1
|
Zhang ZA, Tang M, Yang J, Yang QY, Dai CC, Chen F. Highly efficient production of prodigiosin from corn stover hydrolysate in Serratia marcescens mutant RZ 21-6C generated by atmospheric and room‑temperature plasma mutagenesis. Bioprocess Biosyst Eng 2025; 48:799-816. [PMID: 40105956 DOI: 10.1007/s00449-025-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Prodigiosin, a natural pigment mainly produced by microorganisms, has a wide range of applications in medicine, agriculture, and environmental protection. To improve the production efficiency of prodigiosin and develop a low-cost biomass carbon source to reduce the fermentation cost, we mutated Serratia marcescens strain isolated previously in our laboratory through atmospheric and room-temperature plasma (ARTP) mutation breeding and obtained a mutant strain RZ 21-6C with a high pigment production and high genetic stability. The fermentation performance analysis of different carbon sources showed that the mutant strain not only significantly improved the conversion of conventional carbon source - sucrose, but also synthesized prodigiosin from xylose and glucose. In particular, the utilization efficiency of xylose was very high. Based on the above characteristics, low-cost biomass carbon source corn stover hydrolysate with xylose as the main component was developed for the production of prodigiosin. The highest concentration of prodigiosin in fed-batch fermentation reached 16.17 g.L-1, with a production efficiency of 0.12 g.L-1.h-1, and a total sugar conversion rate of 20.21%. The transmission electron microscopy (TEM) observation of strains and of cell membrane components and permeability showed significant changes in the physiological state of the mutant strain to facilitate pigment efflux and substrate pumping. Finally, combined with the physiological data and proteomic results, the underlying mechanism of efficient prodigiosin production by RZ 21-6C was explained from the perspective of phenotypic changes, prodigiosin synthesis, membrane transport, glycogen utilization, and primary metabolism. In this study, a S. marcescens RZ 21-6C strain with excellent characteristics was obtained by modern physical mutagenesis for the biosynthesis of prodigiosin using the hydrolysate of corn stover, an agricultural waste, as a fermentation substrate, which provides an important technological support for the renewable biorefinery of prodigiosin bio-based products.
Collapse
Affiliation(s)
- Zi-Ang Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng Tang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qi-Yin Yang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fei Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Li M, Zhu W, Fan J, Gao M, Wang X, Wu C, Wang Y, Lu Y. Carbon catabolite repression during the simultaneous utilization of lignocellulose-derived sugars in lactic acid production: Influencing factors and mitigation strategies. ENVIRONMENTAL RESEARCH 2025; 266:120484. [PMID: 39617153 DOI: 10.1016/j.envres.2024.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Lignocellulose is the most abundant, sustainable, and comparatively economical renewable biomass containing ample fermentable sugars for bio-based chemical production, such as lactic acid (LA). LA is a versatile chemical with substantial global demand. However, the concurrent utilization of mixed sugars derived from lignocellulose, including glucose, xylose, and arabinose, remains a formidable challenge because of the metabolic regulation of carbon catabolite repression (CCR), in which glucose is preferentially utilized over non-glucose sugars, resulting in the loss of carbon resources and a decrease in biorefinery efficacy. Most current studies on CCR have concentrated on elucidating the principles and their impact on specific bacterial species using mixed carbon sources. However, there remains a notable dearth of comprehensive reviews summarizing the underlying principles and corresponding mitigation strategies across other bacterial strains encountering similar challenges. In light of this, this article delineates the possible factors that lead to CCR, including signal transduction and metabolic pathways. Additionally, the fermentation conditions and nutrients are described. Finally, this study proposes appropriate mitigation strategies to overcome the aforementioned obstacles and presents new insights into the rapid and simultaneous consumption of mixed sugars to bolster the production yields of biofuels and chemicals in the future.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenbin Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiamei Fan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China; Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| |
Collapse
|
3
|
Wu S, Huang Y, Wu M, Chen H, Wang B, Amoah K, Cai J, Jian J. Identification of a cellular role of hemolysin co-regulatory protein (Hcp) in Vibrio alginolyticus modulating substrate metabolism and biofilm formation by cAMP-CRP. Int J Biol Macromol 2024; 282:136656. [PMID: 39423969 DOI: 10.1016/j.ijbiomac.2024.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cyclic AMP (cAMP) and cAMP receptor protein (CRP) system controls catabolic enzyme expression based on metabolite concentrations in bacteria. Hemolysin co-regulatory protein (Hcp) is well known as a molecular chaperone for virulence factor secretion of the type VI secretion system (T6SS). However, the intracellular role of Hcp involving in bacterial physiological processes remains unknown. To clarify that, we constructed a single hcp mutant strain and analyzed their effects on the physiological processes of Vibrio alginolyticus. The omics results revealed the extensive involvement of Hcp in the catabolic metabolism in bacteria. Simultaneously, Hcp1 and Hcp2 played opposing regulatory roles on the bacterial growth, biofilm formation, and intracellular cAMP-CRP levels during cultivation in a glucose medium. Furthermore, the interacting protein screening and co-immunoprecipitation (Co-IP) assays confirmed that the glucose-specific phosphoenolpyruvate (PEP)-phosphotransferase system (PTS) enzyme IIA component (EIIAglc) was a key interacting partner with Hcp proteins as well as class I adenylyl cyclase (AC-I) in Vibrio alginolyticus. These results indicated that, to achieve cellular homeostasis, Hcp1 and Hcp2 might exert antagonistic and synergistic effects, respectively, on the interaction between EIIAglc and AC thus cooperatively regulating intracellular cAMP-CRP production.
Collapse
Affiliation(s)
- Shuilong Wu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minhui Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Huapu Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kwaku Amoah
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Zhu J, Liu W, Guo L, Tan X, Sun W, Zhang H, Zhang H, Tian W, Jiang T, Meng W, Liu Y, Kang Z, Gao C, Lü C, Xu P, Ma C. Acetate production from corn stover hydrolysate using recombinant Escherichia coli BL21 (DE3) with an EP-bifido pathway. Microb Cell Fact 2024; 23:300. [PMID: 39523316 PMCID: PMC11552437 DOI: 10.1186/s12934-024-02575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acetate is an important chemical feedstock widely applied in the food, chemical and textile industries. It is now mainly produced from petrochemical materials through chemical processes. Conversion of lignocellulose biomass to acetate by biotechnological pathways is both environmentally beneficial and cost-effective. However, acetate production from carbohydrate in lignocellulose hydrolysate via glycolytic pathways involving pyruvate decarboxylation often suffers from the carbon loss and results in low acetate yield. RESULTS Escherichia coli BL21 (DE3) was confirmed to have high tolerance to acetate in this work. Thus, it was selected from seven laboratory E. coli strains for acetate production from lignocellulose hydrolysate. The byproduct-producing genes frdA, ldhA, and adhE in E. coli BL21 (DE3) were firstly knocked out to decrease the generation of succinate, lactate, and ethanol. Then, the genes pfkA and edd were also deleted and bifunctional phosphoketolase and fructose-1,6-bisphosphatase were overexpressed to construct an EP-bifido pathway in E. coli BL21 (DE3) to increase the generation of acetate from glucose. The obtained strain E. coli 5K/pFF can produce 22.89 g/L acetate from 37.5 g/L glucose with a yield of 0.61 g/g glucose. Finally, the ptsG gene in E. coli 5K/pFF was also deleted to make the engineered strain E. coli 6K/pFF to simultaneously utilize glucose and xylose in lignocellulosic hydrolysates. E. coli 6K/pFF can produce 20.09 g/L acetate from corn stover hydrolysate with a yield of 0.52 g/g sugar. CONCLUSION The results presented here provide a promising alternative for acetate production with low cost substrate. Besides acetate production, other biotechnological processes might also be developed for other acetyl-CoA derivatives production with lignocellulose hydrolysate through further metabolic engineering of E. coli 6K/pFF.
