649 DOI: 10.1016/j.isci.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Nitrogen (N) is the most limiting nutrient in agroecosystems, and its indiscriminate application is at the center of the environmental challenges facing agriculture. To solve this dilemma, crops' nitrogen use efficiency (NUE) needs to increase - in other words, more of the applied nitrogen needs to reach humans. Microbes are the key to cracking this problem. Microbes use nitrogen as an energy source, an electron acceptor, or incorporate it in their biomass. These activities change the form and availability of nitrogen for crops' uptake, impacting its NUE, yields and produce quality. Plants (and microbes) have, however, evolved many mechanisms to compete for soil nitrogen. Understanding and harnessing these competitive mechanisms would enable us to tip the nitrogen balance to the advantage of crops. We will review these competitive mechanisms and highlight some approaches that were applied to reduce microbial competition for N in an agricultural context.
Collapse
Affiliation(s)
- Emmy L’Espérance
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Lilia Sabrina Bouyoucef
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Jessica A. Dozois
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| |
Collapse
|
22
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
23
|
Zhao L, Kang C, Zhang S, Cui L, Xu S, Wang Y, Zhang Y, Gu S. Bacillus cereus CGMCC 1.60196: a promising bacterial inoculant isolated from biological soil crusts for maize growth enhancement. Front Microbiol 2024; 15:1461949. [PMID: 39314878 PMCID: PMC11416921 DOI: 10.3389/fmicb.2024.1461949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soil microbial inoculants are widely recognized as an environmentally friendly strategy for promoting crop growth and increasing productivity. However, research on utilizing the microbial resources from desert biological soil crusts to enhance crop growth remains relatively unexplored. In the present work, a bacterial strain designated AC1-8 with high levels of amylase, protease, and cellulase activity was isolated from cyanobacterial crusts of the Tengger Desert and identified as Bacillus cereus (CGMCC 1.60196). The refinement of the fermentation parameters of B. cereus CGMCC 1.60196 determined that the most effective medium for biomass production was composed of 5 g/L glucose, 22 g/L yeast extract and 15 g/L MgSO4, and the optimal culture conditions were pH 6.0, temperature 37°C, inoculation quantity 3% and agitation speed 240 rpm. Furthermore, the utilization of B. cereus CGMCC 1.60196 has resulted in substantial improvements in various growth parameters of maize seedlings, including shoot length, shoot fresh and dry weights, root fresh and dry weights, and the contents of chlorophyll a, chlorophyll b, and total chlorophyll. The most pronounced growth promotion was observed at an application concentration of 1 × 109 CFU/m2. These results suggest that the novel B. cereus strain, isolated from cyanobacterial crusts, can be regarded as an exemplary biological agent for soil improvement, capable of enhancing soil conditions, promoting crop cultivation and supporting food production.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Chenrui Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shipeng Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Linlin Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shuaihua Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yudong Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yue Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
24
|
Sun K, Zhang W, Wang X, Dai CC. Decoding the microbiome for sustainable agriculture. ABIOTECH 2024; 5:408-412. [PMID: 39279853 PMCID: PMC11399370 DOI: 10.1007/s42994-024-00162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 09/18/2024]
Abstract
Root-associated microbiota profoundly affect crop health and productivity. Plants can selectively recruit beneficial microbes from the soil and actively balance microbe-triggered plant-growth promotion and stress tolerance enhancement. The cost associated with this is the root-mediated support of a certain number of specific microbes under nutrient limitation. Thus, it is important to consider the dynamic changes in microbial quantity when it comes to nutrient condition-induced root microbiome reassembly. Quantitative microbiome profiling (QMP) has recently emerged as a means to estimate the specific microbial load variation of a root microbiome (instead of the traditional approach quantifying relative microbial abundances) and data from the QMP approach can be more closely correlated with plant development and/or function. However, due to a lack of detailed-QMP data, how soil nutrient conditions affect quantitative changes in microbial assembly of the root-associated microbiome remains poorly understood. A recent study quantified the dynamics of the soybean root microbiome, under unbalanced fertilization, using QMP and provided data on the use of specific synthetic communities (SynComs) for sustaining crop productivity. In this editorial, we explore potential opportunities for utilizing QMP to decode the microbiome for sustainable agriculture.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Wei Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
25
|
Fetsiukh A, Pall T, Timmusk S. Decrease due to pollution in the rhizosphere microbial diversity can be amended by supplementation from adapted plants of another species. Sci Rep 2024; 14:18806. [PMID: 39138231 PMCID: PMC11322436 DOI: 10.1038/s41598-024-68123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.
