1
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. Infect Immun 2024; 92:e0031424. [PMID: 39254346 PMCID: PMC11477908 DOI: 10.1128/iai.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in various water and land environments and organisms, including insects and mammals. Some P. alcalifaciens strains encode gene homologs of virulence factors found in pathogenic Enterobacterales members, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are pathogenic determinants in P. alcalifaciens is not known. In this study, we investigated P. alcalifaciens-host interactions at the cellular level, focusing on the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS1b is widespread in Providencia spp. and encoded on the chromosome. A large plasmid that is present in a subset of P. alcalifaciens strains, primarily isolated from diarrheal patients, encodes for T3SS1a. We show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, lyses its internalization vacuole, and proliferates in the cytosol. This triggers caspase-4-dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS1a in entry, vacuole lysis, and cytosolic proliferation is host cell type-specific, playing a more prominent role in intestinal epithelial cells than in macrophages or insect cells. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa and induces mild epithelial damage with negligible fluid accumulation in a T3SS1a- and T3SS1b-independent manner. However, T3SS1b was required for the rapid killing of Drosophila melanogaster. We propose that the acquisition of two T3SS has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
Affiliation(s)
- Jessica A. Klein
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | - Aimee R. Greissl
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mattie M. Clark-Herrera
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Maya Howell
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aaditi Lele
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Donna J. Robinson
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Trina L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Wrande
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nicole M. Green
- Public Health Laboratory, Los Angeles County Department of Public Health, Downey, California, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Andres Mejia
- Comparative Pathology Laboratory, Research Animal Resources and Compliance, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan G. Goodman
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Johanna R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
2
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.595826. [PMID: 38895369 PMCID: PMC11185699 DOI: 10.1101/2024.06.07.595826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in a wide variety of water and land environments and organisms. It has been isolated as part of the gut microbiome of animals and insects, as well as from stool samples of patients with diarrhea. Specific P. alcalifaciens strains encode gene homologs of virulence factors found in other pathogenic members of the same Enterobacterales order, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are also pathogenic determinants in P. alcalifaciens is not known. Here we have used P. alcalifaciens 205/92, a clinical isolate, with in vitro and in vivo infection models to investigate P. alcalifaciens -host interactions at the cellular level. Our particular focus was the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS 1b is widespread in Providencia spp. and encoded on the chromosome. T3SS 1a is encoded on a large plasmid that is present in a subset of P. alcalifaciens strains, which are primarily isolates from diarrheal patients. Using a combination of electron and fluorescence microscopy and gentamicin protection assays we show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, rapidly lyses its internalization vacuole and proliferates in the cytosol. This triggers caspase-4 dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS 1a in entry, vacuole lysis and cytosolic proliferation is host-cell type specific, playing a more prominent role in human intestinal epithelial cells as compared to macrophages. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa, inducing mild epithelial damage with negligible fluid accumulation. No overt role for T3SS 1a or T3SS 1b was seen in the calf infection model. However, T3SS 1b was required for the rapid killing of Drosophila melanogaster . We propose that the acquisition of two T3SS by horizontal gene transfer has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
|
3
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
5
|
Antibacterial mechanism of forsythoside A against Pseudomonas syringae pv. actinidiae. Microb Pathog 2022; 173:105858. [DOI: 10.1016/j.micpath.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
6
|
Yoon M, Middleditch MJ, Rikkerink EHA. A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the Pseudomonas effector AvrRpm2 to activate RPM1-mediated plant resistance. THE PLANT CELL 2022; 34:4950-4972. [PMID: 36130293 PMCID: PMC9710000 DOI: 10.1093/plcell/koac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Martin J Middleditch
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
7
|
Noh S, Capodanno BJ, Xu S, Hamilton MC, Strassmann JE, Queller DC. Reduced and Nonreduced Genomes in Paraburkholderia Symbionts of Social Amoebas. mSystems 2022; 7:e0056222. [PMID: 36098425 PMCID: PMC9601139 DOI: 10.1128/msystems.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Benjamin J. Capodanno
- Department of Biology, Colby College, Waterville, Maine, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Songtao Xu
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- Department of Biology, Colby College, Waterville, Maine, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Sivaranjani M, McCarthy MC, Sniatynski MK, Wu L, Dillon JAR, Rubin JE, White AP. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated With Colibacillosis Outbreaks in Broiler Chickens From Saskatchewan. Front Microbiol 2022; 13:841516. [PMID: 35783405 PMCID: PMC9247541 DOI: 10.3389/fmicb.2022.841516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C. McCarthy
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle K. Sniatynski
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linzhi Wu
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Aaron P. White,
| |
Collapse
|
9
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
10
|
Barno AR, Villela HDM, Aranda M, Thomas T, Peixoto RS. Host under epigenetic control: A novel perspective on the interaction between microorganisms and corals. Bioessays 2021; 43:e2100068. [PMID: 34463364 DOI: 10.1002/bies.202100068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin-repeat protein A and internalin B, which indirectly cause histone modifications in humans, as well as Rv1988 histone methyltransferase, and the DNA methyltransferases Rv2966c, Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are potential host epigenome-modifying proteins in the coral microbiome. With the ideas presented here, we suggest that microbiome manipulation may be a means to alter a coral's epigenome, which could aid the current efforts to protect coral reefs. Also see the video abstract here: https://youtu.be/CW9GbChjKM4.
