1
|
Nardo F, Piras A, Bullitta S, Ledda L, Serralutzu F. NP-bioTech: a circular economy approach to catalyst-based biostabilization of citrus processing waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3776-3786. [PMID: 39865918 DOI: 10.1002/jsfa.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices. The NP-bioTech process uses a biocatalyst adsorbed onto an inert material enabling accelerated fermentation of critical biomass without pre-treatments, transforming it into biostabilized and pasteurized material, and converting waste into new usable products rapidly. Biocatalysts consist of naturally fortified selections of microbial colonies, enzymes, and fungi that are resistant to the action of d-limonene and other fermentation inhibitors. RESULTS The NP-bioTech process was able to activate vigorous fermentation of citrus waste without any of the pre-treatments required by other available biowaste-treatment technologies. The horticultural use of the biostabilized output of such process for greenhouse crops was verified. The addition of such output to the growth media was beneficial for plants and did not show negative effects on quality and yield of tomatoes (Lycopersicon esculentum L.). The concentration of Ca, K, Zn, Fe, and polyphenol increased; the average number of berries per plant was improved; the concentration of Pb and Cd contaminants decreased. CONCLUSION The NP-bioTech process emits no odors or pollutants. It does not generate leachate, and its output can be used in agriculture. It is capable of reconciling compliance with strict environmental restrictions, industrial feasibility, and economic sustainability. Its potential impact thus aligns well with the circular economy model. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Andrea Piras
- Dipartimento di Agraria, Università di Sassari, Sassari, Italy
| | | | - Luigi Ledda
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
2
|
Xuereb MA, Psakis G, Attard K, Lia F, Gatt R. A Comprehensive Analysis of Non-Thermal Ultrasonic-Assisted Extraction of Bioactive Compounds from Citrus Peel Waste Through a One-Factor-at-a-Time Approach. Molecules 2025; 30:648. [PMID: 39942752 PMCID: PMC11820553 DOI: 10.3390/molecules30030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange peel waste using non-thermal ultrasonic-assisted extraction (UAE) and a one-factor-at-a-time experimental design to investigate the effects of nine chemical and physical UAE parameters. The goal was to identify ideal operational ranges for each parameter using several responses (bioactive compound recovery, antioxidant activity, and radical scavenging activity), thus elucidating the most influential UAE factors and their role in co-extracting various classes of natural compounds. The key findings revealed that the polarity and ionic potential of the extraction medium, tuned through ethanol:water or pH, significantly influenced both the chemical profile and bioactivity of the extracts. Notably, citric acid and citrates appeared to stabilize co-extracted compounds. Lower solid-to-liquid ratios increased yields, while particle sizes between 1400 and 710 µm enhanced phenolic recovery by approximately 150 mg/L GAE. In contrast, increases in pulse, probe diameter, immersion depth, and extraction time led to degradation of bioactive compounds, whereas the maximal amplitude improved phenolic acid recovery by up to 2-fold. Collectively, these insights provide a foundation for optimizing non-thermal UAE to valorize orange peel waste.
Collapse
Affiliation(s)
- Matthew A. Xuereb
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
| | - Georgios Psakis
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Karen Attard
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Frederick Lia
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
3
|
Vasquez-Gomez KL, Mori-Mestanza D, Caetano AC, Idrogo-Vasquez G, Culqui-Arce C, Auquiñivin-Silva EA, Castro-Alayo EM, Cruz-Lacerna R, Perez-Ramos HA, Balcázar-Zumaeta CR, Torrejón-Valqui L, Yoplac-Collantes C, Yoplac I, Chavez SG. Exploring chemical properties of essential oils from citrus peels using green solvent. Heliyon 2024; 10:e40088. [PMID: 39559244 PMCID: PMC11570516 DOI: 10.1016/j.heliyon.2024.e40088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
The research explored the chemical characteristics of essential oils (EOs) extracted from the peels of four citrus fruits grown in northeastern Peru (lime, sweet lemon, mandarin and orange). The essential oils were extracted by hydrodistillation using a green solvent, and subsequently, their physicochemical profile, bioactive, heat capacity, and RAMAN mapping were determined; in addition, the volatile composition was determined by gas chromatography (GC-MS), and the main phenols by liquid chromatography (UHPLC). The results evidenced that sweet lemon and mandarin essential oils had higher antioxidant activity (1592.38 and 1216.13 μmol TE/g) and total phenolic content (680.78 and 420.28 mg GAE/g). In contrast, sweet lemon peel essential oil had the highest total flavonoid content (23.18 mg QE/g). D-limonene was the most abundant aromatic compound in orange (>67 %), mandarin (>70 %), and sweet lemon (>72 %) EOs; however, in the lime, it was the lowest (37 %). The most abundant component was the cyclobutane, 1,2-bis(1-methylethylethylenyl)-, trans- (32 %).
Collapse
Affiliation(s)
- Katheryn L. Vasquez-Gomez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Guillermo Idrogo-Vasquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Rosita Cruz-Lacerna
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Harvey A. Perez-Ramos
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Cindy Yoplac-Collantes
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Segundo G. Chavez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
4
|
Sánchez-Elvira A, Hernández-Corroto E, García MC, Castro-Puyana M, Marina ML. Sustainable extraction of proteins from lime peels using ultrasound, deep eutectic solvents, and pressurized liquids, as a source of bioactive peptides. Food Chem 2024; 458:140139. [PMID: 38943952 DOI: 10.1016/j.foodchem.2024.140139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
The aim of this work was to develop, for the first time, sustainable strategies, based on the use of Ultrasound-Assisted Extraction, Natural Deep Eutectic Solvents, and Pressurized Liquid Extraction, to extract proteins from lime (Citrus x latifolia) peels and to evaluate their potential to release bioactive peptides. PLE showed the largest extraction of proteins (66-69%), which were hydrolysed using three different enzymes (Alcalase 2.4 L FG, Alcalase®PURE 2.4 L, and Thermolysin). The in vitro antioxidant and antihypertensive activities of released peptides were evaluated. Although all hydrolysates showed antioxidant and antihypertensive activity, the hydrolysate obtained with Thermolysin showed the most significant values. Since the Total Phenolic Content in all hydrolysates was low, peptides were likely the main contributors to these bioactivities. Hydrolysates were analyzed by UHPLC-QTOF-MS and a total of 98 different peptides were identified. Most of these peptides were rich in amino acids associated with antioxidant activity.