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hongxu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| |
Collapse
|
5
|
Haroun B, El-Qelish M, Akobi C, Hafez H, Nasr F, Kim M, Nakhla G. Biohydrogen production from lignocellulosic hydrolysate: Unveiling the synergistic impact of substrate concentration and furfural inhibition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60279-60297. [PMID: 39379652 DOI: 10.1007/s11356-024-35186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Lignocellulosic biomass offers substantial potential as an ideal feedstock for dark fermentative hydrogen production due to its sustainability and cost-effectiveness. The current study examined the influence of furfural on fermentative hydrogen production using lignocellulosic hydrolysate in the presence of furfural. Synthetic lignocellulosic hydrolysate, consisting primarily of 76% xylose, 10% glucose, 9% arabinose, and a mixture of other sugars such as galactose and mannose (85% pentose sugars and 15% hexose sugars), was employed as the substrate. Various substrate concentrations ranging from 2 to 32 g/L were tested, along with furfural concentrations of 0, 1, and 2 g/L. The investigation aimed to assess the effects of initial substrate concentration, initial furfural concentration, furfural-to-biomass ratio (F/B), and furfural-to-substrate ratio (F/S) on biohydrogen production yields. The maximum specific substrate utilization rates at different substrate concentrations were effectively characterized using Haldane's substrate inhibition model. Among the tested concentrations, the 16 g/L emerged as the optimal substrate concentration. The initial furfural concentration was identified as the most significant parameter impacting biohydrogen production, with complete inhibition observed at a furfural concentration of 2 g/L. Higher F/S ratios at substrate concentrations ranging from 2 to 16 g/L resulted in reduced maximum specific hydrogen production rates (MSHPR) and hydrogen yields. Substrate inhibition was observed at 24 g/L and 32 g/L. Lactate was the predominant metabolite in all batches containing 2-g/L furfural, as well as in batches with 1-g/L furfural and substrate concentrations of 24 and 32 g/L. Furfural at a concentration of 1 g/L was not inhibitory in any of the batches. Overall, the mixed cultures in this study could efficiently produce hydrogen from lignocellulosic hydrolysates and degrade furfural, providing new insights into fermentative hydrogen-producing bacteria with furfural tolerance.
Collapse
Affiliation(s)
- Basem Haroun
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Chinaza Akobi
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Hisham Hafez
- Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
- GreenField Ethanol Inc, Chatham, ON, N7M 5J4, Canada
| | - Fayza Nasr
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mingu Kim
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - George Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
6
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
7
|
Oftadeh O, Hatzimanikatis V. Genome-scale models of metabolism and expression predict the metabolic burden of recombinant protein expression. Metab Eng 2024; 84:109-116. [PMID: 38880390 DOI: 10.1016/j.ymben.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing E. coli and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.
Collapse
Affiliation(s)
- Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH, 1015, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Huang H, Yu W, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Engineering of Escherichia coli for Enhancing 3-Fucosyllactose Production. ACS Synth Biol 2024; 13:1866-1878. [PMID: 38836566 DOI: 10.1021/acssynbio.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.
Collapse
Affiliation(s)
- Huiyuan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Sechkar K, Steel H, Perrino G, Stan GB. A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits. Nat Commun 2024; 15:1981. [PMID: 38438391 PMCID: PMC10912777 DOI: 10.1038/s41467-024-46410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Giansimone Perrino
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Li L, Liu M, Bi H, Liu T. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli. Metab Eng 2024; 82:274-285. [PMID: 38428730 DOI: 10.1016/j.ymben.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.
Collapse
Affiliation(s)
- Lijun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Moshi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
11
|
Lozano-Terol G, Chiozzi RZ, Gallego-Jara J, Sola-Martínez RA, Vivancos AM, Ortega Á, Heck AJ, Díaz MC, de Diego Puente T. Relative impact of three growth conditions on the Escherichia coli protein acetylome. iScience 2024; 27:109017. [PMID: 38333705 PMCID: PMC10850759 DOI: 10.1016/j.isci.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Nε-lysine acetylation is a common posttranslational modification observed in Escherichia coli. In the present study, integrative analysis of the proteome and acetylome was performed using label-free quantitative mass spectrometry to analyze the relative influence of three factors affecting growth. The results revealed differences in the proteome, mainly owing to the type of culture medium used (defined or complex). In the acetylome, 7482 unique acetylation sites were identified. Acetylation is directly related to the abundance of proteins, and the level of acetylation in each type of culture is associated with extracellular acetate concentration. Furthermore, most acetylated lysines in the exponential phase remained in the stationary phase without dynamic turnover. Interestingly, unique acetylation sites were detected in proteins whose presence or abundance was linked to the type of culture medium. Finally, the biological function of the acetylation changes was demonstrated for three central metabolic proteins (GapA, Mdh, and AceA).
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
12
|
Wu M, Shi Z, Ming Y, Zhao Y, Gao G, Li G, Ma T. The production of ultrahigh molecular weight xanthan gum from a Sphingomonas chassis capable of co-utilising glucose and xylose from corn straw. Microb Biotechnol 2024; 17:e14394. [PMID: 38226955 PMCID: PMC10884872 DOI: 10.1111/1751-7915.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
13
|
Lu C, Ramalho TP, Bisschops MMM, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli. N Biotechnol 2023; 77:20-29. [PMID: 37348756 DOI: 10.1016/j.nbt.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp., it is mainly mediated by the Crc-Hfq complex which binds to the 5' region of the target mRNAs, thereby inhibiting their translation. This molecular mechanism enables P. putida to rapidly adjust and fine-tune gene expression in changing environments. Hfq is an RNA-binding protein that is ubiquitous and highly conserved in bacterial species. Considering the characteristics of Hfq, and the widespread use and rapid response of Crc-Hfq in P. putida, this complex has the potential to become a general toolbox for post-transcriptional multiplex regulation. In this study, we demonstrate for the first time that transplanting the pseudomonal catabolite repression protein, Crc, into E. coli causes multiplex gene repression. Under the control of Crc, the production of a diester and its precursors was significantly reduced. The effects of Crc introduction on cell growth in both minimal and rich media were evaluated. Two potential factors - off-target effects and Hfq-sequestration - could explain negative effects on cell growth. Simultaneous reduction of off-targeting and increased sequestration of Hfq by the introduction of the small RNA CrcZ, indicated that Hfq sequestration plays a more prominent role in the negative side-effects. This suggests that the negative growth effect can be mitigated by well-controlled expression of Hfq. This study reveals the feasibility of controlling gene expression using heterologous regulation systems.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands.