Collapse
Affiliation(s)
- Adam R Barno
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Helena D M Villela
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
| | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.,Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ferrari ML, Charova SN, Sansonetti PJ, Mylonas E, Gazi AD. Structural Insights of Shigella Translocator IpaB and Its Chaperone IpgC in Solution. Front Cell Infect Microbiol 2021; 11:673122. [PMID: 33996640 PMCID: PMC8117225 DOI: 10.3389/fcimb.2021.673122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial Type III Secretion Systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or deliver Type III Secretion effectors directly into eukaryotic host cell cytoplasm. Shigella, the causing agent of bacillary dysentery or shigellosis, bears a set of T3SS proteins termed translocators that form a pore in the host cell membrane. IpaB, the major translocator of the system, is a key factor in promoting Shigella pathogenicity. Prior to secretion, IpaB is maintained inside the bacterial cytoplasm in a secretion competent folding state thanks to its cognate chaperone IpgC. IpgC couples T3SS activation to transcription of effector genes through its binding to MxiE, probably after the delivery of IpaB to the secretion export gate. Small Angle X-ray Scattering experiments and modeling reveal that IpgC is found in different oligomeric states in solution, as it forms a stable heterodimer with full-length IpaB in contrast to an aggregation-prone homodimer in the absence of the translocator. These results support a stoichiometry of interaction 1:1 in the IpgC/IpaB complex and the multi-functional nature of IpgC under different T3SS states.
Collapse
Affiliation(s)
- Mariana L. Ferrari
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Collège de France, Paris, France
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Anastasia D. Gazi
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- UtechS Ultrastructural Bio-Imaging (UBI), Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Hirose K, Ishiga Y, Fujikawa T. Phytotoxin synthesis genes and type III effector genes of Pseudomonas syringae pv. actinidiae biovar 6 are regulated by culture conditions. PeerJ 2020; 8:e9697. [PMID: 32864217 PMCID: PMC7430302 DOI: 10.7717/peerj.9697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 01/21/2023] Open
Abstract
The kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae; Psa) causes severe damage to kiwifruit production worldwide. Psa biovar 6 (Psa6), which was isolated in Japan in 2015, produces two types of phytotoxins: coronatine and phaseolotoxin. To elucidate the unique virulence of Psa6, we performed transcriptomic analysis of phytotoxin synthesis genes and type III effector genes in in vitro cultivation using various media. The genes related to phytotoxin synthesis and effectors of Psa6 were strictly regulated in the coronatine-inducing mediums (HS and HSC); 14 of 23 effector genes and a hrpL sigma factor gene were induced at 3 h after transferring to the media (early-inducible genes), and phytotoxin synthesis genes such as argD of phaseolotoxin and cfl of coronatine were induced at 6 and 12 h after transferring to the media (late-inducible genes). In contrast, induction of these genes was not observed in the hrp-inducing medium. Next, to examine whether the changes in gene expression in different media is specific to Psa6, we investigated gene expression in other related bacteria. For Psa biovar 1 (Psa1), biovar 3 (Psa3), and P. s. pv. glycinea (Psg), no clear trends were observed in expression behavior across various culture media and incubation times. Therefore, Psa6 seems to exert its virulence efficiently by using two phytotoxins and effectors according to environmental changes. This is not seen in other biovars and pathovars, so it is thought that Psa6 has acquired its own balance of virulence.
Collapse
Affiliation(s)
- Karin Hirose
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Quintieri L, Fanelli F, Zühlke D, Caputo L, Logrieco AF, Albrecht D, Riedel K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front Microbiol 2020; 11:991. [PMID: 32670211 PMCID: PMC7326052 DOI: 10.3389/fmicb.2020.00991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
In food chain, Pseudomonas spp. cause spoilage by reducing shelf life of fresh products, especially during cold storage, with a high economic burden for industries. However, recent studies have shed new light on health risks occurring when they colonize immunocompromised patient tissues. Likewise to P. aeruginosa, they exhibit antibiotic resistance and biofilm formation, responsible for their spread and persistence in the environment. Biofilm formation might be induced by environmental stresses, such as temperature fluctuations causing physiological and metabolic changes exacerbating food spoilage (by protease and pigment synthesis), and the production of adhesion molecules, chemotactic or underestimated virulence factors. In order to provide a new insight into phenotypic biodiversity of Pseudomonas spoilers isolated from cold stored cheese, in this work 19 Pseudomonas spp. were investigated for biofilm, pigments, exopolysaccharide production and motility at low temperature. Only nine strains showed these phenotypic traits and the blue pigmenting cheese strain P. fluorescens ITEM 17298 was the most distinctive. In addition, this strain decreased the survival probability of infected Galleria mellonella larvae, showing, for the first time, a pathogenic potential. Genomic and proteomic analyses performed on the ITEM 17298 planktonic cells treated or not with lactoferrin derived antibiofilm peptides allowed to reveal specific biofilm related-pathways as well as proteins involved in pathogenesis. Indeed, several genes were found related to signaling system by cGMP-dependent protein kinases, cellulose, rhamnolipid and alginate synthesis, antibiotic resistance, adhesion and virulence factors. The proteome of the untreated ITEM 17298, growing at low temperature, showed that most of the proteins associated with biofilm regulation, pigmentation motility, antibiotic resistance and pathogenecity were repressed, or decreased their levels in comparison to that of the untreated cultures. Thus, the results of this work shed light on the complex pathways network allowing psychrotrophic pseudomonads to adapt themselves to food-refrigerated conditions and enhance their spoilage. In addition, the discovery of virulence factors and antibiotic resistance determinants raises some questions about the need to deeper investigate these underestimated bacteria in order to increase awareness and provide input to update legislation on their detection limits in foods.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Leonardo Caputo