Collapse
Affiliation(s)
- A Sánchez-Elvira
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - E Hernández-Corroto
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M C García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Castro-Puyana
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M L Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
5
|
Machado AMR, Teodoro AJ, Mariutti LRB, Fonseca JCND. Tamarillo ( Solanum betaceum Cav.) wastes and by-products: Bioactive composition and health benefits. Heliyon 2024; 10:e37600. [PMID: 39309964 PMCID: PMC11416485 DOI: 10.1016/j.heliyon.2024.e37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.
Collapse
Affiliation(s)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules 2024; 29:4660. [PMID: 39407589 PMCID: PMC11477756 DOI: 10.3390/molecules29194660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols' chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications.
Collapse
Affiliation(s)
- Heloísa H. S. Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| |
Collapse
|
7
|
Dambuza A, Rungqu P, Oyedeji AO, Miya GM, Kuria SK, Hosu SY, Oyedeji OO. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules 2024; 29:3878. [PMID: 39202957 PMCID: PMC11357295 DOI: 10.3390/molecules29163878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 μm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Gugulethu M Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Simon K Kuria
- Department of Biological and Environmental Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Sunday Yiseyon Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| |
Collapse
|
8
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Umaña M, Simal S, Dalmau E, Turchiuli C, Chevigny C. Evaluation of Different Pectic Materials Coming from Citrus Residues in the Production of Films. Foods 2024; 13:2138. [PMID: 38998643 PMCID: PMC11241157 DOI: 10.3390/foods13132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
This article explores the use of citrus residues as a source of different pectic materials for packaging film production: a water-soluble orange residue extract (WSE) (~5% pectin), semi-pure pectins extracted in citric acid (SP) (~50% pectin), and commercial pure citrus pectins (CP). First, these materials were characterized in terms of chemical composition. Then, films were produced using them pure or mixed with chitosan or glycerol through solvent-casting. Finally, antioxidant activity, functional properties (e.g., mechanical and gas barrier properties), and visual appearance of the films were assessed. WSE films showed the highest antioxidant activity but the lowest mechanical strength with the highest elongation at break (EB) (54%); incorporating chitosan increased the films' strength (Young's modulus 35.5 times higher). SP films showed intermediate mechanical properties, reinforced by chitosan addition (Young's modulus 4.7 times higher); they showed an outstanding dry O2 barrier. CP films showed a similar O2 barrier to SP films and had the highest Young's modulus (~29 MPa), but their brittleness required glycerol for improved pliability, and chitosan addition compromised their surface regularity. Overall, the type of pectic material determined the film's properties, with less-refined pectins offering just as many benefits as pure commercial ones.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Susana Simal
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Esperanza Dalmau
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Christelle Turchiuli
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| | - Chloé Chevigny
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| |
Collapse
|
10
|
Rivas MÁ, Ruiz-Moyano S, Vázquez-Hernández M, Benito MJ, Casquete R, Córdoba MDG, Martín A. Impact of Simulated Human Gastrointestinal Digestion on the Functional Properties of Dietary Fibres Obtained from Broccoli Leaves, Grape Stems, Pomegranate and Tomato Peels. Foods 2024; 13:2011. [PMID: 38998517 PMCID: PMC11241623 DOI: 10.3390/foods13132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to analyse the impact of a simulated human digestion process on the composition and functional properties of dietary fibres derived from pomegranate-peel, tomato-peel, broccoli-stem and grape-stem by-products. For this purpose, a computer-controlled simulated digestion system consisting of three bioreactors (simulating the stomach, small intestine and colon) was utilised. Non-extractable phenols associated with dietary fibre and their influence on antioxidant capacity and antiproliferative activity were investigated throughout the simulated digestive phases. Additionally, the modifications in oligosaccharide composition, the microbiological population and short-chain fatty acids produced within the digestion media were examined. The type and composition of each dietary fibre significantly influenced its functional properties and behaviour during intestinal transit. Notably, the dietary fibre from the pomegranate peel retained its high phenol content throughout colon digestion, potentially enhancing intestinal health due to its strong antioxidant activity. Similarly, the dietary fibre from broccoli stems and pomegranate peel demonstrated anti-proliferative effects in both the small and the large intestines, prompting significant modifications in colonic microbiology. Moreover, these fibre types promoted the growth of bifidobacteria over lactic acid bacteria. Thus, these results suggest that the dietary fibre from pomegranate peel seems to be a promising functional food ingredient for improving human health.
Collapse
Affiliation(s)
- María Ángeles Rivas
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María Vázquez-Hernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María José Benito
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Rocío Casquete
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Alberto Martín
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Permadi N, Nurzaman M, Doni F, Julaeha E. Elucidation of the composition, antioxidant, and antimicrobial properties of essential oil and extract from Citrus aurantifolia (Christm.) Swingle peel. Saudi J Biol Sci 2024; 31:103987. [PMID: 38617568 PMCID: PMC11007538 DOI: 10.1016/j.sjbs.2024.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
The most effective methodologies for generating Musa spp. explants involve the utilization of plant tissue culture micropropagation techniques. However, the pervasive challenge of microbial contamination significantly impedes the successful micropropagation of Musa spp. This study examined the antioxidant and antibacterial characteristics of the essential oil (LPO) and extract (LPE) obtained from the peel of Citrus aurantifolia. Additionally, we explored their mechanisms against common microbial contaminants in Musa spp. micropropagation. Using gas chromatography-mass spectrometry, we identified 28 components in LPO, with δ-limonene, β-pinene, citral, trans-citral, β-bisabolene, geranyl acetate, and α-pinene as the primary constituents. Meanwhile, liquid chromatography-mass spectrometry detected 17 components in LPE, highlighting nobiletin, tangeretin, scoparone, sinensetin, tetramethylscutellarein, 5-demethylnobiletin, and pyropheophorbide A as the predominant compounds. Evaluation using the DPPH and ABTS methods revealed the IC50 values for LPE at 0.66 ± 0.009 and 0.92 ± 0.012 mg/mL, respectively, indicating higher antioxidant activity compared to LPO, with IC50 values of 3.03 ± 0.019 and 4.27 ± 0.023 mg/mL using the same methods. Both LPO and LPE exhibited antimicrobial activities against all tested contaminant microorganisms through in vitro assays. Mechanistic investigations employing time-kill analysis, assessment of cell membrane integrity, and scanning electron microscopy (SEM) revealed changes in the morphological characteristics of the tested microbial contaminants, intensifying with increased concentration and exposure duration of LPO and LPE. These alterations led to substantial damage, including cell wall lysis, leakage of intracellular components, and subsequent cell death. Consequently, LPO and LPE emerge as promising alternatives for addressing microbial contamination in banana tissue cultures.