| | - Tiago P Ramalho
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Markus M M Bisschops
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands; Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, 6700AA Wageningen, The Netherlands
| |
Collapse
|
14
|
Wang X, Ma W, Shan J, Chen K, Xu W, Lu Z, Ju Z, Dong Z, Li B, Zhang Y. The phosphotransferase system gene ptsH affects persister formation in Klebsiella pneumoniae by regulating cyclic adenosine monophosphate levels. Int J Antimicrob Agents 2023; 62:106925. [PMID: 37451649 DOI: 10.1016/j.ijantimicag.2023.106925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Klebsiella pneumoniae is one of the most common opportunistic pathogens causing hospital- and community-acquired infections. Antibiotic resistance in K. pneumoniae has emerged as a major clinical and public health threat. Persisters are specific antibiotic-tolerant bacterial cells. Studies on the mechanism underlying their formation mechanism and growth status are scarce. Therefore, it is urgent to explore the key genes and signalling pathways involved in the formation and recovery process of K. pneumoniae persisters to enhance the understanding and develop relevant treatment strategies. In this study, we treated K. pneumoniae with a lethal concentration of levofloxacin. It resulted in a distinct plateau of surviving levofloxacin-tolerant persisters. Subsequently, we obtained bacterial samples at five different time points during the formation and recovery of K. pneumoniae persisters to perform transcriptome analysis. ptsH gene was observed to be upregulated during the formation of persisters, and down-regulated during the recovery of the persisters. Further, we used CRISPR-Cas9 to construct ΔptsH, the ptsH-knockout K. pneumoniae strain, and to investigate the effect of ptsH on the persister formation. We observed that ptsH can promote the formation of persisters, reduce accumulation of reactive oxygen species, and enhance antioxidant capacity by reducing cyclic adenosine monophosphate (cAMP) levels. To the best of our knowledge, this is the first study to report that ptsH plays a vital role in forming K. pneumoniae persisters. This study provided important insights to further explore the mechanism underlying the formation of K. pneumoniae persisters and provided a potential target for treating infection with K. pneumoniae persisters.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Wenru Ma
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Jiangfan Shan
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Kexu Chen
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Weihao Xu
- Inspection Center of Yantai Yuhuangding Hospital, Yantai, China
| | - Zixuan Lu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhuofei Ju
- The First School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Boqing Li
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China.
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
15
|
Takano S, Vila JCC, Miyazaki R, Sánchez Á, Bajić D. The Architecture of Metabolic Networks Constrains the Evolution of Microbial Resource Hierarchies. Mol Biol Evol 2023; 40:msad187. [PMID: 37619982 PMCID: PMC10476156 DOI: 10.1093/molbev/msad187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Microbial strategies for resource use are an essential determinant of their fitness in complex habitats. When facing environments with multiple nutrients, microbes often use them sequentially according to a preference hierarchy, resulting in well-known patterns of diauxic growth. In theory, the evolutionary diversification of metabolic hierarchies could represent a mechanism supporting coexistence and biodiversity by enabling temporal segregation of niches. Despite this ecologically critical role, the extent to which substrate preference hierarchies can evolve and diversify remains largely unexplored. Here, we used genome-scale metabolic modeling to systematically explore the evolution of metabolic hierarchies across a vast space of metabolic network genotypes. We find that only a limited number of metabolic hierarchies can readily evolve, corresponding to the most commonly observed hierarchies in genome-derived models. We further show how the evolution of novel hierarchies is constrained by the architecture of central metabolism, which determines both the propensity to change ranks between pairs of substrates and the effect of specific reactions on hierarchy evolution. Our analysis sheds light on the genetic and mechanistic determinants of microbial metabolic hierarchies, opening new research avenues to understand their evolution, evolvability, and ecology.
Collapse
Affiliation(s)
- Sotaro Takano
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Álvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Department of Microbial Biotechnology, CNB-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Section of Industrial Microbiology, Department of Biotechnology, Technical University Delft, Delft, The Netherlands
| |
Collapse
|
16
|
Martínez C, Cinquemani E, Jong HD, Gouzé JL. Optimal protein production by a synthetic microbial consortium: coexistence, distribution of labor, and syntrophy. J Math Biol 2023; 87:23. [PMID: 37395814 DOI: 10.1007/s00285-023-01935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
The bacterium E. coli is widely used to produce recombinant proteins such as growth hormone and insulin. One inconvenience with E. coli cultures is the secretion of acetate through overflow metabolism. Acetate inhibits cell growth and represents a carbon diversion, which results in several negative effects on protein production. One way to overcome this problem is the use of a synthetic consortium of two different E. coli strains, one producing recombinant proteins and one reducing the acetate concentration. In this paper, we study a mathematical model of such a synthetic community in a chemostat where both strains are allowed to produce recombinant proteins. We give necessary and sufficient conditions for the existence of a coexistence equilibrium and show that it is unique. Based on this equilibrium, we define a multi-objective optimization problem for the maximization of two important bioprocess performance metrics, process yield and productivity. Solving numerically this problem, we find the best available trade-offs between the metrics. Under optimal operation of the mixed community, both strains must produce the protein of interest, and not only one (distribution instead of division of labor). Moreover, in this regime acetate secretion by one strain is necessary for the survival of the other (syntrophy). The results thus illustrate how complex multi-level dynamics shape the optimal production of recombinant proteins by synthetic microbial consortia.
Collapse
Affiliation(s)
- Carlos Martínez
- Université Côte d' Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis, France.
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | | | - Hidde de Jong
- Univ. Grenoble Alpes, Inria, 38000, Grenoble, France
| | - Jean-Luc Gouzé
- Université Côte d' Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis, France
| |
Collapse
|
17
|
Diankristanti PA, Effendi SSW, Hsiang CC, Ng IS. High-level itaconic acid (IA) production using engineered Escherichia coli Lemo21(DE3) toward sustainable biorefinery. Enzyme Microb Technol 2023; 167:110231. [PMID: 37003250 DOI: 10.1016/j.enzmictec.2023.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Itaconic acid (IA) serves as a prominent building block for polyamides as sustainable material. In vivo IA production is facing the competing side reactions, byproducts accumulation, and long cultivation time. Therefore, the utilization of whole-cell biocatalysts to carry out production from citrate is an alternative approach to sidestep the current limitations. In this study, in vitro reaction of IA was obtained 72.44 g/L by using engineered E. coli Lemo21(DE3) harboring the aconitase (Acn, EC 4.2.1.3) and cis-aconitate decarboxylase (CadA, EC 4.1.1.6) which was cultured in glycerol-based minimal medium. IA productivity enhancement was observed after cold-treating the biocatalysts in - 80 °C for 24 h prior to the reaction, reaching 81.6 g/L. On the other hand, a new seeding strategy in Terrific Broth (TB) as a nutritionally rich medium was employed to maintain the biocatalysts stability up to 30 days. Finally, the highest IA titer of 98.17 g/L was attained using L21::7G chassis, that has a pLemo plasmid and integration of GroELS to the chromosome. The high-level of IA production along with the biocatalyst reutilization enables the economic viability toward a sustainable biorefinery.
Collapse
|
18
|
Pérez-Díaz AJ, Vázquez-Marín B, Vicente-Soler J, Prieto-Ruiz F, Soto T, Franco A, Cansado J, Madrid M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023; 19:1311-1331. [PMID: 36107819 PMCID: PMC10012941 DOI: 10.1080/15548627.2022.2125204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.
