1
|
Gao HX, Chen N, He Q, Zeng WC. A novel microemulsion loaded with Ligustrum robustum (Rxob.) Blume polyphenols: Preparation, characterization, and application. Food Chem 2025; 476:143495. [PMID: 39986085 DOI: 10.1016/j.foodchem.2025.143495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The low solubility of phenolic compounds in oils limits their protective effect on oil quality. In the present study, novel microemulsions were designed and prepared with Ligustrum robustum (Rxob.) Blume polyphenols extract (LRE) using soybean oil as the oil phase, a combination of Tween80 and Span80 as surfactants, and ethanol as the co-surfactant, and subsequently characterized and evaluated their properties and performance in oil. Results showed that the amount of LRE dissolved in prepared microemulsions could reach 0.025 g/g oil. According to the droplet size, rheology, differential scanning calorimetry, and transmission electron microscopy measurements, LRE had no negative effects on microemulsion structure and increased the particle size, viscosity, and interfacial strength of microemulsion. Moreover, LRE exhibited remarkable antioxidant activities, and the LRE-loaded microemulsions showed no obvious cytotoxicity on Caco-2 cells. Furthermore, the LRE-loaded microemulsions exhibited superior effectiveness in inhibiting oil oxidation during storage, compared to the direct addition of LRE. All results suggest that the microemulsion has the potential used as an embedded material for natural antioxidants in food industry.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
3
|
Meng W, Zhang J, Hou H, Yu L, Dong P. Exploring the structures and molecular mechanisms of bioactive compounds from marine foods for hyperuricemia prevention: a systematic review. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40020721 DOI: 10.1080/10408398.2025.2464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Hyperuricemia, characterized by an elevation in serum uric acid (UA) levels, stands as a significant metabolic ailment threatening human well-being. Presently, dietary adjustments have become a crucial strategy in managing serum UA levels among individuals grappling with hyperuricemia and gout. Given its unique ecosystem, the ocean hosts a plethora of organisms boasting distinct structures and active components. The marine bioactive substances, such as bioactive peptides, polysaccharides, lipids, and small molecules, have garnered attention in the research and development of modern functional foods and biomedicine due to their profound efficacy and distinctive compositions. Notably, the functional components of marine foods have been studied for their potential in preventing hyperuricemia. However, the precise molecular mechanism underlying their actions remain incompletely elucidated. This review article highlights the diversity of marine active compounds and the latest progress in understanding urate-lowering mechanism. Principal mechanisms primarily encompass the regulation of UA metabolism, maintenance of intestinal homeostasis, mitigation of inflammatory responses, and alleviation of oxidative stress. Furthermore, we scrutinized the constraints of prior studies and provided recommendations. In sum, this article furnished a valuable resource concerning the intervention of bioactive compounds sourced from marine foods in the context of hyperuricemia.
Collapse
Affiliation(s)
- Wenya Meng
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ping Dong
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Pugazhendhi A, Alshehri MA, Kandasamy S, Sarangi PK, Sharma A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem 2025; 464:141762. [PMID: 39509889 DOI: 10.1016/j.foodchem.2024.141762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Various bodily functions are maintained, and health benefits are provided by food-derived bioactive components. Fruits and vegetables contain numerous beneficial components, including vitamins, minerals, antioxidants, enzymes, and phytonutrients. However, the body's ability to absorb these substances at a given rate and degree frequently limits their bioavailability. If food-derived bio actives are used as therapeutic or dietary interventions, this limitation can result in low efficacy and suboptimal results. Recently, nanotechnology has been a useful method for increasing the bioavailability of bioactive compounds produced from food. Active ingredients can be delivered and absorbed more efficiently with the help of nanotechnology. By altering their size or surface properties, bioactive components can be made more soluble, permeable, and bioavailable through nanotechnology. The present review will provide an overview of the various bioactive components, the application of nanotechnology to improve the availability of bioactive molecules to humans and animals, and the challenges and safety concerns associated with nanotechnology in the production of food-derived bioactive molecules.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
5
|