Collapse
Affiliation(s)
- Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
12
|
Lu H, Zhong J, Xu J, Su L, Chen J, Chen Z, Zhang Z, Xiong Y. Enhanced detection of copper residues on citrus surfaces: An innovative copper fenton-catalysed colorimetric approach using creatinine and molybdenum trioxide. J Food Compost Anal 2024; 129:106123. [DOI: 10.1016/j.jfca.2024.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
13
|
Long W, Luo J, Ou H, Jiang W, Zhou H, Liu Y, Zhang L, Mi H, Deng J. Effects of dietary citrus pulp level on the growth and intestinal health of largemouth bass (Micropterus salmoides). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2728-2743. [PMID: 37989715 DOI: 10.1002/jsfa.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Citrus pulp (CP) is rich in pectin, and studies have shown that pectin possesses antioxidant, anti-inflammatory, and gut microbiota-regulating properties. However, the application of CP in aquafeed is limited. In this study, the effect of dietary inclusion of CP on the intestinal health of largemouth bass (Micropterus salmoides) was investigated. Juveniles of similar size (6.95 ± 0.07 g) were fed isonitrogenous and isoenergetic diets containing different levels of CP (0%, 3%, 6%, 9%, 12%, or 15%) for 58 days. RESULTS As the level of CP in the feed for largemouth bass increased, the fish's growth performance and intestinal health initially improved and then declined. Adding low doses of CP (≤9%) to the feed had no significant impact on the growth performance of large-mouth black bass, whereas high doses of CP (>9%) significantly reduced their growth performance. Adding 6%, 9%, or 12% of CP to that feed enhanced the expression of genes related to tight junctions, anti-inflammatory activity, anti-apoptotic activity, and antioxidant activity in the intestines of largemouth bass. It reduced intestinal inflammation and improved intestinal nutrient absorption, intestinal mucosal barrier function, and intestinal antioxidant capacity. Moreover, it improved the α-diversity, structure, and function of the intestinal flora. The addition of 6% CP had the most beneficial effect on the intestinal health of largemouth bass. On the other hand, the addition of 15% CP had adverse effects on the intestinal antioxidant capacity and intestinal mucosal barrier function of largemouth bass. CONCLUSION Adding 6-9% CP to the feed for largemouth bass can improve their intestinal health without having a significant impact on their growth performance. CP could serve as a novel prebiotic and immunostimulant ingredient in aquafeed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jiajie Luo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hongdong Ou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Wen Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yongyin Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd, Chengdu, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd, Chengdu, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
14
|
Saborirad S, Baghaei H, Hashemi-Moghaddam H. Optimizing the ultrasonic extraction of polyphenols from mango peel and investigating the characteristics, antioxidant activity and storage stability of extract nanocapsules in maltodextrin/whey protein isolate. ULTRASONICS SONOCHEMISTRY 2024; 103:106778. [PMID: 38262176 PMCID: PMC10832609 DOI: 10.1016/j.ultsonch.2024.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
In this study, the extraction and nanoencapsulation of mango peel extract (MPE) were investigated to enhance its stability and preserve its antioxidant properties. Initially, using the central composite design (CCD)-response surface methodology (RSM), optimal conditions for the extraction of MPE via an ultrasonic system were determined to be a temperature of 10.53 °C, a time of 34.35 min, and an ethanol concentration of 26.62 %. Subsequently, the extracted extract was spray-dried and nanoencapsulated using three types of coatings: maltodextrin, whey protein isolate (WPI), and their combination. The results showed that nanoencapsulation led to a significant improvement in the stability of phenolic compounds in the extract during storage compared to free extract. Furthermore, capsules prepared with the combined coating exhibited the highest levels of phenolic compounds and antioxidant activity. Therefore, it can be concluded that nanoencapsulation can serve as an effective method for preserving the bioactive properties of MPE.
Collapse
Affiliation(s)
- Shahram Saborirad
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Homa Baghaei
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | | |
Collapse
|
15
|
Sala-Luis A, Oliveira-Urquiri H, Bosch-Roig P, Martín-Rey S. Eco-Sustainable Approaches to Prevent and/or Eradicate Fungal Biodeterioration on Easel Painting. COATINGS 2024; 14:124. [DOI: 10.3390/coatings14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Eliminating and controlling fungal biodeterioration is one of the most important challenges of easel painting conservation. Historically, the pathologies produced by biodeterioration agents had been treated with non-specific products or with biocides specially designed for conservation but risky for human health or the environment due to their toxicity. In recent years, the number of research that studied more respectful solutions for the disinfection of paintings has increased, contributing to society’s efforts to achieve the Sustainable Development Goals (SDGs). Here, an overview of the biodeterioration issues of the easel paintings is presented, critically analyzing chemical and eco-sustainable approaches to prevent or eradicate biodeterioration. Concretely, Essential Oils and light radiations are studied in comparison with the most used chemical biocides in the field, including acids, alcohols, and quaternary ammonium salts. This review describes those strategies’ biocidal mechanisms, efficiency, and reported applications in vitro assays on plates, mockups, and real scale. Benefits and drawbacks are evaluated, including workability, easel painting material alterations, health risks, and environmental sustainability. This review shows innovative and eco-friendly methods from an easel painting conservation perspective, detecting its challenges and opportunities to develop biocontrol strategies to substitute traditional chemical products.