Collapse
Affiliation(s)
- Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
19
|
Rajeswari M, Pola S, Sravani DSL. Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. HUMAN MICROBIOME IN HEALTH, DISEASE, AND THERAPY 2023:97-125. [DOI: 10.1007/978-981-99-5114-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Cyle KT, Klein AR, Aristilde L, Martínez CE. Dynamic utilization of low-molecular-weight organic substrates across a microbial growth rate gradient. J Appl Microbiol 2022; 133:1479-1495. [PMID: 35665577 DOI: 10.1111/jam.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
AIM Low-molecular-weight organic substances (LMWOSs) are at the nexus between microorganisms, plant roots, detritus, and the soil mineral matrix. Nominal oxidation state of carbon (NOSC) has been suggested a potential parameter for modeling microbial uptake rates of LMWOSs and the efficiency of carbon incorporation into new biomass. METHODS AND RESULTS In this study, we assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil microorganisms, a fungal isolate (Penicillium spinulosum) and two bacterial isolates (Paraburkholderia solitsugae, and Ralstonia pickettii). Isolates were chosen that spanned a growth rate gradient (0.046-0.316 h-1 ) in media containing 34 common LMWOSs at realistically low initial concentrations (25 μM each). Clustered, co-utilization of LMWOSs occurred for all three organisms. Potential trends (p < 0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 < 0.15) and a small effect of NOSC indicate these relationships are not useful for prediction. The SUEs of selected substrates ranged from 0.16-0.99 and there was no observed relationship between NOSC and SUE. CONCLUSION Our results do not provide compelling population-level support for NOSC as a predictive tool for either uptake kinetics or the efficiency of use of LMWOS in soil solution. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolic strategies of organisms are likely more important than chemical identity in determining LMWOS cycling in soils. Previous community-level observations may be biased towards fast-responding bacterial community members.
Collapse
Affiliation(s)
- K Taylor Cyle
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC 3168, Australia
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Morawska LP, Hernandez-Valdes JA, Kuipers OP. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights. WIREs Mech Dis 2022; 14:e1544. [PMID: 35266649 PMCID: PMC9286555 DOI: 10.1002/wsbm.1544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities are continuously exposed to unpredictable changes in their environment. To thrive in such dynamic habitats, microorganisms have developed the ability to readily switch phenotypes, resulting in a number of differently adapted subpopulations expressing various traits. In evolutionary biology, a particular case of phenotypic heterogeneity that evolved in an unpredictably changing environment has been defined as bet‐hedging. Bet‐hedging is a risk‐spreading strategy where isogenic populations stochastically (randomly) diversify their phenotypes, often resulting in maladapted individuals that suffer lower reproductive success. This fitness trade‐off in a specific environment may have a selective advantage upon the sudden environmental shift. Thus, a bet‐hedging strategy allows populations to persist in very dynamic habitats, but with a particular fitness cost. In recent years, numerous examples of phenotypic heterogeneity in different microorganisms have been observed, some suggesting bet‐hedging. Here, we highlight the latest reports concerning bet‐hedging phenomena in various microorganisms to show how versatile this strategy is within the microbial realms. This article is categorized under:Infectious Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Luiza P Morawska
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| |
Collapse
|
22
|
Lips D. Fuelling the future of sustainable sugar fermentation across generations. ENGINEERING BIOLOGY 2022; 6:3-16. [PMID: 36968555 PMCID: PMC9995162 DOI: 10.1049/enb2.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
Biomanufacturing in the form of industrial sugar fermentation is moving beyond pharmaceuticals and biofuels into chemicals, materials, and food ingredients. As the production scale of these increasingly consumer-facing applications expands over the next decades, considerations regarding the environmental impact of the renewable biomass feedstocks used to extract fermentable sugars will become more important. Sugars derived from first-generation biomass in the form of, for example, corn and sugarcane are easily accessible and support high-yield fermentation processes, but are associated with the environmental impacts of industrial agriculture, land use, and competition with other applications in food and feed. Fermentable sugars can also be extracted from second- and third-generation feedstocks in the form of lignocellulose and macroalgae, respectively, potentially overcoming some of these concerns. Doing so, however, comes with various challenges, including the need for more extensive pretreatment processes and the fermentation of mixed and unconventional sugars. In this review, we provide a broad overview of these three generations of biomass feedstocks, outlining their challenges and prospects for fuelling the industrial fermentation industry throughout the 21st century.
Collapse
|
23
|
Heo JM, Kim HJ, Lee SJ. Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation. BMC Microbiol 2021; 21:332. [PMID: 34872501 PMCID: PMC8647362 DOI: 10.1186/s12866-021-02395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Microorganisms can prioritize the uptake of different sugars depending on their metabolic needs and preferences. When both D-glucose and D-xylose are present in growth media, E. coli cells typically consume D-glucose first and then D-xylose. Similarly, when E. coli BL21(DE3) is provided with both D-glucose and D-xylose under anaerobic conditions, glucose is consumed first, whereas D-xylose is consumed very slowly. Results When BL21(DE3) was adaptively evolved via subculture, the consumption rate of D-xylose increased gradually. Strains JH001 and JH019, whose D-xylose consumption rate was faster, were isolated after subculture. Genome analysis of the JH001 and JH019 strains revealed that C91A (Q31K) and C740T (A247V) missense mutations in the xylR gene (which encodes the XylR transcriptional activator), respectively, controlled the expression of the xyl operon. RT-qPCR analyses demonstrated that the XylR mutation caused a 10.9-fold and 3.5-fold increase in the expression of the xylA (xylose isomerase) and xylF (xylose transporter) genes, respectively, in the adaptively evolved JH001 and JH019 strains. A C91A adaptive mutation was introduced into a new BL21(DE3) background via single-base genome editing, resulting in immediate and efficient D-xylose consumption. Conclusions Anaerobically-adapted BL21(DE3) cells were obtained through short-term adaptive evolution and xylR mutations responsible for faster D-xylose consumption were identified, which may aid in the improvement of microbial fermentation technology. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02395-9.
Collapse
Affiliation(s)
- Jung Min Heo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
24
|
Wu J, Wei X, Guo P, He A, Xu J, Jin M, Zhang Y, Wu H. Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2021; 341:125873. [PMID: 34523584 DOI: 10.1016/j.biortech.2021.125873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Poly(3-hydroxybutyrate-co-lactate)[P(3HB-co-LA)], is a biodegradable and biocompatible bioplastic, and the monomeric composition of the copolymer plays an important role in affecting its mechanical properties. Corn stover hydrolysate (CSH), the waste by-product in agriculture, has been considered as an important carbon source for value-added biochemical production. Therefore, the effect of CSH on P(3HB-co-LA) biosynthesis was investigated in this study. Taking CSH as the carbon source, the lactate (LA) fraction in the copolymer reached 7.1 mol% by the engineered stain. The results of shake flask fermentation demonstrated that reducing the activity of electron transport system resulted in a higher LA fraction. Furthermore, we replaced the promoter of the key gene pctth with ldhA gene promoter, so that the expression of pctth gene could be dynamically modulated as well as the lactic acid content changed. This study suggests that CSH is a promising carbon source for the production of biodegradable P(3HB-co-LA).
Collapse
Affiliation(s)
- Ju Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangju Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pengye Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
25
|
Guo Q, Ullah I, Zheng LJ, Gao XQ, Liu CY, Zheng HD, Fan LH, Deng L. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Biotechnol Bioeng 2021; 119:388-398. [PMID: 34837379 DOI: 10.1002/bit.28002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/31/2023]
Abstract
Xylitol is a salutary sugar substitute that has been widely used in the food, pharmaceutical, and chemical industries. Co-fermentation of xylose and glucose by metabolically engineered cell factories is a promising alternative to chemical hydrogenation of xylose for commercial production of xylitol. Here, we engineered a mutant of SecY protein-translocation channel (SecY [ΔP]) in xylitol-producing Escherichia coli JM109 (DE3) as a passageway for xylose uptake. It was found that SecY (ΔP) channel could rapidly transport xylose without being interfered by XylB-catalyzed synthesis of xylitol-phosphate, which is impossible for native XylFGH and XylE transporters. More importantly, with the coaction of SecY (ΔP) channel and carbon catabolite repression (CCR), the flux of xylose to the pentose phosphate (PP) pathway and the xylitol synthesis pathway in E. coli could be automatically controlled in response to glucose, thereby ensuring that the mutant cells were able to fully utilize sugars with high xylitol yields. The E. coli cell factory developed in this study has been proven to be applicable to a broad range of xylose-glucose mixtures, which is conducive to simplifying the mixed-sugar fermentation process for efficient and economical production of xylitol.