Liu Y, Dong F, Zhou L, Zhao Q, Zhang S. Development of soybean protein-based bioactive substances delivery systems: A systematic overview based on recent researches. Int J Biol Macromol 2025; 285:137998. [PMID: 39626811 DOI: 10.1016/j.ijbiomac.2024.137998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limit their application in functional foods. In recent years, in order to improve the above problems of bioactive substances, soybean protein-based drug delivery systems have been developed. This article reviewed the structure and properties of several major soybean protein commonly used to construct bioactive substance delivery systems. Several common carrier types based on soybean protein were then introduced. The biological functions and limitations of several common soybean protein delivery bioactive substances and the role of soybean protein-based delivery systems were discussed. At present, soybean protein is the most widely used in drug delivery systems. Soybean protein-based nano-particles are currently the most commonly used delivery carriers. Soybean protein-based hydrogels, emulsions, microcapsules and electrospinning are also widely used. Polyphenols, carotenoids, vitamins, functional oils and probiotics are bioactive substances that are frequently delivered. However, in order to promote the application of soybean protein-based delivery systems in food, soybean protein peptidyl delivery vectors and collaborative delivery are the future development trends. In addition, a number of challenges must be addressed, including the sensitization of soybean protein, intolerance to environmental conditions, and the limitations of processing technologies.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengjuan Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- School of food and health, Beijing Technology and Business University, Beijing 100048, China
| | - Qingkui Zhao
- Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
6
|
Navab F, Rezaei A, Rouhani MH, Shahdadian F, Alikord M. Vitamin D3 capsulation using maillard reaction complex of sodium caseinate and tragacanth gum. Food Chem X 2024; 24:101910. [PMID: 39553234 PMCID: PMC11564911 DOI: 10.1016/j.fochx.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The encapsulation of vitamin D3 (VitD3) using the Maillard reaction complex of sodium caseinate-tragacanth gum (TG) to the production of water-soluble vitamins were studied. Spray drying was used to prepare the complex. Its physicochemical properties, stability, and release characteristics were evaluated. The results showed that containing sodium caseinate- Tragacanth gum (TG) 1 % (w/v) and VitD3 1 % (w/v) had the highest encapsulation efficiency (71 %). The resulting microcapsules showed suitable particle size, strong negative zeta potential, and good stability with spherical morphology. Thermal and spectroscopic analyses showed proper interaction between wall and core components. In vitro, release and simulated digestion studies demonstrated the ability of microcapsules to protect VitD3 under gastric conditions and provide controlled release in the intestine. This encapsulation system shows potential for enriching food with VitD3 and increasing its stability and bioavailability.
Collapse
Affiliation(s)
- Fatemeh Navab
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Alikord
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, Ciftci ON, Liu L. Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis. Int J Biol Macromol 2024; 283:137463. [PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
Collapse
Affiliation(s)
- Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ruyan Hou
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Guijie Chen
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
8
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2024; 64:11894-11918. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
11
|
Fernandes FA, Carocho M, Prieto MA, Barros L, Ferreira ICFR, Heleno SA. Nutraceuticals and dietary supplements: balancing out the pros and cons. Food Funct 2024; 15:6289-6303. [PMID: 38805010 DOI: 10.1039/d4fo01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While the market is full of different dietary supplements, in most countries, legislation is clear and strict towards these products, with severe limitations on their health claims. Overall, the claims cannot go beyond the consumption of a said supplement will contribute to a healthy diet. Thus, the supplement industry has been reacting and changing their approach to consumers. One change is the considerable growth of the nutraceutical market, which provides naturally produced products, with low processing and close to no claims on the label. The marketing of this industry shifts from claiming several benefits on the label (dietary supplements) to relying on the knowledge of consumers towards the benefits of minimally processed foods filled with natural products (nutraceuticals). This review focuses on the difference between these two products, their consumption patterns, forms of presentation, explaining what makes them different, their changes through time, and their most notable ingredients, basically balancing out their pros and cons.