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Yoon M, Rikkerink EHA. Rpa1 mediates an immune response to avrRpm1 Psa and confers resistance against Pseudomonas syringae pv. actinidiae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:688-702. [PMID: 31849122 DOI: 10.1111/tpj.14654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
15
|
Salgado-Morales R, Martínez-Ocampo F, Obregón-Barboza V, Vilchis-Martínez K, Jiménez-Pérez A, Dantán-González E. Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis indica against Galleria mellonella and Some Pest Insects. INSECTS 2019; 10:insects10030083. [PMID: 30917525 PMCID: PMC6468454 DOI: 10.3390/insects10030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 02/01/2023]
Abstract
The entomopathogenic nematodes Heterorhabditis are parasites of insects and are associated with mutualist symbiosis enterobacteria of the genus Photorhabdus; these bacteria are lethal to their host insects. Heterorhabditis indica MOR03 was isolated from sugarcane soil in Morelos state, Mexico. The molecular identification of the nematode was confirmed using sequences of the ITS1-5.8S-ITS2 region and the D2/D3 expansion segment of the 28S rRNA gene. In addition, two bacteria HIM3 and NA04 strains were isolated from the entomopathogenic nematode. The genomes of both bacteria were sequenced and assembled de novo. Phylogenetic analysis was confirmed by concatenated gene sequence datasets as Photorhabdus luminescens HIM3 (16S rRNA, 23S rRNA, dnaN, gyrA, and gyrB genes) and Pseudomonas aeruginosa NA04 (16S rRNA, 23S rRNA and gyrB genes). H. indica MOR03 infects Galleria mellonella, Tenebrio molitor, Heliothis subflexa, and Diatraea magnifactella larvae with LC50 values of 1.4, 23.5, 13.7, and 21.7 IJs/cm2, respectively, at 48 h. These bacteria are pathogenic to various insects and have high injectable insecticide activity at 24 h.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Doctorado en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Fernando Martínez-Ocampo
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Verónica Obregón-Barboza
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Kathia Vilchis-Martínez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico.
| | - Alfredo Jiménez-Pérez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico.
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Borah SM, Jha AN. Identification and analysis of structurally critical fragments in HopS2. BMC Bioinformatics 2019; 19:552. [PMID: 30717655 PMCID: PMC7394326 DOI: 10.1186/s12859-018-2551-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
Background Among the diverse roles of the Type III secretion-system (T3SS), one of the notable functions is that it serves as unique nano machineries in gram-negative bacteria that facilitate the translocation of effector proteins from bacteria into their host. These effector proteins serve as potential targets to control the pathogenicity conferred to the bacteria. Despite being ideal choices to disrupt bacterial systems, it has been quite an ordeal in the recent times to experimentally reveal and establish a concrete sequence-structure-function relationship for these effector proteins. This work focuses on the disease-causing spectrum of an effector protein, HopS2 secreted by the phytopathogen Pseudomonas syringae pv. tomato DC3000. Results The study addresses the structural attributes of HopS2 via a bioinformatics approach to by-pass some of the experimental shortcomings resulting in mining some critical regions in the effector protein. We have elucidated the functionally important regions of HopS2 with the assistance of sequence and structural analyses. The sequence based data supports the presence of important regions in HopS2 that are present in the other functional parts of Hop family proteins. Furthermore, these regions have been validated by an ab-initio structure prediction of the protein followed by 100 ns long molecular dynamics (MD) simulation. The assessment of these secondary structural regions has revealed the stability and importance of these regions in the protein structure. Conclusions The analysis has provided insights on important functional regions that may be vital to the effector functioning. In dearth of ample experimental evidence, such a bioinformatics approach has helped in the revelation of a few structural regions which will aid in future experiments to attain and evaluate the structural and functional aspects of this protein family. Electronic supplementary material The online version of this article (10.1186/s12859-018-2551-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sapna M Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
17
|
Beinart RA, Beaudoin DJ, Bernhard JM, Edgcomb VP. Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. Mol Ecol 2018; 27:1794-1807. [PMID: 29271011 DOI: 10.1111/mec.14465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
Symbioses between anaerobic or microaerophilic protists and prokaryotes are common in anoxic and oxygen-depleted habitats ranging from marine sediments to gastrointestinal tracts. Nevertheless, little is known about the mechanisms of metabolic interaction between partners. In these putatively syntrophic associations, consumption of fermentative end products (e.g., hydrogen) by the prokaryotic symbionts is thought to facilitate protistan anaerobic metabolism. Here, we employed metagenomic and metatranscriptomic sequencing of a microaerophilic or anaerobic karyorelictid ciliate and its prokaryotic symbionts from oxygen-depleted Santa Barbara Basin (CA, USA) sediments to assess metabolic coupling within this consortium. This sequencing confirmed the predominance of deltaproteobacterial symbionts from the Families Desulfobacteraceae and Desulfobulbaceae and suggested active symbiont reduction of host-provided sulphate, transfer of small organic molecules from host to symbionts and hydrogen cycling among the symbionts. In addition, patterns of gene expression indicated active cell division by the symbionts, their growth via autotrophic processes and nitrogen exchange with the ciliate host. Altogether, this research underscores the importance of symbiont metabolism to host fermentative metabolism and, thus, likely its success in anoxic and low-oxygen habitats, but also suggests ciliate-associated prokaryotes play a role in important biogeochemical processes.