Collapse
Affiliation(s)
- Anastasiia Fetsiukh
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Taavi Pall
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Salme Timmusk
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
26
|
Nieto EE, Jurburg SD, Steinbach N, Festa S, Morelli IS, Coppotelli BM, Chatzinotas A. DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories. MICROBIOME 2024; 12:146. [PMID: 39113100 PMCID: PMC11305082 DOI: 10.1186/s40168-024-01865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation. RESULTS Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil. CONCLUSION Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies. Video Abstract.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Stephanie D Jurburg
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nicole Steinbach
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
27
|
Pratt C, Petersen IA, Paungfoo-Lonhienne C. Manipulating geological phosphorus resources for improved production and environmental outcomes during plant establishment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121702. [PMID: 38986376 DOI: 10.1016/j.jenvman.2024.121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phosphorus (P) fertilisers are under scrutiny due to resource constraints and environmental impacts. Simple rock phosphate (RP) modifications with acids and co-applied with microbial inoculum could offer sustainable alternative P fertiliser products. We evaluated the effects of acid-treated rock phosphate (RP) in combination with fungal inoculum on plant establishment, environmental impacts (nutrient leaching) and soil quality in a 5-month pot trial. The treatments were evaluated in a clayey Vertisol and a silty Acrisol using cotton (Gossypium hirsutum) as a model plant. The RP treatments - apart from the unmodified and HCl products - were effective in promoting plant establishment with two of the microbial formulations superior to conventional P fertilisers by an average factor of 2 in both soil types (p < 0.05). All RP products restricted P leaching compared with conventional P fertilisers (p < 0.05), by an average factor of 5 for diammonium phosphate (DAP) in both soil types and 3 for the triple superphosphate TSP (only in Acrisol). Nitrate leaching from all treatments was high although much lower from the RP treatments compared with the conventional fertilisers towards the end of the establishment trial, by an average factor of 1.5 (p < 0.05). Ranking analysis revealed that some RP treatments showed evidence for improved ongoing soil quality, including decreased P leaching and soil acidification risks. Microbial analysis showed complex interactions between treatment and soil type. Nonetheless, inoculum persistence at the end of the plant establishment phase was observed for all pots analysed. Our results demonstrate that relatively simple modifications to RP could pave the way for developing sustainable P fertilisers.
Collapse
Affiliation(s)
- Chris Pratt
- School of Environment and Science/Australian Rivers Institute, Griffith University, Kessels Road, Nathan, Queensland, 4111, Australia.
| | - Ian Alexander Petersen
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, Queensland, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | |
Collapse
|
28
|
Tienda S, Vida C, Villar-Moreno R, de Vicente A, Cazorla FM. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiol Res 2024; 285:127761. [PMID: 38761488 DOI: 10.1016/j.micres.2024.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Rafael Villar-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain.
| |
Collapse
|
29
|
Li C, Chen X, Jia Z, Zhai L, Zhang B, Grüters U, Ma S, Qian J, Liu X, Zhang J, Müller C. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nat Ecol Evol 2024; 8:1270-1284. [PMID: 38849504 DOI: 10.1038/s41559-024-02437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Uwe Grüters
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jing Qian
- Yangzhou China Grand Canal Museum, Yangzhou, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
30
|
Hiis EG, Vick SHW, Molstad L, Røsdal K, Jonassen KR, Winiwarter W, Bakken LR. Unlocking bacterial potential to reduce farmland N 2O emissions. Nature 2024; 630:421-428. [PMID: 38811724 PMCID: PMC11168931 DOI: 10.1038/s41586-024-07464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.