Collapse
Affiliation(s)
- Filipa A Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
14
|
Tavazzani E, Spaiardi P, Contini D, Sancini G, Russo G, Masetto S. Precision medicine: a new era for inner ear diseases. Front Pharmacol 2024; 15:1328460. [PMID: 38327988 PMCID: PMC10848152 DOI: 10.3389/fphar.2024.1328460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect μl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ICS-Maugeri IRCCS, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Donatella Contini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024; 65:1811-1832. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
16
|
Guo S, Guo Q, Zhang Y, Peng X, Ma C, McClements DJ, Liu X, Liu F. Preparation of enzymatically cross-linked α-lactalbumin nanoparticles and their application for encapsulating lycopene. Food Chem 2023; 429:136394. [PMID: 37478605 DOI: 10.1016/j.foodchem.2023.136394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 07/23/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by protein nanoparticles have been widely reported, but the use of enzymatic methods for preparing these nanoparticles remains underexplored. Our hypothesis is that enzymatically crosslinked α-lactalbumin (ALA) nanoparticles (ALATGs) prepared using transglutaminase will demonstrate improved properties as stabilizers for HIPPEs. In this study, we investigated the physicochemical properties and microstructures of ALATGs, finding that enzymatic crosslinking could be enhanced by removing Ca2+ ions from ALA and preheating the proteins (85 °C, 15 min). The electrical charge, secondary structure, and surface hydrophobicity of ALATGs were found to depend on crosslinking conditions. HIPPEs formed with an ALA concentration of 10 mg/mL and an enzyme activity of 120 U/g exhibited the highest apparent viscosity and mechanical strength, as well as significantly improved loading capacity and photostability for the encapsulated lycopene. Overall, our results support the hypothesis that ALATG-nanoparticles show superior performance as emulsifiers compared to ALA-nanoparticles.
Collapse
Affiliation(s)
- Siqi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yifan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
González-Vega RI, Robles-García MÁ, Mendoza-Urizabel LY, Cárdenas-Enríquez KN, Ruiz-Cruz S, Gutiérrez-Lomelí M, Iturralde-García RD, Avila-Novoa MG, Villalpando-Vargas FV, Del-Toro-Sánchez CL. Impact of the ABO and RhD Blood Groups on the Evaluation of the Erythroprotective Potential of Fucoxanthin, β-Carotene, Gallic Acid, Quercetin and Ascorbic Acid as Therapeutic Agents against Oxidative Stress. Antioxidants (Basel) 2023; 12:2092. [PMID: 38136212 PMCID: PMC10740450 DOI: 10.3390/antiox12122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, β-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress. The impact of ABO blood groups on the erythroprotective potential was evaluated via the antioxidant capacity, blood biocompatibility, blood susceptibility and erythroprotective potential (membrane stabilization, in vitro photostability and antihemolytic activity). All tested antioxidants exhibited a high antioxidant capacity and presented the ability to inhibit ROO•-induced oxidative stress without compromising the cell membrane, providing erythroprotective effects dependent on the blood group, effects that increased in the presence of antigen A. These results are very important, since it has been documented that antigen A is associated with breast and skin cancer. These results revealed a probable relationship between different erythrocyte antigens with erythroprotective potential, highlighting the importance of bio-targeted drugs for groups most susceptible to certain chronic-degenerative pathologies. These compounds could be applied as additive, nutraceutical or encapsulated to improve their bioaccessibility.
Collapse
Affiliation(s)
- Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences (CUCBA), Universidad de Guadalajara, Periférico Norte N° 799 Núcleo Universitario, C. Prol. Belenes, Zapopan 45100, Jalisco, Mexico;
| | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Litzy Yadira Mendoza-Urizabel
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Kelly Nabil Cárdenas-Enríquez
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Saúl Ruiz-Cruz
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Melesio Gutiérrez-Lomelí
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Rey David Iturralde-García
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - María Guadalupe Avila-Novoa
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Fridha Viridiana Villalpando-Vargas
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences (CUCBA), Universidad de Guadalajara, Periférico Norte N° 799 Núcleo Universitario, C. Prol. Belenes, Zapopan 45100, Jalisco, Mexico;
- Department of Health Sciences, University Center of the Valleys (CUVALLE), Universidad de Guadalajara, Carr. a Guadalajara Km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| |
Collapse
|
18
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Nanotechnology and curcumin: a novel and promising approach in digestive cancer therapy. Nanomedicine (Lond) 2023; 18:2081-2099. [PMID: 38078442 DOI: 10.2217/nnm-2023-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zheng Li
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Xu
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bingwen Zou
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
19
|
Machado M, Sousa S, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Anti-obesity potential of a yogurt functionalized with a CLNA-rich pomegranate oil. Food Res Int 2023; 173:113364. [PMID: 37803704 DOI: 10.1016/j.foodres.2023.113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
Pomegranate oil is rich in conjugated linolenic acids, compounds which have attracted attention due to their potential applicability in obesity management as they are capable of modulating leptin and adiponectin secretion and regulate fatty acids storage and glucose metabolism. Among the possible bioactive foodstuffs capable of delivering these bioactive compounds yogurts have shown potential. Thus, the purpose of this work was to develop functional yogurts through the addition of pomegranate oil either in its free or encapsulated (used as a protective strategy against oxidation and gastrointestinal tract passage) forms. To that end, the pomegranate oil (free and encapsulated) was incorporated in yogurt and the functional yogurt capacity to modulate hepatic lipid accumulation, adipocyte metabolism (in terms of lipolysis, and adipokines secretion) and immune response was evaluated. The results obtained showed that the pomegranate oil's incorporation led to an improvement in the yogurts' nutritional values, with a reduction in its atherogenic and thrombogenic indexes (more than 78% for atherogenic and 76% for thrombogenic index) and an enhancement of its hypocholesterolemic/hypercholesterolemic ratio (more than 62%) when compared to the control yogurt. Furthermore, data also showed for the first time how these functional yogurts promoted modulation of metabolic processes post GIT as they were capable of reducing by 40% triglycerides accumulation in steatosis-induced Hep G2 cells and by 30 % in differentiated adipocytes. Moreover, samples also showed a capacity to modulate the leptin and adiponectin secretion (56 % of increase in adiponectin) and reduce the IL-6 secretion (ca 44%) and TNF-α (ca 12%) in LPS-stimulated cells. Thus, the CLNA-rich yogurt here developed showed potential as a viable nutraceutical alternative for obesity management.