Collapse
Affiliation(s)
- R A Beinart
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - D J Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - J M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - V P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
18
|
Draft Genome Sequence of Photorhabdus luminescens HIM3 Isolated from an Entomopathogenic Nematode in Agricultural Soils. GENOME ANNOUNCEMENTS 2017; 5:5/35/e00745-17. [PMID: 28860237 PMCID: PMC5578835 DOI: 10.1128/genomea.00745-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we report the draft genome sequence of Photorhabdus luminescens strain HIM3, a symbiotic bacterium associated with the entomopathogenic nematode Heterorhabditis indica MOR03, isolated from soil sugarcane in Yautepec, Morelos, Mexico. These bacteria have a G+C content of 42.6% and genome size of 5.47 Mb.
Collapse
|
19
|
Douëllou T, Delannoy S, Ganet S, Fach P, Loukiadis E, Montel MC, Sergentet-Thevenot D. Molecular characterization of O157:H7, O26:H11 and O103:H2 Shiga toxin-producing Escherichia coli isolated from dairy products. Int J Food Microbiol 2017; 253:59-65. [PMID: 28499121 DOI: 10.1016/j.ijfoodmicro.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/10/2023]
Abstract
Pathogenic Shiga toxin-producing E. coli (STEC) are recognized worldwide as environment and foodborne pathogens which can be transmitted by ingestion of ready-to-eat food such as raw milk-derived products. STEC show a prevalence rate in dairy products of 0.9%, yet comparably few outbreaks have been related to dairy products consumption. In this study, we used rt-qPCR to identify the virulence potential of O157, O26 and O103 STEC strains isolated from raw-milk dairy products by analyzing virulence-related gene frequencies and associations with O-island (OI) 44, OI-48, OI-50, OI-57, OI-71 and OI-122. Results showed that 100% of STEC strains investigated harbored genes associated with EHEC-related virulence profile patterns (eae and stx, with either espK, espV, ureD and/or Z2098). We also found similarities in virulence-related gene content between O157:H7 and O103:H2 dairy and non-dairy STEC strains, especially isolates from human cases. The O26:H11-serotype STEC strains investigated harbor the arcA-allele 2 gene associated with specific genetic markers. These profiles are associated with high-virulence seropathotype-A STEC. However, the low frequency of stx2 gene associated with absence of other virulence genes in dairy isolates of O26:H11 remains a promising avenue of investigation to estimate their real pathogenicity. All O26:H11 attaching-effacing E. coli (AEEC) strains carried CRISPRO26:H11SP_O26_E but not genetic markers espK, espV, ureD and/or Z2098 associated with the emerging potentially high-virulence "new French clone". These strains are potentially as "EHEC-like" strains because they may acquire (or have lost) stx gene. In this study, O157:H7, O103:H2 and O26:H11 STEC strains isolated from dairy products were assigned as potential pathogens. However, research now needs to investigate the impact of dairy product environment and dairy processing on the expression of their pathogenicity.
Collapse
Affiliation(s)
- T Douëllou
- Institute National de Recherche Agronomique, Unité de Recherches Fromagères, 15000 Aurillac, France; Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France.
| | - S Delannoy
- Université Paris-Est, ANSES, Laboratoire de Sécurité des Aliments, Plateforme IdentyPath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - S Ganet
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'Etudes des Microorganismes Alimentaires Pathogènes-French National Reference laboratory for Escherichia coli including Shiga toxin-producing E. coli (NRL-STEC), 69280 Marcy l'Etoile, France
| | - P Fach
- Université Paris-Est, ANSES, Laboratoire de Sécurité des Aliments, Plateforme IdentyPath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - E Loukiadis
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'Etudes des Microorganismes Alimentaires Pathogènes-French National Reference laboratory for Escherichia coli including Shiga toxin-producing E. coli (NRL-STEC), 69280 Marcy l'Etoile, France
| | - M-C Montel
- Institute National de Recherche Agronomique, Unité de Recherches Fromagères, 15000 Aurillac, France
| | - D Sergentet-Thevenot
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'Etudes des Microorganismes Alimentaires Pathogènes-French National Reference laboratory for Escherichia coli including Shiga toxin-producing E. coli (NRL-STEC), 69280 Marcy l'Etoile, France
| |
Collapse
|
20
|
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol 2017; 8:38. [PMID: 28197129 PMCID: PMC5282467 DOI: 10.3389/fmicb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan; Department of Soil Environmental Science, Research Centre for Eco-environmental Sciences - Chinese Academy of SciencesBeijing, China
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Pu Yang
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| |
Collapse
|
21
|
Draft genome and description of Orrella dioscoreae gen. nov. sp. nov., a new species of Alcaligenaceae isolated from leaf acumens of Dioscorea sansibarensis. Syst Appl Microbiol 2017; 40:11-21. [DOI: 10.1016/j.syapm.2016.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 01/31/2023]
|
22
|
Douëllou T, Delannoy S, Ganet S, Mariani-Kurkdjian P, Fach P, Loukiadis E, Montel M, Thevenot-Sergentet D. Shiga toxin-producing Escherichia coli strains isolated from dairy products - Genetic diversity and virulence gene profiles. Int J Food Microbiol 2016; 232:52-62. [PMID: 27257743 DOI: 10.1016/j.ijfoodmicro.2016.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are widely recognized as pathogens causing food borne disease. Here we evaluate the genetic diversity of 197 strains, mainly STEC, from serotypes O157:H7, O26:H11, O103:H2, O111:H8 and O145:28 and compared strains recovered in dairy products against strains from human, meat and environment cases. For this purpose, we characterized a set of reference-collection STEC isolates from dairy products by PFGE DNA fingerprinting and a subset of these by virulence-gene profiling. PFGE profiles of restricted STEC total DNA showed high genomic variability (0.9976 on Simpson's discriminatory index), enabling all dairy isolates to be differentiated. High-throughput real-time PCR screening of STEC virulence genes were applied on the O157:H7 and O26:H11 STEC isolates from dairy products and human cases. The virulence gene profiles of dairy and human STEC strains were similar. Nevertheless, frequency-wise, stx1 was more prevalent among dairy O26:H11 isolates than in human cases ones (87% vs. 44%) while stx2 was more prevalent among O26:H11 human isolates (23% vs. 81%). For O157:H7 isolates, stx1 (0% vs. 39%), nleF (40% vs 94%) and Z6065 (40% vs 100%) were more prevalent among human than dairy strains. Our data point to differences between human and dairy strains but these differences were not sufficient to associate PFGE and virulence gene profiles to a putative lower pathogenicity of dairy strains based on their lower incidence in disease. Further comparison of whole-genome expression and virulence gene profiles should be investigated in cheese and intestinal tract samples.