Collapse
Affiliation(s)
- Elisabeth G Hiis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Molstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine Røsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
31
|
Iosa I, Agrimonti C, Marmiroli N. Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils. Microorganisms 2024; 12:1002. [PMID: 38792831 PMCID: PMC11124357 DOI: 10.3390/microorganisms12051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
To optimize the application of plant growth-promoting rhizobacteria (PGPR) in field trials, tracking methods are needed to assess their shelf life and to determine the elements affecting their effectiveness and their interactions with plants and native soil microbiota. This work developed a real-time PCR (qtPCR) method which traces and quantifies bacteria when added as microbial consortia, including five PGPR species: Burkholderia ambifaria, Bacillus amyloliquefaciens, Azotobacter chroococcum, Pseudomonas fluorescens, and Rahnella aquatilis. Through a literature search and in silico sequence analyses, a set of primer pairs which selectively tag three bacterial species (B. ambifaria, B. amyloliquefaciens and R. aquatilis) was retrieved. The primers were used to trace these microbial species in a field trial in which the consortium was tested as a biostimulant on two wheat varieties, in combination with biochar and the mycorrhizal fungus Rhizophagus intraradices. The qtPCR assay demonstrated that the targeted bacteria had colonized and grown into the soil, reaching a maximum of growth between 15 and 20 days after inoculum. The results also showed biochar had a positive effect on PGPR growth. In conclusion, qtPCR was once more an effective method to trace the fate of supplied bacterial species in the consortium when used as a cargo system for their delivery.
Collapse
|
32
|
Vandermaesen J, Daly AJ, Mawarda PC, Baetens JM, De Baets B, Boon N, Springael D. Cooperative interactions between invader and resident microbial community members weaken the negative diversity-invasion relationship. Ecol Lett 2024; 27:e14433. [PMID: 38712704 DOI: 10.1111/ele.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.
Collapse
Affiliation(s)
| | - Aisling J Daly
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, Indonesia
| | - Jan M Baetens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
33
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Ben Zineb A, Lamine M, Khallef A, Hamdi H, Ahmed T, Al-Jabri H, Alsafran M, Mliki A, Sayadi S, Gargouri M. Harnessing rhizospheric core microbiomes from arid regions for enhancing date palm resilience to climate change effects. Front Microbiol 2024; 15:1362722. [PMID: 38646634 PMCID: PMC11027745 DOI: 10.3389/fmicb.2024.1362722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Date palm cultivation has thrived in the Gulf Cooperation Council region since ancient times, where it represents a vital sector in agricultural and socio-economic development. However, climate change conditions prevailing for decades in this area, next to rarefication of rain, hot temperatures, intense evapotranspiration, rise of sea level, salinization of groundwater, and intensification of cultivation, contributed to increase salinity in the soil as well as in irrigation water and to seriously threaten date palm cultivation sustainability. There are also growing concerns about soil erosion and its repercussions on date palm oases. While several reviews have reported on solutions to sustain date productivity, including genetic selection of suitable cultivars for the local harsh environmental conditions and the implementation of efficient management practices, no systematic review of the desertic plants' below-ground microbial communities and their potential contributions to date palm adaptation to climate change has been reported yet. Indeed, desert microorganisms are expected to address critical agricultural challenges and economic issues. Therefore, the primary objectives of the present critical review are to (1) analyze and synthesize current knowledge and scientific advances on desert plant-associated microorganisms, (2) review and summarize the impacts of their application on date palm, and (3) identify possible gaps and suggest relevant guidance for desert plant microbes' inoculation approach to sustain date palm cultivation within the Gulf Cooperation Council in general and in Qatar in particular.