Collapse
Affiliation(s)
- Manuela Machado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodriguez-Alcalá
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
20
|
Olbińska E, Trela-Makowej A, Larysz W, Orzechowska A, Szymańska R. The effect of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water (O/W) emulsions. Colloids Surf B Biointerfaces 2023; 230:113536. [PMID: 37696162 DOI: 10.1016/j.colsurfb.2023.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
The effect of the antioxidant activity of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water emulsion was investigated. The antioxidant activity of free and encapsulated α-tocopherol was measured in a 2,2-diphenyl-1-picrylhydrazyl reaction. Apart from α-tocopherol micelles, the samples showed similar antioxidant activity. The number of primary oxidation products in the emulsion with tocopherol liposomes and niosomes was lower than in the emulsion with micelles. During storage, the lipid peroxides gradually increased, whereas in emulsion with no α-tocopherol carriers added they remained constant. The content of the conjugated dienes first increased, and after 14 days at the end of testing time it remained stable in both types of emulsions. Our results might suggest that α-tocopherol when encapsulated into carriers exhibits lower antioxidant activity. The results obtained could be due to the better solubility of α-tocopherol in lipid droplets and thus the lower availability for the interfacial region, which is thought to be the place of the most pronounced lipid oxidation.
Collapse
Affiliation(s)
- Ewa Olbińska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Weronika Larysz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
21
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Sayanam RRA, Nachiappan K, Khan JM, Ahmad A, Vijayakumar N. Antibacterial, antifungal, and antioxidant competence of Cardiospermum halicacabum based nanoemulsion and characterized their physicochemical properties. 3 Biotech 2023; 13:284. [PMID: 37520341 PMCID: PMC10374496 DOI: 10.1007/s13205-023-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
This research was designed to evaluate the pharmaceutical potentials of various proportions of nanoemulsions, Cardiospermum halicacabum Nanoemulsion A and Cardiospermum halicacabum Nanoemulsion B (CHE-NE-A & CHE-NE-B) prepared from the hydroalcoholic extract of Cardiospermum halicacabum through in vitro approach, and their physicochemical properties were characterized using standard scientific analytical techniques. The physicochemical and morphological properties of CHE-NE-A and CHE-NE-B were characterized by FTIR, SEM, TEM, zeta potential, and scattering light intensity analyses. The results revealed that the size, shape, and exterior conditions of nano-droplets of the CHE-NE-A nanoemulsion were suitable as a drug carrier. The reports obtained from in vitro drug releasing potential analysis support this as well. CHE-NE-A nanoemulsion constantly removes the drug from the dialysis bag than CHE-NE-B. Moreover, the CHE-NE-A showed considerable dose-dependent antioxidant activity on DPPH, ABTS, and FRAP free radicals. CHE-NE-A and CHE-NE-B were tested for their antibacterial activity with various bacterial strains. The results demonstrated that the CHE-NE-A nanoemulsion showed remarkable antibacterial activity (zone of inhibition) against test bacterial pathogens than CHE-NE-B. The antibacterial activity of CHE-NE-A at a concentration of 200 µg mL-1was in the following order, P. aeruginosa > S. aureus > S. typhimurium > S. pneumoniae > E. coli. Furthermore, CHE-NE-A has the lowest MIC values against these test bacterial pathogens than CHE-NE-B. Moreover, the CHE-NE-A also demonstrated good antifungal activity against the test fungal pathogens such as Cryptococcus neoformans, Aspergillus niger, Candida pneumonia, and Penicillium expansum than CHE-NE-B. These results strongly suggest that the CHE-NE-A nanoemulsion possesses considerable pharmaceutical potential. Interestingly, the physicochemical properties also rope that the CHE-NE-A nanoemulsion may be considered a drug carrier and useful for drug formulation.