Collapse
Affiliation(s)
- Qiang Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Ling-Jie Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Xin-Quan Gao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Chen-Yang Liu
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
26
|
Ro C, Cashel M, Fernández-Coll L. The secondary messenger ppGpp interferes with cAMP-CRP regulon by promoting CRP acetylation in Escherichia coli. PLoS One 2021; 16:e0259067. [PMID: 34705884 PMCID: PMC8550359 DOI: 10.1371/journal.pone.0259067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
The cAMP-CRP regulon coordinates transcription regulation of several energy-related genes, the lac operon among them. Lactose, or IPTG, induces the lac operon expression by binding to the LacI repressor, and releasing it from the promoter sequence. At the same time, the expression of the lac operon requires the presence of the CRP-cAMP complex, which promotes the binding of the RNA polymerase to the promoter region. The modified nucleotide cAMP accumulates in the absence of glucose and binds to the CRP protein, but its ability to bind to DNA can be impaired by lysine-acetylation of CRP. Here we add another layer of control, as acetylation of CRP seems to be modified by ppGpp. In cells grown in glycerol minimal media, ppGpp seems to repress the expression of lacZ, where ΔrelA mutants show higher expression of lacZ than in WT. These differences between the WT and ΔrelA strains seem to depend on the levels of acetylated CRP. During the growth in minimal media supplemented with glycerol, ppGpp promotes the acetylation of CRP by the Nε-lysine acetyltransferases YfiQ. Moreover, the expression of the different genes involved in the production and degradation of Acetyl-phosphate (ackA-pta) and the enzymatic acetylation of proteins (yfiQ) are stimulated by the presence of ppGpp, depending on the growth conditions.
Collapse
Affiliation(s)
- Chunghwan Ro
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Michael Cashel
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Llorenç Fernández-Coll
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Oftadeh O, Salvy P, Masid M, Curvat M, Miskovic L, Hatzimanikatis V. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat Commun 2021; 12:4790. [PMID: 34373465 PMCID: PMC8352978 DOI: 10.1038/s41467-021-25158-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.
Collapse
Affiliation(s)
- Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Salvy
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Cambrium GmbH, Berlin, Germany
| | - Maria Masid
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maxime Curvat
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Quotient Suisse SA, Eysins, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
28
|
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Proc Natl Acad Sci U S A 2021; 118:2013836118. [PMID: 33602812 PMCID: PMC7923608 DOI: 10.1073/pnas.2013836118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diauxie, or the sequential consumption of carbohydrates in bacteria such as Escherichia coli, has been hypothesized to be an evolutionary strategy which allows the organism to maximize its instantaneous specific growth-giving the bacterium a competitive advantage. Currently, the computational techniques used in industrial biotechnology fall short of explaining the intracellular dynamics underlying diauxic behavior. In particular, the understanding of the proteome dynamics in diauxie can be improved. We developed a robust iterative dynamic method based on expression- and thermodynamically enabled flux models to simulate the kinetic evolution of carbohydrate consumption and cellular growth. With minimal modeling assumptions, we couple kinetic uptakes, gene expression, and metabolic networks, at the genome scale, to produce dynamic simulations of cell cultures. The method successfully predicts the preferential uptake of glucose over lactose in E. coli cultures grown on a mixture of carbohydrates, a manifestation of diauxie. The simulated cellular states also show the reprogramming in the content of the proteome in response to fluctuations in the availability of carbon sources, and it captures the associated time lag during the diauxie phenotype. Our models suggest that the diauxic behavior of cells is the result of the evolutionary objective of maximization of the specific growth of the cell. We propose that genetic regulatory networks, such as the lac operon in E. coli, are the biological implementation of a robust control system to ensure optimal growth.
Collapse
|
29
|
Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021; 251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Organisms have cellular machinery that is focused on optimum utilization of resources to maximize growth and survival depending on various environmental and developmental factors. Catabolite repression is a strategy utilized by various species of bacteria and fungi to accommodate changes in the environment such as the depletion of resources, or an abundance of less-favored nutrient sources. Catabolite repression allows for the rapid use of certain substrates like glucose over other carbon sources. Effective handling of carbon and nitrogen catabolite repression in microorganisms is crucial to outcompete others in nutrient limiting conditions. Investigations into genes and proteins linked to preferential uptake of different nutrients under various environmental conditions can aid in identifying regulatory mechanisms that are crucial for optimum growth and survival of microorganisms. The exact time and way bacteria and fungi switch their utilization of certain nutrients is of great interest for scientific, industrial, and clinical reasons. Catabolite repression is of great significance for industrial applications that rely on microorganisms for the generation of valuable bio-products. The impact catabolite repression has on virulence of pathogenic bacteria and fungi and disease progression in hosts makes it important area of interest in medical research for the prevention of diseases and developing new treatment strategies. Regulatory networks under catabolite repression exemplify the flexibility and the tremendous diversity that is found in microorganisms and provides an impetus for newer insights into these networks.
Collapse
Affiliation(s)
- Abhinav Nair
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
30
|
Yu AO, Goldman EA, Brooks JT, Golomb BL, Yim IS, Gotcheva V, Angelov A, Kim EB, Marco ML. Strain diversity of plant-associated Lactiplantibacillus plantarum. Microb Biotechnol 2021; 14:1990-2008. [PMID: 34171185 PMCID: PMC8449665 DOI: 10.1111/1751-7915.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023] Open
Abstract
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine‐containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive‐associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi‐locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.
Collapse
Affiliation(s)
- Annabelle O Yu
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Elissa A Goldman
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Jason T Brooks
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Benjamin L Golomb
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Irene S Yim
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Angel Angelov
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Eun Bae Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon, Gangwon-Do, South Korea
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
31
|
Gao Q, Wang J, Ren L, Cheng Y, Lin Z, Li XG, Sun H. Investigations on the influence of energy source on time-dependent hormesis: A case study of sulfadoxine to Aliivibrio fischeri in different cultivation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145877. [PMID: 33621878 DOI: 10.1016/j.scitotenv.2021.145877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Hormesis is a biphasic dose-response relationship featured by low-dose stimulation and high-dose inhibition. Although the hormetic phenomenon has been extensively studied over the past decades, there is little information regarding the influence of energy source on the occurrence of hormesis, especially the time-dependent one. In this study, to explore the role of cultivation system's energy source in time-dependent hormesis, the toxic dose-responses of Aliivibrio fischeri (A. fischeri) bioluminescence to Sulfadoxine (SDX) during 24 h were determined in four cultivation systems with different energy source conditions. The results indicated that the time-dependent hormetic effects were induced by SDX in all cultivation systems: SDX triggered hormetic phenomenon on the bioluminescence at each growth stage over 24 h in the cultivation systems with sufficient and insufficient energy source; due to the diauxic growth of A. fischeri under multiple energy source conditions, the hormetic effects of SDX gradually disappeared after the preferred energy source was used up. It was speculated that the inhibitory action of SDX was derived from its interaction with DHPS to impede the synthesis of proteins, and SDX bound with AC to upregulate the quorum sensing (QS) system to exhibit the stimulatory action. Comparing the time-dependent hormesis in each cultivation system, it was obtained that the energy source could impact the hourly maximum stimulatory rate, the EC50 of SDX, and the time point that hormesis occurred, which might result from the influence of energy source on the stimulatory and inhibitory actions of SDX through regulating the metabolic system (individual level) and QS system (group level) of bacteria. This study clarifies the importance of energy source for hormesis occurrence, which may further promote the development of hormesis.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
33
|
Fox KJ, Prather KLJ. Carbon catabolite repression relaxation in Escherichia coli: global and sugar-specific methods for glucose and secondary sugar co-utilization. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl Environ Microbiol 2020; 86:AEM.01851-20. [PMID: 33008817 PMCID: PMC7688210 DOI: 10.1128/aem.01851-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.