Collapse
Affiliation(s)
- Ameni Ben Zineb
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mariem Lamine
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Ahlem Khallef
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Hareb Al-Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
35
|
Wang C, Kuzyakov Y. Rhizosphere engineering for soil carbon sequestration. TRENDS IN PLANT SCIENCE 2024; 29:447-468. [PMID: 37867041 DOI: 10.1016/j.tplants.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
The rhizosphere is the central hotspot of water and nutrient uptake by plants, rhizodeposition, microbial activities, and plant-soil-microbial interactions. The plasticity of plants offers possibilities to engineer the rhizosphere to mitigate climate change. We define rhizosphere engineering as targeted manipulation of plants, soil, microorganisms, and management to shift rhizosphere processes for specific aims [e.g., carbon (C) sequestration]. The rhizosphere components can be engineered by agronomic, physical, chemical, biological, and genomic approaches. These approaches increase plant productivity with a special focus on C inputs belowground, increase microbial necromass production, protect organic compounds and necromass by aggregation, and decrease C losses. Finally, we outline multifunctional options for rhizosphere engineering: how to boost C sequestration, increase soil health, and mitigate global change effects.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, 37077 Goettingen, Germany.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, 37077 Goettingen, Germany.
| |
Collapse
|
36
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
37
|
Batool M, Carvalhais LC, Fu B, Schenk PM. Customized plant microbiome engineering for food security. TRENDS IN PLANT SCIENCE 2024; 29:482-494. [PMID: 37977879 DOI: 10.1016/j.tplants.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.
Collapse
Affiliation(s)
- Maria Batool
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brendan Fu
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia; Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD 4105, Australia.
| |
Collapse
|
38
|
Čaušević S, Dubey M, Morales M, Salazar G, Sentchilo V, Carraro N, Ruscheweyh HJ, Sunagawa S, van der Meer JR. Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions. Nat Commun 2024; 15:2557. [PMID: 38519488 PMCID: PMC10959995 DOI: 10.1038/s41467-024-46933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.
Collapse
Affiliation(s)
- Senka Čaušević
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Guillem Salazar
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
39
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
40
|
Serrão CP, Ortega JCG, Rodrigues PC, de Souza CRB. Bacillus species as tools for biocontrol of plant diseases: A meta-analysis of twenty-two years of research, 2000-2021. World J Microbiol Biotechnol 2024; 40:110. [PMID: 38411743 DOI: 10.1007/s11274-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.
Collapse
Affiliation(s)
- Cleyson Pantoja Serrão
- Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, CEP 66075-110, PA, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFPA, Belém, CEP 66075-110, PA, Brazil
| | | | - Paulo Canas Rodrigues
- Departamento de Estatística, Universidade Federal da Bahia (UFBA), Salvador, CEP 40170-110, BA, Brazil
| | | |
Collapse
|
41
|
Papin M, Philippot L, Breuil MC, Bru D, Dreux-Zigha A, Mounier A, Le Roux X, Rouard N, Spor A. Survival of a microbial inoculant in soil after recurrent inoculations. Sci Rep 2024; 14:4177. [PMID: 38378706 PMCID: PMC10879113 DOI: 10.1038/s41598-024-54069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Microbial inoculants are attracting growing interest in agriculture, but their efficacy remains unreliable in relation to their poor survival, partly due to the competition with the soil resident community. We hypothesised that recurrent inoculation could gradually alleviate this competition and improve the survival of the inoculant while increasing its impact on the resident bacterial community. We tested the effectiveness of such strategy with four inoculation sequences of Pseudomonas fluorescens strain B177 in soil microcosms with increasing number and frequency of inoculation, compared to a non-inoculated control. Each sequence was carried out at two inoculation densities (106 and 108 cfu.g soil-1). The four-inoculation sequence induced a higher abundance of P. fluorescens, 2 weeks after the last inoculation. No impact of inoculation sequences was observed on the resident community diversity and composition. Differential abundance analysis identified only 28 out of 576 dominants OTUs affected by the high-density inoculum, whatever the inoculation sequence. Recurrent inoculations induced a strong accumulation of nitrate, not explained by the abundance of nitrifying or nitrate-reducing microorganisms. In summary, inoculant density rather than inoculation pattern matters for inoculation effect on the resident bacterial communities, while recurrent inoculation allowed to slightly enhance the survival of the inoculant and strongly increased soil nitrate content.