Collapse
Affiliation(s)
- T Douëllou
- INRA UR Fromagères 545, 20 Cote de Reyne, 15000 Aurillac, France; Université de Lyon, "Bacterial Opportunistic Pathogens and Environment" Research Group, UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - S Delannoy
- Université Paris-Est, ANSES, Laboratoire de Sécurité des Aliments, Plateforme IdentyPath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - S Ganet
- Université de Lyon, "Bacterial Opportunistic Pathogens and Environment" Research Group, UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'études des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga-like toxin-producing E. coli (NRL-STEC), 69280 Marcy-l'Etoile, France
| | - P Mariani-Kurkdjian
- Centre National de Référence Associé des Escherichia coli, AP-HP, Service de Microbiologie, Hôpital Robert-Debré, 75019 Paris, France
| | - P Fach
- Université Paris-Est, ANSES, Laboratoire de Sécurité des Aliments, Plateforme IdentyPath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - E Loukiadis
- Université de Lyon, "Bacterial Opportunistic Pathogens and Environment" Research Group, UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'études des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga-like toxin-producing E. coli (NRL-STEC), 69280 Marcy-l'Etoile, France
| | - Mc Montel
- INRA UR Fromagères 545, 20 Cote de Reyne, 15000 Aurillac, France
| | - D Thevenot-Sergentet
- Université de Lyon, "Bacterial Opportunistic Pathogens and Environment" Research Group, UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, 69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup Campus Vétérinaire, Laboratoire d'études des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga-like toxin-producing E. coli (NRL-STEC), 69280 Marcy-l'Etoile, France.
| |
Collapse
|
23
|
Abstract
The type III secretion system (T3SS) is a membrane-embedded nanomachine found in several Gram-negative bacteria. Upon contact between bacteria and host cells, the syringe-like T3SS (Figure 1) transfers proteins termed effectors from the bacterial cytosol to the cytoplasm or the plasma membrane of a single target cell. This is a major difference from secretion systems that merely release molecules into the extracellular milieu, where they act on potentially distant target cells expressing the relevant surface receptors. The syringe architecture is conserved at the structural and functional level and supports injection into a great variety of hosts and tissues. However, the pool of effectors is species specific and determines the outcome of the interaction, via modulation of target-cell function.
Collapse
Affiliation(s)
- Andrea Puhar
- Inserm U768 and Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France.
| | - Philippe J Sansonetti
- Inserm U768 and Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France
| |
Collapse
|
24
|
Deslandes L, Genin S. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:110-7. [PMID: 24880553 DOI: 10.1016/j.pbi.2014.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 05/19/2023]
Abstract
Effectors delivered to host cells by the Type III secretion system are essential to Ralstonia solanacearum pathogenicity, as in several other plant pathogenic bacteria. The establishment of exhaustive effector repertoires in multiple R. solanacearum strains drew a first picture of the evolutionary dynamics of the pathogen effector suites. Effector repertoires are diversified, with a core of 20-30 effectors present in most of the strains and the obtention of mutants lacking one or more effector genes revealed the functional overlap among this effector network. Recent functional studies have provided insights into the ability of single effectors to manipulate the host proteasome, elicit cell death, trigger the expression of plant genes, and/or display biochemical activities on plant protein targets.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France
| | - Stephane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France.
| |
Collapse
|
25
|
Barret M, Egan F, Moynihan J, Morrissey JP, Lesouhaitier O, O'Gara F. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:377-86. [PMID: 23754718 DOI: 10.1111/1758-2229.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/10/2013] [Indexed: 05/21/2023]
Abstract
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing.
Collapse
Affiliation(s)
- Matthieu Barret
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Horizontal gene transfer plays a major role in microbial evolution by innovating the bacterial genome with new genetic blueprints to adapt to previously unexploited niches. However, to benefit from these genetic acquisitions, the bacterium must integrate the expression of these new genes into existing regulatory nodes and deploy them at the right time. There is much to gain from uncovering the genetic diversity in noncoding DNA that is selective during host infection because of the beneficial effect it has on bacterial gene expression. By identifying genes that have undergone regulatory evolution, a deeper understanding of the arms race between host and pathogen is gained.