Collapse
|
35
|
Paquette SJ, Reuter T. Escherichia coli: Physiological Clues Which Turn On the Synthesis of Antimicrobial Molecules. Vet Sci 2020; 7:E184. [PMID: 33233401 PMCID: PMC7712815 DOI: 10.3390/vetsci7040184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Zoonotic pathogens, like Shiga toxin-producing Escherichia coli (STEC) are a food safety and health risk. To battle the increasing emergence of virulent microbes, novel mitigation strategies are needed. One strategy being considered to combat pathogens is antimicrobial compounds produced by microbes, coined microcins. However, effectors for microcin production are poorly understood, particularly in the context of complex physiological responses along the gastro-intestinal tract (GIT). Previously, we identified an E. coli competitor capable of producing a strong diffusible antimicrobial with microcin-associated characteristics. Our objective was to examine how molecule production of this competitor is affected by physiological properties associated with the GIT, namely the effects of carbon source, bile salt concentration and growth phase. Using previously described liquid- and agar-based assays determined that carbon sources do not affect antimicrobial production of E. coli O103F. However, bile salt concentrations affected production significantly, suggesting that E. coli O103F uses cues along the GIT to modulate the expression of antimicrobial production. Furthermore, E. coli O103F produces the molecule during the exponential phase, contrary to most microcins identified to date. The results underscored the importance of experimental design to identify producers of antimicrobials. To detect antimicrobials, conventional microbiological methods can be a starting point, but not the gold standard.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada
| | - Tim Reuter
- University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada
| |
Collapse
|
36
|
Tsiantis N, Banga JR. Using optimal control to understand complex metabolic pathways. BMC Bioinformatics 2020; 21:472. [PMID: 33087041 PMCID: PMC7579911 DOI: 10.1186/s12859-020-03808-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimality principles have been used to explain the structure and behavior of living matter at different levels of organization, from basic phenomena at the molecular level, up to complex dynamics in whole populations. Most of these studies have assumed a single-criteria approach. Such optimality principles have been justified from an evolutionary perspective. In the context of the cell, previous studies have shown how dynamics of gene expression in small metabolic models can be explained assuming that cells have developed optimal adaptation strategies. Most of these works have considered rather simplified representations, such as small linear pathways, or reduced networks with a single branching point, and a single objective for the optimality criteria. RESULTS Here we consider the extension of this approach to more realistic scenarios, i.e. biochemical pathways of arbitrary size and structure. We first show that exploiting optimality principles for these networks poses great challenges due to the complexity of the associated optimal control problems. Second, in order to surmount such challenges, we present a computational framework which has been designed with scalability and efficiency in mind, including mechanisms to avoid the most common pitfalls. Third, we illustrate its performance with several case studies considering the central carbon metabolism of S. cerevisiae and B. subtilis. In particular, we consider metabolic dynamics during nutrient shift experiments. CONCLUSIONS We show how multi-objective optimal control can be used to predict temporal profiles of enzyme activation and metabolite concentrations in complex metabolic pathways. Further, we also show how to consider general cost/benefit trade-offs. In this study we have considered metabolic pathways, but this computational framework can also be applied to analyze the dynamics of other complex pathways, such as signal transduction or gene regulatory networks.
Collapse
Affiliation(s)
- Nikolaos Tsiantis
- Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | - Julio R. Banga
- Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
37
|
Li C, Chen X, Wen L, Cheng Y, An X, Li T, Zang H, Zhao X, Li D, Hou N. An enhancement strategy for the biodegradation of high-concentration aliphatic nitriles: Utilizing the glucose-mediated carbon catabolite repression mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114302. [PMID: 32480233 DOI: 10.1016/j.envpol.2020.114302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Wastewater containing high concentrations of nitriles, if discharged without an appropriate nonhazardous disposal strategy, will cause serious environmental pollution. During secondary sewage biological treatment, most existing bacteria cannot endure high-concentration nitriles due to poor tolerance and low degradation ability. The Rhodococcus rhodochrous strain BX2 screened by our laboratory shows high resistance to nitriles and can efficiently degrade these compounds. Compared with sole high-concentration nitriles present in the biodegradation process, the addition of glucose at a suitable concentration can effectively increase the biomass of BX2, promote the expression of nitrile-degrading enzyme genes, improve the activities of these enzymes and enhance the pollutant removal efficiency via carbon catabolite repression (CCR) mechanisms. Whole-genome sequencing revealed that the four key regulators of CCR identified in gram-negative and gram-positive bacteria are concomitant in BX2. This study provides an economically feasible strategy for the microbial remediation of high-concentration nitriles and other organic pollutants.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Luming Wen
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yi Cheng
- College of Science, China Agricultural University, Beijing, 100083, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, 330045, PR China
| | - Tianzhu Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
38
|
Marinos G, Kaleta C, Waschina S. Defining the nutritional input for genome-scale metabolic models: A roadmap. PLoS One 2020; 15:e0236890. [PMID: 32797084 PMCID: PMC7428157 DOI: 10.1371/journal.pone.0236890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The reconstruction and application of genome-scale metabolic network models is a central topic in the field of systems biology with numerous applications in biotechnology, ecology, and medicine. However, there is no agreed upon standard for the definition of the nutritional environment for these models. The objective of this article is to provide a guideline and a clear paradigm on how to translate nutritional information into an in-silico representation of the chemical environment. Step-by-step procedures explain how to characterise and categorise the nutritional input and to successfully apply it to constraint-based metabolic models. In parallel, we illustrate the proposed procedure with a case study of the growth of Escherichia coli in a complex nutritional medium and show that an accurate representation of the medium is crucial for physiological predictions. The proposed framework will assist researchers to expand their existing metabolic models of their microbial systems of interest with detailed representations of the nutritional environment, which allows more accurate and reproducible predictions of microbial metabolic processes.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, University Medical Center Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, University Medical Center Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Division of Nutriinformatics, Institute for Human Nutrition and Food Sciences, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
39
|
Cheng CC, Duar RM, Lin X, Perez-Munoz ME, Tollenaar S, Oh JH, van Pijkeren JP, Li F, van Sinderen D, Gänzle MG, Walter J. Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts. Appl Environ Microbiol 2020; 86:e00190-20. [PMID: 32276972 PMCID: PMC7237793 DOI: 10.1128/aem.00190-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Cross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that in vitro growth of Lactobacillus reuteri (syn. Limosilactobacillus reuteri) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by Bifidobacterium breve UCC2003 and Escherichia coli MG1655 from the metabolization of fucose and rhamnose, respectively. Work with isogenic mutants showed that the trophic interaction is dependent on the pduCDE operon in L. reuteri, which encodes the ability to use 1,2-propanediol, and the l-fucose permease (fucP) gene in B. breve, which is required for 1,2-propanediol formation from fucose. Experiments in gnotobiotic mice revealed that, although the pduCDE operon bestows a fitness burden on L. reuteri ATCC PTA 6475 in the mouse digestive tract, the ecological performance of the strain was enhanced in the presence of B. breve UCC2003 and the mucus-degrading species Bifidobacterium bifidum The use of the respective pduCDE and fucP mutants of L. reuteri and B. breve in the mouse experiments indicated that the trophic interaction was specifically based on 1,2-propanediol. Overall, our work established the ecological importance of cross-feeding relationships based on 1,2-propanediol for the fitness of a bacterial symbiont in the vertebrate gut.IMPORTANCE Through experiments in gnotobiotic mice that employed isogenic mutants of bacterial strains that produce (Bifidobacterium breve) and utilize (Lactobacillus reuteri) 1,2-propanediol, this study provides mechanistic insight into the ecological ramifications of a trophic interaction between gut symbionts. The findings improve our understanding on how cross-feeding influences the competitive fitness of L. reuteri in the vertebrate gut and revealed a putative selective force that shaped the evolution of the species. The findings are relevant since they provide a basis to design rational microbial-based strategies to modulate gut ecosystems, which could employ mixtures of bacterial strains that establish trophic interactions or a personalized approach based on the ability of a resident microbiota to provide resources for the incoming microbe.