Collapse
Affiliation(s)
- Rajeswari Ranga Anantha Sayanam
- Department of Biochemistry, School of Allied Health Sciences, VMKVMCH Campus, Vinayaka Mission’s Research Foundation (DU), Salem, Tamil Nadu 636308 India
| | | | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL USA
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002 India
| |
Collapse
|
23
|
Gu L, Wang W, Wu B, Ji S, Xia Q. Preparation and in vitro characterization studies of astaxanthin-loaded nanostructured lipid carriers with antioxidant properties. J Biomater Appl 2023:8853282231189779. [PMID: 37452613 DOI: 10.1177/08853282231189779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The purpose of this study was to evaluate the astaxanthin-loaded nanostructured lipid carriers (ASX-NLC) prepared using a high-pressure homogenization transport system for local application of astaxanthin. Dynamic light scattering (DLS) and X-ray diffraction (XRD) were used to study the effect of microencapsulation on the properties of ASX-NLC. The mean size of ASX-NLC was about 108.43 ± 0.26 nm and PdI was 0.176 ± 0.002. The ASX-NLC had high encapsulation efficiency which was 95.69 ± 0.13%. Good light stability and temperature stability were shown at the ASX-NLC, indicating that the preparation process was feasible. The 2,2-diphenyl-1-pyridylohydrazinyl (DPPH) scavenging test showed that ASX-NLC could still play an antioxidant role. In vitro release studies showed that compared with an astaxanthin ethanol solution, an ASX-NLC could maintain astaxanthin release more effectively. In vitro permeation studies showed that ASX-NLC could increase astaxanthin retention in the skin. In conclusion, ASX-NLC could significantly enhance astaxanthin accumulation during dermal applications. The research results have important reference significance for local skin applications and provide a basis for the development of nanostructured lipid carriers. ASX-NLC might be suitable carriers for the local application of astaxanthin.
Collapse
Affiliation(s)
- Liyuan Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenjuan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bi Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Suping Ji
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Effect of oligosaccharides as lyoprotectants on the stability of curcumin-loaded nanoliposomes during lyophilization. Food Chem 2023; 410:135436. [PMID: 36640657 DOI: 10.1016/j.foodchem.2023.135436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Nanoliposome is a promising delivery system, whereas its commercial application is limited by the structural instability, cargo leakage and particles aggregation during the processing such as freeze-drying. In this study, the effect of four oligosaccharides, fructo-oligosaccharides, lactose, inulin and sucrose (control), on the physicochemical properties, structural stability, and in vitro semi-dynamic digestion behavior of curcumin-loaded nanoliposomes were investigated before and after lyophilization. The results showed that the addition of the oligosaccharides inhibited the changes in particle size and reduced curcumin leakage from lyophilized nanoliposomes. Oligosaccharides significantly improved the physical stability of lyophilized nanoliposomes and delayed curcumin release during in vitro digestion. In addition, oligosaccharides could decrease the hydrophobicity of liposomal membrane and the tightness of phospholipid molecule arrangement, with the increase in micropolarity and fluidity of the bilayer membranes. These results suggested that fructo-oligosaccharides, lactose and inulin could be effective lyoprotectants for lyophilized nanoliposomes.