Collapse
Affiliation(s)
- Brian K Coombes
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
27
|
Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. MICROBIAL ECOLOGY 2013; 65:860-8. [PMID: 23354181 PMCID: PMC3637895 DOI: 10.1007/s00248-013-0189-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/14/2013] [Indexed: 05/08/2023]
Abstract
Bacteria in the environment must survive predation from bacteriophage, heterotrophic protists, and predatory bacteria. This selective pressure has resulted in the evolution of a variety of defense mechanisms, which can also function as virulence factors. Here we discuss the potential dual function of some of the mechanisms, which protect against heterotrophic protists, and how predation pressure leads to the evolution of pathogenicity. This is in accordance with the coincidental evolution hypothesis, which suggests that virulence factors arose as a response to other selective pressures, for example, predation rather than for virulence per se. In this review we discuss some of those environmental factors that may be associated with the rise of pathogens in the marine environment. In particular, we will discuss the role of heterotrophic protists in the evolution of virulence factors in marine bacteria. Finally, we will discuss the implications for expansion of current pathogens and emergence of new pathogens.
Collapse
Affiliation(s)
- Martina Erken
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Carla Lutz
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052 Australia
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Biological Sciences, Nanyang Technological University, Nanyang Avenue, Singapore, 637551 Singapore
| |
Collapse
|
28
|
Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol 2013; 194:6963-4. [PMID: 23209221 DOI: 10.1128/jb.01933-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enterobacter sp. strain SP1 is an endophytic nitrogen-fixing bacterium isolated from a sugarcane stem and can promote plant growth. The draft genome sequence of strain SP1 presented here will promote comparative genomic studies to determine the genetic background of interactions between endophytic enterobacteria and plants.
Collapse
|
29
|
A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME JOURNAL 2013; 7:1003-15. [PMID: 23303373 DOI: 10.1038/ismej.2012.171] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic. The aim of this study was to identify diverse tick microbiomes, which may contain as-yet unidentified pathogens, using a metagenomic approach. DNA prepared from bacteria/archaea-enriched fractions obtained from seven tick species, namely Amblyomma testudinarium, Amblyomma variegatum, Haemaphysalis formosensis, Haemaphysalis longicornis, Ixodes ovatus, Ixodes persulcatus and Ixodes ricinus, was subjected to pyrosequencing after whole-genome amplification. The resulting sequence reads were phylotyped using a Batch Learning Self-Organizing Map (BLSOM) program, which allowed phylogenetic estimation based on similarity of oligonucleotide frequencies, and functional annotation by BLASTX similarity searches. In addition to bacteria previously associated with human/animal diseases, such as Anaplasma, Bartonella, Borrelia, Ehrlichia, Francisella and Rickettsia, BLSOM analysis detected microorganisms belonging to the phylum Chlamydiae in some tick species. This was confirmed by pan-Chlamydia PCR and sequencing analysis. Gene sequences associated with bacterial pathogenesis were also identified, some of which were suspected to originate from horizontal gene transfer. These efforts to construct a database of tick microbes may lead to the ability to predict emerging tick-borne diseases. Furthermore, a comprehensive understanding of tick microbiomes will be useful for understanding tick biology, including vector competency and interactions with pathogens and symbionts.
Collapse
|
30
|
Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012; 8:e1003012. [PMID: 23133394 PMCID: PMC3486910 DOI: 10.1371/journal.pgen.1003012] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/22/2012] [Indexed: 11/28/2022] Open
Abstract
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI. Many arthropods are infected with bacterial symbionts that are maternally transmitted and have a great impact on their hosts' biology, ecology, and evolution. One of the most common phenotypes of facultative symbionts appears to be cytoplasmic incompatibility (CI), a type of reproductive failure in which bacteria in males modify sperm in a way that reduces the reproductive success of uninfected female mates. In spite of considerable interest, the genetic basis for CI is largely unknown. Cardinium hertigii, a symbiont of tiny parasitic wasps, is the only bacterial group other than the well-studied Wolbachia that is known to cause CI. Analysis of the Cardinium genome indicates that CI evolved independently in Wolbachia and Cardinium. However, a suite of shared proteins was likely involved in mediating host cell interactions, and CI shows functional overlap in both lineages. Our analysis suggests the presence of an unusual phage-derived, putative secretion system and reveals that Cardinium encodes biosynthetic pathways that suggest a potential role in host nutrition. Our findings provide a novel comparative context for understanding the mechanistic basis of CI and substantially increase our knowledge on reproductive manipulator symbionts that do not only severely affect population genetic structure of arthropods but may also serve as powerful tools in pest management.
Collapse
|
31
|
Chrudimský T, Husník F, Nováková E, Hypša V. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS One 2012; 7:e40354. [PMID: 22815743 PMCID: PMC3398932 DOI: 10.1371/journal.pone.0040354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/07/2012] [Indexed: 12/21/2022] Open
Abstract
Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating establishment and evolution of insect-bacteria symbiosis. It represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, we describe a new Sodalis species which could provide a useful comparative model to the tsetse symbiont. It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including bacteriome. We provide basic morphological and molecular characteristics of the symbiont and show that these traits also correspond to the early/intermediate state of the evolution towards symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well as in cell-free medium. We also provide basic characteristics of type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium.