Collapse
Affiliation(s)
| | - Rebbeca M Duar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
- Evolve BioSystems, Inc., Davis, California, USA
| | - Xiaoxi Lin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Maria Elisa Perez-Munoz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Fuyong Li
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Michael G Gänzle
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Mauri M, Gouzé JL, de Jong H, Cinquemani E. Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs. PLoS Comput Biol 2020; 16:e1007795. [PMID: 32282794 PMCID: PMC7179936 DOI: 10.1371/journal.pcbi.1007795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/23/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
Synthetic microbial consortia have been increasingly utilized in biotechnology and experimental evidence shows that suitably engineered consortia can outperform individual species in the synthesis of valuable products. Despite significant achievements, though, a quantitative understanding of the conditions that make this possible, and of the trade-offs due to the concurrent growth of multiple species, is still limited. In this work, we contribute to filling this gap by the investigation of a known prototypical synthetic consortium. A first E. coli strain, producing a heterologous protein, is sided by a second E. coli strain engineered to scavenge toxic byproducts, thus favoring the growth of the producer at the expense of diverting part of the resources to the growth of the cleaner. The simplicity of the consortium is ideal to perform an in depth-analysis and draw conclusions of more general interest. We develop a coarse-grained mathematical model that quantitatively accounts for literature data from different key growth phenotypes. Based on this, assuming growth in chemostat, we first investigate the conditions enabling stable coexistence of both strains and the effect of the metabolic load due to heterologous protein production. In these conditions, we establish when and to what extent the consortium outperforms the producer alone in terms of productivity. Finally, we show in chemostat as well as in a fed-batch scenario that gain in productivity comes at the price of a reduced yield, reflecting at the level of the consortium resource allocation trade-offs that are well-known for individual species. In nature, microorganisms occur in communities comprising a variety of mutually interacting species. Established through evolution, these interactions allow for the survival and growth of microorganisms in their natural environment, and give rise to complex dynamics that could not be exhibited by any of the species in isolation. The richness of microbial community dynamics has been leveraged to outperform individual species in biotechnological production processes and other processes of high societal value. Yet, in view of their complexity, natural communities are difficult to study and control. In order to overcome these issues, a rapidly growing research field concerns the rational design and engineering of synthetic microbial consortia. Despite the great potential of synthetic microbial consortia, and significant efforts devoted to their mathematical modelling and analysis, a detailed understanding of how enhanced production can be achieved, and at what cost, is still unavailable. In this work, based on a quantitative model of a prototypical synthetic microbial consortium, we determine precise conditions under which a consortium outperforms individual species in the production of a recombinant protein. Moreover, we identify the inherent trade-offs between productivity and efficiency of substrate utilization.
Collapse
Affiliation(s)
- Marco Mauri
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
| | - Jean-Luc Gouzé
- University Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, 06902 Sophia-Antipolis, France
| | - Hidde de Jong
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
- * E-mail: (HdJ); (EC)
| | - Eugenio Cinquemani
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
- * E-mail: (HdJ); (EC)
| |
Collapse
|
41
|
Moens E, Bolca S, Possemiers S, Verstraete W. A Wake-Up Call for the Efficient Use of the Bacterial Resting Cell Process, with Focus on Low Solubility Products. Curr Microbiol 2020; 77:1349-1362. [PMID: 32270205 DOI: 10.1007/s00284-020-01959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/21/2020] [Indexed: 11/24/2022]
Abstract
Micro-organisms are often subjected to stressful conditions. Owing to their capacity to adapt, they try to rapidly cope with the unfavorable conditions by lowering their growth rate, changing their morphology, and developing altered metabolite production and other stress-related metabolism. The stress-related metabolism of the cells which interrupted their growth is often referred to as resting metabolism and can be exploit for specific and high rate production of secondary metabolites. Although the bacterial resting cell process has been described decades ago, we find it worthwhile to bring the process under renewed attention and refer to this type of processes as non-growing metabolically active (NGMA) cell processes. Despite their use may sound counterproductive, NGMA cells can be of interest to increase substrate conversion rates or enable conversion of certain substrates, not accessible to growing cells due to their bacteriostatic nature or requirement of resistance to a multitude of different stress mechanisms. Biomass reuse is an interesting feature to improve the economics of NGMA cell processes. Yet, for lipophilic compounds or compounds with low solubility, biomass separation can be delicate. This review draws the attention on existing examples of NGMA cell processes, summarizing some developmental tools and highlighting drawbacks and opportunities, to answer the research question if NGMA cells can have a distinct added value in industry. Particular elaboration is made on a novel and more broadly applicable strategy to enable biomass reuse for conversions of compounds with low solubility.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | |
Collapse
|
42
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
43
|
Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun 2020; 11:279. [PMID: 31937786 PMCID: PMC6959354 DOI: 10.1038/s41467-019-14024-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Glucose and xylose are the major components of lignocellulose. Effective utilization of both sugars can improve the efficiency of bioproduction. Here, we report a method termed parallel metabolic pathway engineering (PMPE) for producing shikimate pathway derivatives from glucose–xylose co-substrate. In this method, we seek to use glucose mainly for target chemical production, and xylose for supplying essential metabolites for cell growth. Glycolysis and the pentose phosphate pathway are completely separated from the tricarboxylic acid (TCA) cycle. To recover cell growth, we introduce a xylose catabolic pathway that directly flows into the TCA cycle. As a result, we can produce 4.09 g L−1cis,cis-muconic acid using the PMPE Escherichia coli strain with high yield (0.31 g g−1 of glucose) and produce l-tyrosine with 64% of the theoretical yield. The PMPE strategy can contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources. In lignocellulose biomass, microbes prefer consuming glucose over xylose, which affects target compound production. Here, the authors achieve simultaneous utilization of glucose and xylose for target chemical production and cell growth, respectively, and realize high-level production of shikimate pathway derivatives.
Collapse
|
44
|
Hausjell J, Kutscha R, Gesson JD, Reinisch D, Spadiut O. The Effects of Lactose Induction on a Plasmid-Free E. coli T7 Expression System. Bioengineering (Basel) 2020; 7:E8. [PMID: 31935883 PMCID: PMC7175309 DOI: 10.3390/bioengineering7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity.
Collapse
Affiliation(s)
- Johanna Hausjell
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| | - Regina Kutscha
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| | - Jeannine D. Gesson
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria; (J.D.G.); (D.R.)