Collapse
Affiliation(s)
- M Papin
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - L Philippot
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France.
| | - M C Breuil
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - D Bru
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - A Dreux-Zigha
- GreenCell Biopole Clermont Limagne, 63360, St Beauzire, France
| | - A Mounier
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - X Le Roux
- Universite Claude Bernard Lyon 1, Microbial Ecology Centre LEM, INRAE, CNRS, VetAgroSup, UMR INRAE 1418, 43 Blvd 11 Novembre 1918, 69622, Villeurbanne, France
| | - N Rouard
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - A Spor
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| |
Collapse
|
42
|
O'Brien AM, Laurich JR, Frederickson ME. Evolutionary consequences of microbiomes for hosts: impacts on host fitness, traits, and heritability. Evolution 2024; 78:237-252. [PMID: 37828761 DOI: 10.1093/evolut/qpad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
An organism's phenotypes and fitness often depend on the interactive effects of its genome (Ghost), microbiome (Gmicrobe), and environment (E). These G × G, G × E, and G × G × E effects fundamentally shape host-microbiome (co)evolution and may be widespread, but are rarely compared within a single experiment. We collected and cultured Lemnaminor (duckweed) and its associated microbiome from 10 sites across an urban-to-rural ecotone. We factorially manipulated host genotype and microbiome in two environments (low and high zinc, an urban aquatic stressor) in an experiment with 200 treatments: 10 host genotypes × 10 microbiomes × 2 environments. Host genotype explained the most variation in L.minor fitness and traits, while microbiome effects often depended on host genotype (G × G). Microbiome composition predicted G × G effects: when compared in more similar microbiomes, duckweed genotypes had more similar effects on traits. Further, host fitness increased and microbes grew faster when applied microbiomes more closely matched the host's field microbiome, suggesting some local adaptation between hosts and microbiota. Finally, selection on and heritability of host traits shifted across microbiomes and zinc exposure. Thus, we found that microbiomes impact host fitness, trait expression, and heritability, with implications for host-microbiome evolution and microbiome breeding.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Custer GF, Mealor BA, Fowers B, van Diepen LTA. Soil microbiome analysis supports claims of ineffectiveness of Pseudomonas fluorescens D7 as a biocontrol agent of Bromus tectorum. Microbiol Spectr 2024; 12:e0177123. [PMID: 38051051 PMCID: PMC10782950 DOI: 10.1128/spectrum.01771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cheatgrass is one of North America's most problematic invasive species. Invasion by this annual grass alters ecosystem structure and function and has proven very challenging to remove with traditional approaches. Commercially available bioherbicides, like P. fluorescens D7, are applied with the goal of providing lasting control from a single application. However, experimental results suggest that this bioherbicide has limited efficacy under field conditions. Potential explanations for variable efficacy include a failure of this bioherbicide to establish in the soil microbiome. However, to our knowledge, no data exist to support or refute this hypothesis. Here, we use a deep-sequencing approach to better understand the effects of this bioherbicide on the soil microbiome and screen for P. fluorescens at 18 months post-application.