Collapse
Affiliation(s)
- Tomáš Chrudimský
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
32
|
Barrett LG, Heil M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. TRENDS IN PLANT SCIENCE 2012; 17:282-92. [PMID: 22465042 DOI: 10.1016/j.tplants.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/28/2012] [Indexed: 05/08/2023]
Abstract
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT, 2601, Australia
| | | |
Collapse
|
33
|
Gama JA, Abby SS, Vieira-Silva S, Dionisio F, Rocha EPC. Immune subversion and quorum-sensing shape the variation in infectious dose among bacterial pathogens. PLoS Pathog 2012; 8:e1002503. [PMID: 22319444 PMCID: PMC3271079 DOI: 10.1371/journal.ppat.1002503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 12/22/2022] Open
Abstract
Many studies have been devoted to understand the mechanisms used by pathogenic bacteria to exploit human hosts. These mechanisms are very diverse in the detail, but share commonalities whose quantification should enlighten the evolution of virulence from both a molecular and an ecological perspective. We mined the literature for experimental data on infectious dose of bacterial pathogens in humans (ID50) and also for traits with which ID50 might be associated. These compilations were checked and complemented with genome analyses. We observed that ID50 varies in a continuous way by over 10 orders of magnitude. Low ID50 values are very strongly associated with the capacity of the bacteria to kill professional phagocytes or to survive in the intracellular milieu of these cells. Inversely, high ID50 values are associated with motile and fast-growing bacteria that use quorum-sensing based regulation of virulence factors expression. Infectious dose is not associated with genome size and shows insignificant phylogenetic inertia, in line with frequent virulence shifts associated with the horizontal gene transfer of a small number of virulence factors. Contrary to previous proposals, infectious dose shows little dependence on contact-dependent secretion systems and on the natural route of exposure. When all variables are combined, immune subversion and quorum-sensing are sufficient to explain two thirds of the variance in infectious dose. Our results show the key role of immune subversion in effective human infection by small bacterial populations. They also suggest that cooperative processes might be important for successful infection by bacteria with high ID50. Our results suggest that trade-offs between selection for population growth-related traits and selection for the ability to subvert the immune system shape bacterial infectiousness. Understanding these trade-offs provides guidelines to study the evolution of virulence and in particular the micro-evolutionary paths of emerging pathogens. Every pathogen is unique and uses distinctive combinations of specific mechanisms to exploit the human host. Yet, several common themes in the ways pathogens use these mechanisms can be found among distantly related bacteria. The understanding of these common themes provides useful concepts and uncovers important principles in pathogenesis. Here, we have made a cross-species analysis of traits thought to be relevant for virulence of bacterial pathogens. We have found that the infectious dose of pathogens is much lower when they are able to kill professional phagocytes of the immune system or to survive in the intracellular milieu of these cells. On the other hand, bacteria requiring higher infectious dose are more likely to be motile, fast-growing and regulate the expression of virulence factors when the population quorum is high enough to be effective in starting an infection. This suggests that infectious dose results from a trade-off between selection for fast coordinated growth and the ability to subvert the immune system. This trade-off may underlie other traits such as the ability of a pathogen to live outside the association from a host. Understanding the patterns shaping infectious dose will facilitate the prediction of evolutionary paths of emerging pathogens.
Collapse
Affiliation(s)
- João Alves Gama
- Centro de Biologia Ambiental and Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sophie S. Abby
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - Sara Vieira-Silva
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - Francisco Dionisio
- Centro de Biologia Ambiental and Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eduardo P. C. Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ. Computational and biochemical analysis of the Xanthomonas effector AvrBs2 and its role in the modulation of Xanthomonas type three effector delivery. PLoS Pathog 2011; 7:e1002408. [PMID: 22144898 PMCID: PMC3228805 DOI: 10.1371/journal.ppat.1002408] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 10/14/2011] [Indexed: 01/06/2023] Open
Abstract
Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens. The bacterial pathogen Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial leaf spot disease of pepper and tomato. This pathogen is capable of delivering more than 28 effector proteins to plant cells via the type three secretion and translocation system (TTSS). The AvrBs2 protein is a TTSS effector of Xe with a significant virulence contribution that depends on a conserved glycerolphosphodiesterase (GDE) domain. Additionally, activation of the resistance protein Bs2 by AvrBs2 modulates the TTSS of Xe and suppresses the subsequent delivery of TTSS effectors.
Collapse
Affiliation(s)
- Bingyu Zhao
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Richard W. Fong
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Osborne SE, Coombes BK. Expression and secretion hierarchy in the nonflagellar type III secretion system. Future Microbiol 2011; 6:193-202. [PMID: 21366419 DOI: 10.2217/fmb.10.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Type III secretion systems that deliver bacterial proteins into eukaryotic cells are the basis for both symbiotic and pathogenic relationships between many Gram-negative bacteria and their hosts. Exploration of the structure, function and assembly of this secretion system has greatly enhanced our knowledge of bacterial ecology in the context of infectious disease and has spawned new avenues in anti-infective research with a view towards inhibiting virulence functions. We outline advances in understanding type III secretion system function with specific focus on how assembly is hierarchically coordinated at the level of expression and how the type III secretion system mediates transitions in substrate specificity.
Collapse
Affiliation(s)
- Suzanne E Osborne
- Michael G DeGroote Institute for Infectious Disease Research & Department of Biochemistry & Biomedical Sciences, HSC-4H17, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
36
|
Coombes BK, Gilmour MW, Goodman CD. The evolution of virulence in non-o157 shiga toxin-producing Escherichia coli. Front Microbiol 2011; 2:90. [PMID: 21833329 PMCID: PMC3153049 DOI: 10.3389/fmicb.2011.00090] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/14/2011] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic foodborne and waterborne pathogens that are a serious public health concern because they cause outbreaks and the potentially fatal hemolytic uremic syndrome (HUS). The most common STEC serotype associated with human disease is O157:H7, but there is a growing recognition of over 100 non-O157 serotypes that also may result in human illness. Some of these non-O157 STEC strains cause outbreaks and severe disease such as HUS and hemorrhagic colitis, whereas others are associated with only mild diarrhea or with no human disease at all. The relative scarceness of whole genome sequence data for non-O157 STEC has limited the scientific discovery into the genetic basis of these differences in virulence. Uncovering the scope of genetic diversity and phylogeny of the non-O157 STEC through targeting sequencing of clinically relevant isolates will offer new biological insight to the pathogenic behavior of these emerging pathogens. These approaches would also enable molecular risk assessment strategies to rapidly identify and respond to emerging non-O157 STEC that pose a serious public health risk to humans.