Collapse
Affiliation(s)
- Agustí Sala-Luis
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Haizea Oliveira-Urquiri
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Susana Martín-Rey
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
16
|
Bocker R, Silva EK. Pulsed electric field technology as a promising pre-treatment for enhancing orange agro-industrial waste biorefinery. RSC Adv 2024; 14:2116-2133. [PMID: 38196909 PMCID: PMC10775899 DOI: 10.1039/d3ra07848e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
In the processing of orange juice, 50-70% of the fresh fruit weight is converted into organic waste. Orange processing waste (OPW) primarily consists of peels, seeds, and pulp. Improper disposal of this residue can lead to greenhouse gas emissions, environmental pollution, and the wastage of natural resources. To address this ecological issues, recent research has focused on developing innovative process designs to maximize the valorization of OPW through biorefinery strategies. However, the current challenge in implementing these methods for industrial waste management is their significant energy consumption. In response to these challenges, recent studies have explored the potential of employing pulsed electric field (PEF) technology as a pre-treatment to improve energy efficiency in biorefinery processes. This non-thermal and emerging technology can enhance the mass transfer of intracellular components via electroporation of cell walls, thereby resulting in shorter processing times, lower energy inputs, greater retention of thermosensitive components, and higher extraction yields. In this regard, this review offers a comprehensive discussion on the innovative biorefinery strategies to the valorization of OPW, with a specific focus on recent studies assessing the technical feasibility of methodologies for the extraction of phytochemical compounds, dehydration processes, and bioconversion methods. Recent studies that discussed the potential of PEF technology to reduce energy demand by increasing the mass transfer of biological tissues were emphasized.
Collapse
Affiliation(s)
- Ramon Bocker
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP) Rua Monteiro Lobato, 80 Campinas-SP CEP:13083-862 Brazil
| | - Eric Keven Silva
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP) Rua Monteiro Lobato, 80 Campinas-SP CEP:13083-862 Brazil
| |
Collapse
|
17
|
Zhang AA, Ni JB, Martynenko A, Chen C, Fang XM, Ding CJ, Chen J, Zhang JW, Xiao HW. Electrohydrodynamic drying of citrus (Citrus sinensis L.) peel: Comparative evaluation on the physiochemical quality and volatile profiles. Food Chem 2023; 429:136832. [PMID: 37453333 DOI: 10.1016/j.foodchem.2023.136832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Based on the concept of circular economy, citrus peel was considered a valuable source of bioactive compounds for high-value foods. Electrohydrodynamic (EHD) drying is a novel technology appropriated for the dehydration of heat-sensitive products such as citrus peel. In current work, EHD drying of citrus peel was performed based on alternating current (AC) or direct current (DC) sources at various voltage levels (9, 18, 27, 36, and 45 kV). The effect of EHD on drying characteristics, water retention capacity, enzyme inactivation, phytochemical contents (phenolic compounds and carotenoids), and volatile compounds of citrus peel were evaluated and compared. Results showed that the drying time in the AC electric field was shorter compared to DC electric field at the same applied voltages due to the polarization layer formed by unipolar charges. The applied voltage determined electric field strength as well as the degree of tissue collapse and cell membrane rupture. EHD elucidated the transformation and degradation of phytochemicals including phenolic compounds, carotenoids, and volatile composition in proportion to the applied voltage. The findings indicate that EHD drying with AC improves drying behaviors, inactivates enzymes, and retains the phytochemical properties of citrus peel.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Alex Martynenko
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Chang Chen
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA
| | - Xiao-Ming Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jian-Wei Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
18
|
Kanakai N, Wongtangtintharn S, Suntara C, Cherdthong A. Feeding Pellets Containing Agro-Industrial Waste Enhances Feed Utilization and Rumen Functions in Thai Beef Cattle. Animals (Basel) 2023; 13:3861. [PMID: 38136898 PMCID: PMC10740786 DOI: 10.3390/ani13243861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this research was to investigate the effects of citric waste fermented with yeast waste pellet (CWYWP) supplementation on feed intake, rumen characteristics, and blood metabolites in native Thai beef cattle that are fed a rice-straw-based diet. Four native male Thai beef cattle (1.0-1.5 years old) with an initial body weight (BW) of 116 ± 16 kg were held in a 4 × 4 Latin square design within 21-day periods. The animals were assigned to receive CWYWP supplementation at 0%, 2%, 4%, and 6% of the total dry matter (DM) intake per day. The results indicate that feeding beef cattle with CWYWP leads to a linear increase in the total intake as well was the intake of crude protein (CP) and the digestibility of CP, with the maximum levels observed at 6% CWYWP supplementation (p < 0.05). Rumen characteristics, including pH, blood urea-nitrogen concentration, and protozoal population, showed no significant alterations in response to the varying CWYWP dosages (p > 0.05). In addition, the CWYWP supplementation resulted in no significant changes in the concentration of ammonia-nitrogen, remaining within an average normal range of 10.19-10.38 mg/dL (p > 0.05). The inclusion of 6% CWYWP resulted in the highest population of ruminal bacteria (p < 0.05). Additionally, the CWYWP supplementation led to a statistically significant increase in the mean propionic acid concentration as compared to the group that did not receive the CWYWP supplementation (p < 0.05). In conclusion, this experiment demonstrates that supplementing Thai native beef cattle with CWYWP at either 4% or 6% DM per day can enhance their total CP intake as well as the CP digestibility and rumen bacterial population, and can increase propionate concentration.
Collapse
Affiliation(s)
| | | | | | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (S.W.); (C.S.)
| |
Collapse
|
19
|
Gao P, Zheng M, Lu H, Lu S. The Progressive Utilization of Ponkan Peel Residue for Regulating Human Gut Microbiota through Sequential Extraction and Modification of Its Dietary Fibers. Foods 2023; 12:4148. [PMID: 38002205 PMCID: PMC10670068 DOI: 10.3390/foods12224148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
As a by-product of citrus processing, ponkan (Citrus reticulata Blanco, cv. Ponkan) peel residue is a source of high quality dietary fiber (DF). To make a full utilization of this resource and give a better understanding on the probiotic function of its DF, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were extracted from ponkan peel residue (after flavonoids were extracted) using an alkaline method, followed by modifications using a composite physical-enzymatic treatment. The in vitro fermentation properties of the modified SDF and IDF (namely, MSDF and MIDF) and their effects on short-chain fatty acids (SCFA) production and changes in the composition of human gut microbiota were investigated. Results showed that MSDF and MIDF both significantly lowered the pH value and enhanced total SCFA content in the broths after fermented for 24 h by fecal inocula (p < 0.05) with better effects found in MSDF. Both MSDF and MIDF significantly reduced the diversity, with more in the latter than the former, and influenced the composition of human gut microbiota, especially increasing the relative abundance of Bacteroidetes and decreasing the ratio of Firmicutes to Bacteroidetes (F/B) value. The more influential microbiota by MSDF were g-Collinsella, p-Actinobacteria and g-Dialister, while those by MIDF were f-Veillonellaceae, c-Negativicutes and f-Prevotellacese. These results suggested that the modified ponkan peel residue DF can be utilized by specific bacteria in the human gut as a good source of fermentable fiber, providing a basis for the exploitation of the citrus by-product.