Collapse
Affiliation(s)
- Gordon F. Custer
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- The One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian A. Mealor
- Department of Plant Sciences, University of Wyoming, Laramie, Wyoming, USA
- Sheridan Research and Extension Center, Sheridan, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| | - Beth Fowers
- Department of Plant Sciences, University of Wyoming, Laramie, Wyoming, USA
- Sheridan Research and Extension Center, Sheridan, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| | - Linda T. A. van Diepen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| |
Collapse
|
44
|
Richards SC, King WL, Sutherland JL, Bell TH. Leveraging aquatic-terrestrial interfaces to capture putative habitat generalists. FEMS Microbiol Lett 2024; 371:fnae025. [PMID: 38553956 DOI: 10.1093/femsle/fnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Habitat type is a strong determinant of microbial composition. Habitat interfaces, such as the boundary between aquatic and terrestrial systems, present unique combinations of abiotic factors for microorganisms to contend with. Aside from the spillover of certain harmful microorganisms from agricultural soils into water (e.g. fecal coliform bacteria), we know little about the extent of soil-water habitat switching across microbial taxa. In this study, we developed a proof-of-concept system to facilitate the capture of putatively generalist microorganisms that can colonize and persist in both soil and river water. We aimed to examine the phylogenetic breadth of putative habitat switchers and how this varies across different source environments. Microbial composition was primarily driven by recipient environment type, with the strongest phylogenetic signal seen at the order level for river water colonizers. We also identified more microorganisms colonizing river water when soil was collected from a habitat interface (i.e. soil at the side of an intermittently flooded river, compared to soil collected further from water sources), suggesting that environmental interfaces could be important reservoirs of microbial habitat generalists. Continued development of experimental systems that actively capture microorganisms that thrive in divergent habitats could serve as a powerful tool for identifying and assessing the ecological distribution of microbial generalists.
Collapse
Affiliation(s)
- Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- School of Biological Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Jeremy L Sutherland
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
45
|
Temmermans J, Legein M, Zhao Y, Kiekens F, Smagghe G, de Coninck B, Lebeer S. The biocontrol agent Lactiplantibacillus plantarum AMBP214 is dispersible to plants via bumblebees. Appl Environ Microbiol 2023; 89:e0095023. [PMID: 37882529 PMCID: PMC10686056 DOI: 10.1128/aem.00950-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Plant protection products are essential for ensuring food production, but their use poses a threat to human and environmental health, and their efficacy is decreasing due to the acquisition of resistance by pathogens. Stricter regulations and consumer demand for cleaner produce are driving the search for safer and more sustainable alternatives. Microbial biocontrol agents, such as microorganisms with antifungal activity, have emerged as a promising alternative management strategy, but their commercial use has been limited by poor establishment and spread on crops. This study presents a novel system to overcome these challenges. The biocontrol agent Lactiplantibacillus plantarum AMBP214 was spray-dried and successfully dispersed to strawberry flowers via bumblebees. This is the first report of combining spray-dried, non-spore-forming bacteria with pollinator-dispersal, which scored better than the state-of-the-art in terms of dispersal to the plant (CFU/flower), and resuscitation of the biocontrol agent. Therefore, this new entomovectoring system holds great promise for the use of biocontrol agents for disease management in agriculture.
Collapse
Affiliation(s)
- Jari Temmermans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
| | - Marie Legein
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Yijie Zhao
- Laboratory of Plant Health and Protection, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, Antwerp University, Wilrijk, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Barbara de Coninck
- Laboratory of Plant Health and Protection, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp University, Antwerp, Belgium
| |
Collapse
|
46
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
47
|
Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol 2023; 14:1285543. [PMID: 38033592 PMCID: PMC10682734 DOI: 10.3389/fmicb.2023.1285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.