Collapse
Affiliation(s)
- Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, The Michael G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
37
|
Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 2011; 75:457-67. [PMID: 21204867 DOI: 10.1111/j.1574-6941.2010.01021.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type III secretion systems (T3SSs) of Gram-negative bacteria mediate direct interactions with eukaryotic cells. Pseudomonas spp. harboring T3SS genes (T3SS+) were previously shown to be more abundant in the rhizosphere than in bulk soil. To discriminate the contribution of roots and associated arbuscular mycorrhizal fungi (AMF) on the enrichment of T3SS+ fluorescent pseudomonads in the rhizosphere of Medicago truncatula, their frequency was assessed among pseudomonads isolated from mycorrhizal and nonmycorrhizal roots and from bulk soil. T3SS genes were identified by PCR targeting a conserved hrcRST DNA fragment. Polymorphism of hrcRST in T3SS+ isolates was assessed by PCR-restriction fragment length polymorphism and sequencing. Genotypic diversity of all pseudomonads isolated, whether or not harboring T3SS, was described by BOX-PCR. T3SS+ pseudomonads were significantly more abundant in mycorrhizal than in nonmycorrhizal roots and in bulk soil, and all were shown to belong to the phylogenetic group of Pseudomonas fluorescens on the basis of 16S rRNA gene identity. Four hrcRST genotypes were described; two only included isolates from mycorrhizal roots. T3SS+ and T3SS- pseudomonads showed different genetic backgrounds as indicated by their different BOX-PCR types. Taken together, these data suggest that T3SSs are implicated in interactions between fluorescent pseudomonads and AM in medic rhizosphere.
Collapse
Affiliation(s)
- Amandine Viollet
- INRA, Université de Bourgogne, UMR 1229 Microbiologie du Sol et de l'Environnement, CMSE, Dijon, France
| | | | | | | | | | | |
Collapse
|
38
|
Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 2010; 7:376-87. [PMID: 20478539 DOI: 10.1016/j.chom.2010.04.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/31/2010] [Accepted: 04/09/2010] [Indexed: 12/14/2022]
Abstract
Bacterial pathogens utilize pore-forming toxins or specialized secretion systems to deliver virulence factors to modulate host cell physiology and promote bacterial replication. Detection of these secretion systems or toxins, or their activities, by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs) triggers the assembly of inflammasomes, multiprotein complexes necessary for caspase-1 activation and host defense. Here we demonstrate that caspase-1 activation in response to the Yersinia type III secretion system (T3SS) requires the adaptor ASC and involves both NLRP3 and NLRC4 inflammasomes. Further, we identify a Yersinia type III secreted effector protein, YopK, which interacts with the T3SS translocon to prevent cellular recognition of the T3SS and inflammasome activation. In the absence of YopK, inflammasome sensing of the T3SS promotes bacterial clearance from infected tissues in vivo. These data demonstrate that a class of bacterial proteins interferes with cellular recognition of bacterial secretion systems and contributes to bacterial survival within host tissues.
Collapse
Affiliation(s)
- Igor E Brodsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tomljenovic-Berube AM, Mulder DT, Whiteside MD, Brinkman FSL, Coombes BK. Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system. PLoS Genet 2010; 6:e1000875. [PMID: 20300643 PMCID: PMC2837388 DOI: 10.1371/journal.pgen.1000875] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/06/2010] [Indexed: 11/19/2022] Open
Abstract
Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host. All organisms have a means to control gene expression ensuring correct spatiotemporal deployment of gene products. In bacteria, gene control presents a challenge because one species can reside in multiple niches, requiring them to coordinate gene expression with environmental sensing. Also, widespread acquisition of DNA by horizontal gene transfer demands a mechanism to integrate new genes into existing regulatory circuitry. The environmental awareness issue can be controlled using two-component regulatory systems that connect environmental cues to transcription factor activation, whereas the integration problem can be resolved using DNA regulatory evolution to create new regulatory connections between genes. The evolutionary significance of regulatory evolution for host adaptation is not fully known. We studied the convergence of environmental sensing and genetic networks by examining how the Salmonella enterica SsrA-SsrB two-component system, activated in response to host cues, has integrated ancestral and acquired genes into a common regulon. We identified a palindrome as the major element apportioning SsrB on the chromosome. SsrB binding sites have been selected to co-regulate a gene program involved in pathogenic adaptation of Salmonella to its host. In addition, our results indicate that promoter architecture emerging from SsrB-dependent regulatory evolution may support both mutualistic and parasitic bacteria-host relationships.
Collapse
Affiliation(s)
- Ana M. Tomljenovic-Berube
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - David T. Mulder
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Matthew D. Whiteside
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
40
|
Nazir R, Warmink JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 2010; 71:169-85. [DOI: 10.1111/j.1574-6941.2009.00807.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Samba-Louaka A, Taieb F, Nougayrède JP, Oswald E. Cif type III effector protein: a smart hijacker of the host cell cycle. Future Microbiol 2009; 4:867-77. [PMID: 19722840 DOI: 10.2217/fmb.09.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.
Collapse
|