Collapse
Affiliation(s)
- Pu Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.G.); (M.Z.); (H.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.G.); (M.Z.); (H.L.)
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.G.); (M.Z.); (H.L.)
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.G.); (M.Z.); (H.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
21
|
Wang Z, Zhong T, Mei X, Chen X, Chen G, Rao S, Zheng X, Yang Z. Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chem 2023; 425:136539. [PMID: 37290238 DOI: 10.1016/j.foodchem.2023.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of freeze drying (FD), heat pump drying (HPD), microwave drying (MD), and far-infrared drying (FID) on the quality of brocade orange peels (BOPs). Although the most attractive appearance, maximum levels of ascorbic acid (0.46 mg/g dry weight (DW)), carotenoids (total 16.34 μg/g DW), synephrine (15.58 mg/g DW), limonoids (total 4.60 mg/g DW), phenols (total 9142.80 μg/g DW), and antioxidant activity were observed in FD-BOPs, many aroma components in FD-BOPs were in the minimum levels. HPD-, and MD-BOPs depicted similar trends to FD-BOPs, but they contained the highest concentrations of limonene and β-myrcene. Phenols and ascorbic acid in MD-BOPs generally featured the highest levels of bioavailability, being to 15.99% and 63.94%, respectively. In comparison, FID was not beneficial for the preservation of bioactive compounds and volatile. Therefore, considering time and energy costs, HPD and particularly MD are more appropriate for the commercial production of dried BOPs.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Tao Zhong
- Sichuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, PR China
| | - Xiaofei Mei
- Chongqing Vocational Institute of Engineering, Jiangjin, Chongqing 402260, PR China
| | - Xuhui Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
22
|
Panwar D, Panesar PS, Chopra HK. Evaluation of nutritional profile, phytochemical potential, functional properties and anti-nutritional studies of Citrus limetta peels. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2160-2170. [PMID: 37273556 PMCID: PMC10232380 DOI: 10.1007/s13197-023-05743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023]
Abstract
The aim of this work was to determine the proximate, mineral, amino acid composition, antioxidant activity, anti-nutritional factors, total dietary fiber, total phenolic content and technological properties of C. limetta peels. Moreover, analytical techniques including FT-IR and SEM were also conducted to study the morphological and structural properties of C. limetta peels. Considering the proximate, mineral, and amino acid composition, C. limetta peels was found to be a good source of ash (3.06 ± 0.20%), crude fiber (10.13 ± 0.30%), carbohydrate (64.08 ± 0.55%), protein (7.56 ± 0.25%), potassium (125.9671 mg/100 g), calcium (112.5861 mg/100 g), magnesium (16.43 mg/100 g), asparagine (2111.06 nmol/mg), glutamic acid (1331.96 nmol/g), and aspartic acid (1162.19 nmol/mg). Furthermore, they contain an appreciable amount of total dietary fiber (48.73 ± 0.45%), total phenolic content (14.30 ± 0.03 mg GAE/g), and antioxidant activity (52.65 ± 0.10%). Moreover, the antinutritional factors present in C. limetta peels were observed to be within the threshold limit. The results of technological properties of peels suggested that they can be potentially utilized as good emulsifying, gelling, foaming, and bulking agents in food industries. Therefore, C. limetta peels can be successfully re-utilized as natural food additive with numerous nutritive and bioactive properties in food sector, thereby achieving zero waste generation.
Collapse
Affiliation(s)
- Divyani Panwar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Parmjit S. Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Harish K. Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| |
Collapse
|
23
|
Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. The potential of citrus by-products in the development of functional food and active packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:41-90. [PMID: 37898542 DOI: 10.1016/bs.afnr.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal
| | - Silvia Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Angelina Pena
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal.
| |
Collapse
|
24
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
25
|
Zhu Y, Luan Y, Zhao Y, Liu J, Duan Z, Ruan R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023; 12:foods12101949. [PMID: 37238767 DOI: 10.3390/foods12101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system.
Collapse
Affiliation(s)
- Yingdan Zhu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yueting Luan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingnan Zhao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiali Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
26
|
Lin J, Xiang S, Lv H, Wang T, Rao Y, Liu L, Yuan D, Wang X, Chu Y, Luo D, Song T. Antimicrobial high molecular weight pectin polysaccharides production from diverse citrus peels using a novel PL10 family pectate lyase. Int J Biol Macromol 2023; 234:123457. [PMID: 36716843 DOI: 10.1016/j.ijbiomac.2023.123457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The discovery of environmentally friendly enzymes that can convert inexpensive and abundant citrus peel pectin into high value-added product is a potential avenue for the citrus peel application. In this study, a novel PL10-family pectate lyase (pelA) was characterized from marine bacterium Echinicola pacifica. PelA was a Ca2+ dependent pectate lyase whose activity was highest at pH 8 and 40 °C. It was capable of degrading polygalacturonic acid (PGA) and citrus peel pectin (CPP), but not apple peel pectin. Notably, PelA hydrolyzed PGA to high molecular weight polysaccharide (average molecular weight 111.4 kDa). Moreover, PelA was also able to degrade CPP from nine distinct citrus species into polysaccharides (average molecular weight ranging from 84.7 to 539.2 kDa) that showed antimicrobial activity against Staphylococcus epidermidis (88.8 %), Bacillus subtilis (99.8 %), Staphylococcus aureus (92.1 %), Escherichia coli (100.0 %) and Klebsiella pneumoniae (86.4 %). Considering the high market value of pectin in the food industry, PelA's capacity to convert citrus pectin into high molecular weight polysaccharides lays a foundation for its applications.