Collapse
|
25
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
27
|
Safaeian Laein S, Katouzian I, Mozafari MR, Farnudiyan-Habibi A, Akbarbaglu Z, Shadan MR, Sarabandi K. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit Rev Food Sci Nutr 2023; 64:7728-7747. [PMID: 36950963 DOI: 10.1080/10408398.2023.2191281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists' findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nano-Encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khashayar Sarabandi
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
28
|
Li M, Guo Q, Lin Y, Bao H, Miao S. Recent Progress in Microencapsulation of Active Peptides-Wall Material, Preparation, and Application: A Review. Foods 2023; 12:foods12040896. [PMID: 36832971 PMCID: PMC9956665 DOI: 10.3390/foods12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (H.B.); (S.M.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
- Correspondence: (H.B.); (S.M.)
| |
Collapse
|
29
|
Liu X, Liao W, Xia W. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
30
|
Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomol Ther (Seoul) 2023; 31:16-26. [PMID: 36122910 PMCID: PMC9810454 DOI: 10.4062/biomolther.2022.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes is an untreatable metabolic disorder characterized by alteration in blood sugar homeostasis, with submucosal insulin therapy being the primary treatment option. This route of drug administration is attributed to low patient comfort due to the risk of pain, distress, and local inflammation/infections. Nanoparticles have indeed been suggested as insulin carriers to allow the drug to be administered via less invasive routes other than injection, such as orally or nasally. The organic-based nanoparticles can be derived from various organic materials (for instance, polysaccharides, lipids, and so on) and thus are prevalently used to enhance the physical and chemical consistency of loaded bioactive compounds (drug) and thus their bioavailability. This review presents various forms of organic nanoparticles (for example, chitosan, dextron, gums, nanoemulsion, alginate, and so on) for enhanced hypoglycemic drug delivery relative to traditional therapies.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-961-0868
| |
Collapse
|
31
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Su Q, Zhao X, Zhang X, Wang Y, Zeng Z, Cui H, Wang C. Nano Functional Food: Opportunities, Development, and Future Perspectives. Int J Mol Sci 2022; 24:ijms24010234. [PMID: 36613678 PMCID: PMC9820276 DOI: 10.3390/ijms24010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
A functional food is a kind of food with special physiological effects that can improve health status or reduce illness. However, the active ingredients in functional foods are usually very low due to the instability and easy degradation of some nutrients. Therefore, improving the utilization rate of the effective ingredients in functional food has become the key problem. Nanomaterials have been widely used and studied in many fields due to their small size effect, high specific surface area, high target activity, and other characteristics. Therefore, it is a feasible method to process and modify functional food using nanotechnology. In this review, we summarize the nanoparticle delivery system and the food nanotechnology in the field of functional food. We also summarize and prospect the application, basic principle, and latest development of nano-functional food and put forward corresponding views.
Collapse
|
33
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
34
|
Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Adv Colloid Interface Sci 2022; 310:102806. [DOI: 10.1016/j.cis.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
35
|
Effect of small molecular surfactants on physical, turbidimetric, and rheological properties of Pickering nanoemulsions stabilized with whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Clove Oil-Nanostructured Lipid Carriers: A Platform of Herbal Anesthetics in Whiteleg Shrimp (Penaeus vannamei). Foods 2022. [DOI: 10.3390/foods11203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and −48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).
Collapse
|
37
|
Luisa Lüdtke F, Aparecida Stahl M, Grimaldi R, Bruno Soares Forte M, Lúcia Gigante M, Paula Badan Ribeiro A. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers. Food Res Int 2022; 160:111746. [DOI: 10.1016/j.foodres.2022.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/04/2022]
|
38
|
Kim YJ, Lee IY, Kim TE, Lee JH, Chun YG, Kim BK, Lee MH. Cholecalciferol- and α-tocopherol-loaded walnut oil emulsions stabilized by whey protein isolate and soy lecithin for food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5738-5749. [PMID: 35396740 DOI: 10.1002/jsfa.11923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND To overcome the limitations in the use of protein as an emulsifier, soy lecithin, a natural surfactant, was used along with whey protein isolate (WPI) to produce o/w emulsions containing cholecalciferol and α-tocopherol. The physical stability of the emulsions prepared with WPI and varying concentrations of lecithin (0, 1, 2, and 3% w/w) was measured in different heat, pH, and ionic-strength food environmental conditions. RESULTS All emulsions were shown to be less than 250 nm in size and less than 0.3 in polydispersity index (PDI). The morphology of the emulsions was spherical, and the droplets of the emulsion containing lecithin were thicker and larger than those of the emulsion without lecithin (WPI_L0). After autoclaving, WPI_L0 increased in size from 197.8 ± 1.7 