Collapse
Affiliation(s)
- Shaista Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Srivastava
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
48
|
Uchimiya M, DeRito CM, Hay AG. Sugarcane mill mud-induced putative host (soybean (Glycine max))-rhizobia symbiosis in sandy loam soil. PLoS One 2023; 18:e0293317. [PMID: 37917645 PMCID: PMC10621829 DOI: 10.1371/journal.pone.0293317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern states, because of its high phosphorus and organic carbon contents. Addition of mill mud to sandy loam significantly increased the nodule formation compared to fertilized and unfertilized controls. Mill mud addition also resulted in pod yields similar to the fertilized control. Though not found in mill mud itself, mill mud additions correlated with an increase in soil Rhizobia as determined by deep 16S rRNA gene sequencing. We hypothesize that Firmicutes in sterilized mill mud induced Rhizobia that in turn enhanced soybean (Glycine max) growth. Collectively, mill mud enhanced the plant growth promoting bacteria when applied to a silt loam, although the relative influence of mill mud-derived bacteria, organic carbon, and nutrients is yet to be determined.
Collapse
Affiliation(s)
- Minori Uchimiya
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, Louisiana, United States of America
| | - Christopher M. DeRito
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
49
|
Benmrid B, Ghoulam C, Zeroual Y, Kouisni L, Bargaz A. Bioinoculants as a means of increasing crop tolerance to drought and phosphorus deficiency in legume-cereal intercropping systems. Commun Biol 2023; 6:1016. [PMID: 37803170 PMCID: PMC10558546 DOI: 10.1038/s42003-023-05399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ensuring plant resilience to drought and phosphorus (P) stresses is crucial to support global food security. The phytobiome, shaped by selective pressures, harbors stress-adapted microorganisms that confer host benefits like enhanced growth and stress tolerance. Intercropping systems also offer benefits through facilitative interactions, improving plant growth in water- and P-deficient soils. Application of microbial consortia can boost the benefits of intercropping, although questions remain about the establishment, persistence, and legacy effects within resident soil microbiomes. Understanding microbe- and plant-microbe dynamics in drought-prone soils is key. This review highlights the beneficial effects of rhizobacterial consortia-based inoculants in legume-cereal intercropping systems, discusses challenges, proposes a roadmap for development of P-solubilizing drought-adapted consortia, and identifies research gaps in crop-microbe interactions.
Collapse
Affiliation(s)
- Bouchra Benmrid
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| | - Cherki Ghoulam
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
- Agrobiotechnology & Bioengineering Center, Research Unit CNRST labeled, Cadi Ayyad University, Faculty of Sciences and Techniques, 40000, Marrakech, Morocco
| | - Youssef Zeroual
- Situation Innovation - OCP Group, Jorf Lasfar, 24025, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Adnane Bargaz
- Plant-Microbe Interactions Laboratory, AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
50
|
Rodríguez R, Barra PJ, Larama G, Carrion VJ, de la Luz Mora M, Hale L, Durán P. Microbiome engineering optimized by Antarctic microbiota to support a plant host under water deficit. FRONTIERS IN PLANT SCIENCE 2023; 14:1241612. [PMID: 37780522 PMCID: PMC10541027 DOI: 10.3389/fpls.2023.1241612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress. Microbiome engineering was mediated through three factors i) Antarctic soil donation, ii) water deficit and iii) multigenerational tomato host selection. We revealed that tomato plants growing in soils supplemented with Antarctic microbiota were tolerant to water deficit stress after 10 generations. A clear increase in tomato seedling tolerance against water deficit stress was observed in all soils over generations of Host Mediated Microbiome Engineering, being Fildes mixture the most representatives, which was evidenced by an increased survival time, plant stress index, biomass accumulation, and decreased leaf proline content. Microbial community analysis using 16s rRNA gene amplicon sequencing data suggested a microbiome restructuring that could be associated with increased tolerance of water deficit. Additionally, the results showed a significant increase in the relative abundance of Candidatus Nitrosocosmicus and Bacillus spp. which could be key taxa associated with the observed tolerance improvement. We proposed that in situ microbiota engineering through the evolution of three factors (long-standing extreme climate adaption and host and stress selection) could represent a promising strategy for novel generation of microbial inoculants.
Collapse
Affiliation(s)
- Rodrigo Rodríguez
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Agroscientific SpA, Temuco, Chile
| | - Patricio J. Barra
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | | | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|