Collapse
Affiliation(s)
- Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Shengwei Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Hua Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Tiantian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yulu Rao
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ling Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dezhi Yuan
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
27
|
Shen X, Nie F, Fang H, Liu K, Li Z, Li X, Chen Y, Chen R, Zheng T, Fan J. Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci Nutr 2023; 11:917-929. [PMID: 36789063 PMCID: PMC9922109 DOI: 10.1002/fsn3.3126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to compare chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities of coffee flowers (ACF) and coffee leaves (ACL) with green coffee beans (ACGB) of Coffea Arabica L. The chemical compositions were determined by employing high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectroscopy (GC-MS) techniques. Antioxidant effects of the components were evaluated using DPPH and ABTS radical scavenging assays, and the ferric reducing antioxidant power (FRAP) assay. Their acetylcholinesterase inhibitory activities were also evaluated. The coffee sample extracts contained a total of 214 components identified by HPLC-MS and belonged to 12 classes (such as nucleotides and amino acids and their derivatives, tannins, flavonoids, alkaloids, benzene, phenylpropanoids, and lipids.), where phenylpropanoids were the dominant component (>30%). The contents of flavonoids, alkaloids, saccharides, and carboxylic acid and its derivatives in ACF and ACL varied significantly (p < .05) compared to similar components in ACGB. Meanwhile, 30 differentially changed chemical compositions (variable importance in projection [VIP] > 1, p < .01 and fold change [FC] > 4, or <0.25), that determine the difference in characteristics, were confirmed in the three coffee samples. Furthermore, among 25 volatile chemical components identified by GC-MS, caffeine, n-hexadecanoic acid, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol], and quinic acid were common in these samples with caffeine being the highest in percentage. In addition, ACL showed the significantly highest (p < .05) DPPH radical scavenging capacity with IC50 value of 0.491 ± 0.148 mg/ml, and acetylcholinesterase inhibitory activity with inhibition ratio 25.18 ± 2.96%, whereas ACF showed the significantly highest (p < .05) ABTS radical scavenging activity with 36.413 ± 1.523 mmol trolox/g Ex. The results suggested that ACL and ACF had potential values as novel foods in the future.
Collapse
Affiliation(s)
- Xiaojing Shen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
- Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
- Yunnan Organic Tea Industry Intelligent Engineering Research CenterKey Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan ProvinceKunmingChina
| | - Fanqiu Nie
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Haixian Fang
- Quality Standardizing and Testing Technology Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| | - Kunyi Liu
- College of Wuliangye Technology and Food EngineeringYibin Vocational and Technical CollegeYibinChina
- Research Platform for Innovation and Utilization of Medicine Food Homology and Fermented FoodYibin Vocational and Technical CollegeYibinChina
| | - Zelin Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Xingyu Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Yumeng Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Rui Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | | | - Jiangping Fan
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
28
|
Purewal SS, Kaur P, Sandhu KS. Valorization of bioactive profile and antioxidant properties of Kinnow peel, and pulp residue: a step towards utilization of Kinnow waste for biscuit preparation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
30
|
Yin Z, Wang M, Zeng M. Novel Pickering emulsion stabilized by natural fiber polysaccharide-protein extracted from Haematococcus pluvialis residues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Wang Z, Mei X, Chen X, Rao S, Ju T, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Peng Q, Zhang Y, Zhu M, Bao F, Deng J, Li W. Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit Rev Food Sci Nutr 2022; 64:5618-5630. [PMID: 36530054 DOI: 10.1080/10408398.2022.2156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus peel, as an effective component of citrus by-products, contains a large number of natural active components, including pectin, vitamins, dietary fiber, essential oil, phenolic compounds, flavonoids, and so on. With the development of the circular economy, citrus peel has attracted extensive concern in the food industry. The exploitation of citrus peel would assist in excavating potential properties and alleviating the environmental burden. Polymethoxyflavones (PMFs) exist almost in citrus peel, which have remarkable biological activities including antioxidant, anti-inflammatory, anti-cancer, and anti-obesity. Therefore, PMFs from citrus peel have the potential to develop as dietary supplements in the near future. Collectively, it is essential to take action to optimize the extraction conditions of PMFs and make the most of the extracts. This review mainly compiles several extraction methods and bioactivities of PMFs from citrus peel and introduces different applications including food processing, pharmaceutical industry, and plant rhizosphere to develop better utilization of citrus PMFs.
Collapse
Affiliation(s)
- Qiong Peng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yao Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Mingxuan Zhu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Artificial Neural Networks to Optimize Oil-in-Water Emulsion Stability with Orange By-Products. Foods 2022; 11:foods11233750. [PMID: 36496559 PMCID: PMC9739075 DOI: 10.3390/foods11233750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The use of artificial neural networks (ANNs) is proposed to optimize the formulation of stable oil-in-water emulsions (oil 6% w/w) with a flour made from orange by-products (OBF), rich in pectins (21 g/100 g fresh matter), in different concentrations (0.95, 2.38, and 3.40% w/w), combined with or without soy proteins (0.3 and 0.6% w/w). Emulsions containing OBF were stable against coalescence and flocculation (with 2.4 and 3.4% OBF) and creaming (3.4% OBF) for 24 h; the droplets' diameter decreased up to 44% and the viscosity increased up to 37% with higher concentrations of OBF. With the protein addition, the droplets' diameter decreased by up to 70%, and flocculation increased. Compared with emulsions produced with purified citrus pectins (0.2 and 0.5% w/w), OBF emulsions exhibited up to 32% lower viscosities, 129% larger droplets, and 45% smaller Z potential values. Optimization solved with ANNs minimizing the droplet size and the emulsion instability resulted in OBF and protein concentrations of 3.16 and 0.14%, respectively. The experimental characteristics of the optimum emulsion closely matched those predicted by ANNs demonstrating the usefulness of the proposed method.
Collapse
|
35
|
Song YT, Qi JR, Yang XQ, Liao JS, Liu ZW, Ruan CW. Hydrophobic surface modification of citrus fiber using octenyl succinic anhydride (OSA): Preparation, characterization and emulsifying properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Wang Z, Yang B, Chen X, Huang P, Chen K, Ma Y, Agarry IE, Kan J. Optimization and comparison of nonconventional extraction techniques for soluble phenolic compounds from brocade orange (
Citrus sinensis
) peels. J Food Sci 2022; 87:4917-4929. [DOI: 10.1111/1750-3841.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Zhirong Wang
- College of Food Science Southwest University Beibei Chongqing PR China
- School of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | - Bing Yang
- College of Food Science and Technology Hebei Agricultural University Baoding Hebei PR China
| | - Xuhui Chen
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Pimiao Huang
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Kewei Chen
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| | - Yuan Ma
- School of Food and Bioengineering Xihua University Chengdu PR China
| | | | - Jianquan Kan
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| |
Collapse
|
37
|
A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kinnow mandarin (Citrus reticulate L.) peels are a storehouse of well-known bioactive compounds, viz., polyphenols, flavonoids, carotenoids, limonoids, and tocopherol, which exhibit an effective antioxidant capacity. However, naringin is the most predominant bitter flavanone compound found in Kinnow peels that causes their bitterness. It prohibits the effective utilization of peels in food-based products. In the present study, a novel approach for the debittering of Kinnow peels has been established to tackle this problem. A comparative evaluation of the different debittering methods (chemical, microbial, and ultrasound-assisted microbial treatments) used on Kinnow peel naringin and bioactive compounds was conducted. Among the chemical and microbial method; solid-state fermentation with A. niger led to greater extraction of naringin content (7.08 mg/g) from kinnow peels. Moreover, the numerical process optimization of ultrasound-assisted microbial debittering was performed by the Box–Behnken design (BBD) of a response surface methodology to maximize naringin hydrolysis. Among all three debittering methods, ultrasound-assisted microbial debittering led to a greater hydrolysis of naringin content and reduced processing time. The optimum conditions were ultrasound temperature (40 °C), time (30 min), and A. niger koji extract (1.45%) for the maximum extraction rate of naringin (11.91 mg/g). These debittered Kinnow peels can be utilized as raw material to develop therapeutic food products having a high phytochemical composition without any off-flavors or bitterness.