nm to 528.5 ± 28.4 nm, and the retention of cholecalciferol and α-tocopherol decreased to 40.83 ± 0.63% and 49.68 ± 1.84%, respectively. At pH 5.5, near the isoelectric point of WPI, WPI_L0 increased in size due to aggregation, but emulsions containing lecithin remained stable at a PDI under 0.3. Turbiscan stability index of the emulsion prepared with WPI and 3% lecithin was the lowest, indicating good storage stability. In addition, it was confirmed that the higher the lecithin content, the higher the viscosity, and the higher the amount of free fatty acids released in the in vitro digestion model. CONCLUSION This study can provide theoretical evidence for enhancing the physical stability of protein emulsions by co-stabilization with lecithin, promoting their application in various foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - In Young Lee
- Food Convergence Infrastructure Team, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae-Eun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
39
|
Lei L, Liang XY, Su CR, Nag A, Yang XQ, Yuan Y. The self-assembled zein hydrolysate-curcumin nanocomplex: improvement on the stability and sustainable release of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5729-5737. [PMID: 35396741 DOI: 10.1002/jsfa.11922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The bioavailability of curcumin (Cur) is generally limited by its poor stability. However, it is beneficial to improve the stability of Cur by using self-assembled zein hydrolysate (ZH) as delivery carrier. This paper aimed to explore the formation mechanism of zein hydrolysate-curcumin nanocomplexes as a function of critical micelle concentration (CMC). RESULTS In this work, The CMC of ZH (0.535 mg mL-1 ) was obtained by the pyrene fluorescent probe method. ZH-Cur nanocomplexes undergo hydrogen bonding and hydrophobic interactions, and the fluorescence quenching effect was concentration dependent with the process of static quenching. Moreover, the differences of colloidal properties on ZH and ZH-Cur nanocomplexes were systematically compared by dynamic light scattering and scanning electron microscopy near CMC. ZH presented irregular spherical shapes and would aggregate to form micelles at the CMC and above. The tight micellar structure promoted more uniform size distribution (double peaks reduced) and higher potentials (over -30 mV) within 10 days. In addition, the nanocomplexes demonstrated an obvious core-shell structure. Within 10 days of storage, the particle size distributions were uniform and the potentials increased significantly, indicating that the micellar nanostructure made the Cur stably embedded in the hydrophobic core of ZH. Finally, ZH-Cur nanocomplexes effectively improved the water solubility and encapsulation rate (over 70%) of Cur. Moreover, over 90% of Cur was released steadily within 91 h. CONCLUSION This work provided a theoretical basis for the application of amphiphilic peptide micellar nanostructure as novel food-grade nanocarriers to transport hydrophobic bioactive substances. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Lei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, PR China
| | - Xiang-Yao Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, PR China
| | - Chun-Ru Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, PR China
| | - Anindya Nag
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xin-Quan Yang
- School of Life Sciences, Guangzhou University, Guangzhou, PR China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, PR China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
40
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
41
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
42
|
Karthick Raja Namasivayam S, Manohar M, Aravind Kumar J, Samrat K, Kande A, Arvind Bharani RS, Jayaprakash C, Lokesh S. Green chemistry principles for the synthesis of anti fungal active gum acacia-gold nanocomposite - natamycin (GA-AuNC-NT) against food spoilage fungal strain Aspergillus ochraceopealiformis and its marked Congo red dye adsorption efficacy. ENVIRONMENTAL RESEARCH 2022; 212:113386. [PMID: 35569536 DOI: 10.1016/j.envres.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - Mohith Manohar
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | - J Aravind Kumar
- Department of Biomass & Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | - Akhil Kande
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | | | - C Jayaprakash
- Food Microbiology Division, Defence Food Research Laboratory (DFRL), Mysuru (Mysore), 570011, Karnataka, India
| | - S Lokesh
- Department of Energy & Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
43
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Lüdtke FL, Stahl MA, Grimaldi R, Cardoso LP, Gigante ML, Ribeiro APB. High oleic sunflower oil and fully hydrogenated soybean oil nanostructured lipid carriers: development and characterization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
46
|
Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv Colloid Interface Sci 2022; 307:102744. [PMID: 35878506 DOI: 10.1016/j.cis.2022.102744] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.
Collapse
|
47
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Sabaghi M, Tavasoli S, Hoseyni SZ, Mozafari M, Degraeve P, Katouzian I. A critical review on approaches to regulate the release rate of bioactive compounds from biopolymeric matrices. Food Chem 2022; 382:132411. [DOI: 10.1016/j.foodchem.2022.132411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
49
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
50
|
Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|