Collapse
|
38
|
Wedamulla NE, Fan M, Choi YJ, Kim EK. Citrus peel as a renewable bioresource: Transforming waste to food additives. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
39
|
Jiang H, Zhang W, Xu Y, Chen L, Cao J, Jiang W. An advance on nutritional profile, phytochemical profile, nutraceutical properties, and potential industrial applications of lemon peels: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Microbial natural bioactive formulations in citrus development. BIOTECHNOLOGY REPORTS 2022; 34:e00718. [PMID: 35686010 PMCID: PMC9171446 DOI: 10.1016/j.btre.2022.e00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
Abstract
Efficient microorganisms as the natural bioactive are better than commercial products. Microbial inoculants maintained the time of the oat and fallow straw columns placed. The use of inoculums with an oat straw cover resulted in positive effects. Results showed the viability of using efficient microorganisms in citriculture. Farmers can produce efficient microorganisms on their properties at low costs.
Efficient Microorganisms (EM) are commonly used in organic crops; however, there are no studies on their effects on the production of citrus seedlings. The work aimed to evaluate the impact of applying the inoculants Native Efficient Microorganisms (NEM) and the commercial product EM1® in forming the seedling of the rootstock Poncirus trifoliata (L.) Raf and in the development of young plants of Sweet Orange “Valência” (Citrus sinensis (L.) Osbeck) and Murcott tangor (Citrus sinensis x Citrus reticulata Blanco). The inoculant based on efficient microorganisms from the homemade technology of capture and multiplication, native efficient microorganisms (NEM), showed greater microbial diversity when compared to the commercial product EM1®. The results obtained from the dry mass analysis of the Valência orange and Murcott tangor plants indicate that positive effects resulting from the use of EM1® and NEM inoculums can be obtained by cultivating the respective crops in a system with oat straw cover. It was observed that the use of efficient microorganisms, as microbial natural bioactive formulation, has potential use in citrus and that farmers with fewer resources will be able to produce the microorganisms on their properties.
Collapse
|
41
|
Talens C, Rios Y, Alvarez-Sabatel S, Ibargüen M, Rodríguez R. Designing Nutritious and Sustainable Biscuits Using Upcycled Fibre-Rich Ingredients Obtained by Hot Air - Microwave Drying of Orange by-Products. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:271-278. [PMID: 35624194 DOI: 10.1007/s11130-022-00972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Circular use of resources implies developing mild processes to transform food by-products into value-added products, without using organic solvents or extensive washing and drying steps. Refined ingredients are commonly used in gluten-free bakery resulting in high levels of saturated fatty acids and sugars as well as a lack of essential nutrients like dietary fibres. The objective of this study was (i) to compare the nutritional composition and the water retention capacity (WRC) of an upcycled orange fibre dried by hot air combined with microwave (HAD+MW) and a commercial orange fibre obtained by different methods (COM), and (ii) to compare the nutritional, texture and sensory profile of gluten-free biscuits formulated with HAD+MW and with COM fibres. The total dietary fibre content (72.0 ± 3.0%) and WRC (21.1 ± 2.7 gwater/ g) of HAD+MW fibre did not differ from the nutritional composition of the control orange fibre (COM). However, for HAD+MW fibre, protein (+2.34 fold), fat (-4.75 fold), ash (-2.31 fold), sugars (-1.42 fold) and moisture content (+11.5 fold) was different from COM. Instrumental texture analysis showed that biscuits with HAD+MW fiber resulted in less hardness (26%) than those with COM fiber. However, this difference was not perceived by panellists (p > 0.05). Exterior colour, cereal, vanilla and citrus aroma-flavour, and granularity were slightly more intense in HAD+MW biscuits but still similar to the commercial control fiber. Thus, the HAD+MW drying method can be used for upcycling orange by-products, obtaining less refined and more nutritious and sustainable ingredients for fiber-enrichment of gluten-free biscuits.
Collapse
Affiliation(s)
- Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain.
| | - Yolanda Rios
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Saioa Alvarez-Sabatel
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Mónica Ibargüen
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Raquel Rodríguez
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| |
Collapse
|
42
|
Physiological and Biochemical Adaptive Traits in Leaves of Four Citrus Species Grown in an Italian Charterhouse. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Citrus trees are a very important crops that are cultivated worldwide, but not much knowledge is known about the ecophysiological responses to climatic changes in trees under natural conditions. The aim of this study was to investigate their adaptive capacity in response to seasonal phenological and environmental changes. The trial included Citrus trees (sweet orange, bitter orange, lemon, mandarin) growing under non-regular cropping conditions in a Monumental Charterhouse in Tuscany, in a subtropical Mediterranean climate with hot summer conditions. During a 1-year field trial, we determined the variations in chlorophyll fluorescence parameters and leaf biochemical traits (content of chlorophylls and carotenoids, total phenolic content (TPC), total antioxidant capacity (TAC), and total non-structural carbohydrates). In all Citrus spp., interspecific mean values of photochemical efficiency peaked during the summer, while a marked photoinhibition occurred in the winter in concomitance with higher interspecific mean values of leaf TPC, TAC, and non-structural carbohydrates. The trees showed the pivotal role played by photosynthetic acclimation as a survival strategy to tolerate abiotic stress in the climate change hotspot of Mediterranean environment. This study is included in a wider project aimed at a new valorization of Citrus trees as genetic resource and its by-products with added-value applications for innovative functional foods.
Collapse
|
43
|
Romano R, De Luca L, Aiello A, Rossi D, Pizzolongo F, Masi P. Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Raffaele Romano
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Lucia De Luca
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Alessandra Aiello
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Danilo Rossi
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences University of Naples Federico II via Università, 100 Portici 80055 Italy
| | - Paolo Masi
- CAISIAL University of Naples Federico II Via Università 133 Portici 80055 Italy
| |
Collapse
|
44
|
Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Res Int 2022; 153:110958. [DOI: 10.1016/j.foodres.2022.110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
|
45
|
Recent advances in valorization of citrus fruits processing waste: a way forward towards environmental sustainability. Food Sci Biotechnol 2021; 30:1601-1626. [PMID: 34925937 DOI: 10.1007/s10068-021-00984-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are well known for their medicinal and therapeutic potential due to the presence of immense bioactive components. With the enormous consumption of citrus juice, citrus processing industries are focused on the production of juice but at the same time, a large amount of waste is produced mainly in the form of peel, seeds, pomace, and wastewater. This waste left after processing leads to environmental pollution and health-related hazards. However, it could be exploited for the recovery of essential oils, pectin, nutraceuticals, macro and micronutrients, ethanol, and biofuel generation. In view of the importance and health benefits of bioactive compounds found in citrus waste, the present review summarizes the recent work done on the citrus fruit waste valorization for recovery of value-added compounds leading to zero wastage. Therefore, instead of calling it waste, these could be a good resource of significant valuable components, in this way encouraging the zero-waste theory.
Collapse
|
46
|
Fabrication and Performance of Low-Fouling UF Membranes for the Treatment of Isolated Soy Protein Solutions. SUSTAINABILITY 2021. [DOI: 10.3390/su132413682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumers are becoming more conscious about the need to include functional and nutritional foods in their diet. This has increased the demand for food extracts rich in proteins and peptides with physiological effects that are used within the food and pharmaceutical industries. Among these protein extracts, soy protein and its derivatives are highlighted. Isolated soy protein (ISP) presents a protein content of at least 90%. Wastewaters generated during the production process contain small proteins (8–50 kDa), and it would be desirable to find a recovery treatment for these compounds. Ultrafiltration membranes (UF) are used for the fractionation and concentration of protein solutions. By the appropriate selection of the membrane pore size, larger soy proteins are retained and concentrated while carbohydrates and minerals are mostly recovered in the permeate. The accumulation and concentration of macromolecules in the proximity of the membrane surface generates one of the most important limitations inherent to the membrane technologies. In this work, three UF membranes based on polyethersulfone (PES) were fabricated. In two of them, polyethylene glycol (PEG) was added in their formulation to be used as a fouling prevention. The membrane fouling was evaluated by the study of flux decline models based on Hermia’s mechanisms.
Collapse
|
47
|
Wang Z, Chen X, Zhong T, Li B, Yang Q, Du M, Zalán Z, Kan J. Bioeffector Pseudomonas fluorescens ZX Elicits Biosynthesis and Accumulation of Functional Ingredients in Citrus Fruit Peel: A Promising Strategy for a More Sustainable Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13810-13820. [PMID: 34751564 DOI: 10.1021/acs.jafc.1c05709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Preharvest application of biocontrol agents is a promising strategy for promoting biosynthesis and accumulation of functional ingredients in fruit crops. In this study, we sought to evaluate the potential of Pseudomonas fluorescens ZX in stimulating the primary and secondary metabolism of citrus fruit peel. Pretreatment with P. fluorescens ZX was found to significantly affect the concentrations and profiles of both primary and secondary metabolites. More importantly, using P. fluorescens ZX suspension to increase inoculation numbers during fruit development typically elicited stronger stimulus effects, and multiple applications of P. fluorescens ZX significantly improved the biosynthesis process of beneficial compounds, resulting in their abundant accumulation in the peel. In fruit pretreated four times with P. fluorescens ZX, hesperidin, sinensetin, nobiletin, synephrine, and pectin were increased by approximately 26.0, 31.3, 44.8, 19.7, and 23.1%, respectively, compared to the untreated control. Collectively, these results indicated that, as a biostimulant, preharvest application of P. fluorescens ZX is an effective, affordable, ecological, and ecofriendly alternative agricultural technique for exploiting citrus crops. This approach is also promising for increasing the value of citrus fruit peel (currently regarded primarily as processing waste), thereby allowing industrial agricultural practices to move one step closer toward a circular economy.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
| | - Xuhui Chen
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Tao Zhong
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
| | - Bin Li
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Qingqing Yang
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, 2# Tiansheng Road, Beibei, Chongqing 400715, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| |
Collapse
|
48
|
Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2488804. [PMID: 34795782 PMCID: PMC8595006 DOI: 10.1155/2021/2488804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Serap Sezen
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, Osmaniye 80500, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| |
Collapse
|
49
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
50
|
Pérez-Lamela C, Franco I, Falqué E. Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules 2021; 26:5265. [PMID: 34500700 PMCID: PMC8434123 DOI: 10.3390/molecules26175265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fruits and fruit products are an essential part of the human diet. Their health benefits are directly related to their content of valuable bioactive compounds, such as polyphenols, anthocyanins, or vitamins. Heat treatments allow the production of stable and safe products; however, their sensory quality and chemical composition are subject to significant negative changes. The use of emerging non-thermal technologies, such as HPP (High Pressure Processing), has the potential to inactivate the microbial load while exerting minimal effects on the nutritional and organoleptic properties of food products. HPP is an adequate alternative to heat treatments and simultaneously achieves the purposes of preservation and maintenance of freshness characteristics and health benefits of the final products. However, compounds responsible for antioxidant activity can be significantly affected during treatment and storage of HPP-processed products. Therefore, this article reviews the effect of HPP treatment and subsequent storage on the antioxidant activity (oxygen radical absorbance capacity (ORAC) assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing antioxidant power (FRAP) assay, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assay or Trolox equivalent antioxidant capacity (TEAC) assay), and on the total phenolic, flavonoid, carotenoid, anthocyanin and vitamin contents of fruits and different processed fruit-based products.
Collapse
Affiliation(s)
- Concepción Pérez-Lamela
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Inmaculada Franco
- Food Technology Area, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Elena Falqué
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo–Ourense Campus, E32004 Ourense, Spain;
| |
Collapse
|