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria; (J.D.G.); (D.R.)
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| |
Collapse
|
45
|
Olajuyin AM, Yang M, Thygesen A, Tian J, Mu T, Xing J. Effective production of succinic acid from coconut water ( Cocos nucifera) by metabolically engineered Escherichia coli with overexpression of Bacillus subtilis pyruvate carboxylase. ACTA ACUST UNITED AC 2019; 24:e00378. [PMID: 31641622 PMCID: PMC6796535 DOI: 10.1016/j.btre.2019.e00378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 10/30/2022]
Abstract
Succinic acid is an important acid which is used in medicine and pharmaceutical companies. Metabolically engineered Escherichia coli strain was used for the effective production of succinic acid using Cocos nucifera water, which contained 5.00 ± 0.02 g/L glucose, 6.10 ± 0.01 g /L fructose and 6.70 ± 0.02 g /L sucrose. Fermentation of C. nucifera water with E. coli M6PM produced a final concentration of 11.78 ± 0.02 g/L succinic acid and yield of 1.23 ± 0.01 mol/mol, 0.66 ± 0.01 g/g total sugars after 72 h dual-phase fermentation in M9 medium while modeled sugar was 0.38 ± 0.02 mol/mol total sugars. It resulted in 72% of the maximum theoretical yield of succinic acid. Here we show that novel substrate of C. nucifera water resulted in effective production of succinic acid. These investigations unveil the importance of C. nucifera water as a substrate for the production of biochemicals.
Collapse
Key Words
- Bacillus subtilis
- Cocos nucifera water
- Escherichia coli
- Fermentation
- HPLC, High performance liquid chromatography
- IPTG, L isopropyl-β-D-thiogalactopyranoside
- O.D, optical density
- Succinic acid
- gnd, 6-phosphogluconate dehydrogenase
- ldhA, lactate dehydrogenase A
- mreC, murein cluster C
- pflB, pyruvate formate lyase B
- pgi, phosphoglucose isomerase
- pgl, 6-phosphogluconolactonase
- poxB, pyruvate oxidase B
- ppc, phosphoenol pyruvate carboxylase
- pta-ackA, phosphotranacetylase acetate kinase A
- pyc, pyruvate carboxylase
- rpm, revolution per minutes
- tal, transaldolase
- tkt, transketolase
- zwf, glucose 6-phosphate dehydrogenase
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China.,Henan Provincial People Hospital Zhengzhou Henan China
| | - Maohua Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anders Thygesen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.,Sino-Danish Center for Education and Research, Niels Jensensvej 2, DK-8000, Aarhus C, Denmark
| | - Jiangnan Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingzhen Mu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianmin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
46
|
Almeida EL, Kaur N, Jennings LK, Carrillo Rincón AF, Jackson SA, Thomas OP, Dobson ADW. Genome Mining Coupled with OSMAC-Based Cultivation Reveal Differential Production of Surugamide A by the Marine Sponge Isolate Streptomyces sp. SM17 When Compared to Its Terrestrial Relative S. albidoflavus J1074. Microorganisms 2019; 7:microorganisms7100394. [PMID: 31561472 PMCID: PMC6843307 DOI: 10.3390/microorganisms7100394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Much recent interest has arisen in investigating Streptomyces isolates derived from the marine environment in the search for new bioactive compounds, particularly those found in association with marine invertebrates, such as sponges. Among these new compounds recently identified from marine Streptomyces isolates are the octapeptidic surugamides, which have been shown to possess anticancer and antifungal activities. By employing genome mining followed by an one strain many compounds (OSMAC)-based approach, we have identified the previously unreported capability of a marine sponge-derived isolate, namely Streptomyces sp. SM17, to produce surugamide A. Phylogenomics analyses provided novel insights on the distribution and conservation of the surugamides biosynthetic gene cluster (sur BGC) and suggested a closer relatedness between marine-derived sur BGCs than their terrestrially derived counterparts. Subsequent analysis showed differential production of surugamide A when comparing the closely related marine and terrestrial isolates, namely Streptomyces sp. SM17 and Streptomyces albidoflavus J1074. SM17 produced higher levels of surugamide A than S. albidoflavus J1074 under all conditions tested, and in particular producing >13-fold higher levels when grown in YD and 3-fold higher levels in SYP-NaCl medium. In addition, surugamide A production was repressed in TSB and YD medium, suggesting that carbon catabolite repression (CCR) may influence the production of surugamides in these strains.
Collapse
Affiliation(s)
- Eduardo L Almeida
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
| | - Navdeep Kaur
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Laurence K Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | | | - Stephen A Jackson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| |
Collapse
|
47
|
Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun 2019; 10:3354. [PMID: 31350417 PMCID: PMC6659692 DOI: 10.1038/s41467-019-11331-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
How microbes dynamically coordinate uptake and simultaneous utilization of nutrients in complex nutritional ecosystems is still an open question. Here, we develop a constraint-based modeling approach that exploits non-targeted exo-metabolomics data to unravel adaptive decision-making processes in dynamic nutritional environments. We thereby investigate metabolic adaptation of Escherichia coli to continuously changing conditions during batch growth in complex medium. Unexpectedly, model-based analysis of time resolved exo-metabolome data revealed that fastest growth coincides with preferred catabolism of amino acids, which, in turn, reduces glucose uptake and increases acetate overflow. We show that high intracellular levels of the amino acid degradation metabolites pyruvate and oxaloacetate can directly inhibit the phosphotransferase system (PTS), and reveal their functional role in mediating regulatory decisions for uptake and catabolism of alternative carbon sources. Overall, the proposed methodology expands the spectrum of possible applications of flux balance analysis to decipher metabolic adaptation mechanisms in naturally occurring habitats and diverse organisms.
Collapse
Affiliation(s)
- Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| | - Manuel Hörl
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Florian Hotz
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Nicola F Müller
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| |
Collapse
|
48
|
Chen C, Wang L, Lu Y, Yu H, Tian H. Comparative Transcriptional Analysis of Lactobacillus plantarum and Its ccpA-Knockout Mutant Under Galactooligosaccharides and Glucose Conditions. Front Microbiol 2019; 10:1584. [PMID: 31338086 PMCID: PMC6629832 DOI: 10.3389/fmicb.2019.01584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
Galactooligosaccharides (GOS) are documented prebiotic compounds, but knowledge of the metabolic and regulatory mechanisms of GOS utilization by lactic acid bacteria is still limited. Here we used transcriptome and physiological analyses to investigate the differences in the logarithmic growth phase of Lactobacillus plantarum and L. plantarum ΔccpA metabolizing GOS or glucose as the sole source of carbohydrate. In total, 489 genes (16%) were differentially transcribed in the wild-type L. plantarum grown on glucose and GOS and the value is decreased to 7% due to the loss of ccpA. Only 6% genes were differentially expressed when the wild-type and the ccpA mutant were compared on GOS. Transcriptome data revealed that the carbon sources significantly affected the expression of several genes, and some of the genes were mediated by CcpA. In particular, lac and gal gene clusters resembled the corresponding clusters in L. acidophilus NCFM that are involved in GOS metabolism, indicating that these clusters may be participating in GOS utilization. Moreover, reverse transcription-PCR analysis showed that GOS-related gene clusters were organized in five independent polycistronic units. In addition, many commonalities were found between fructooligosaccharides and GOS metabolism in L. plantarum, including differentially expressed genes involved in oligosaccharide metabolism, conversion of metabolites, and changes in fatty acid biosynthesis. Overall, our findings provide new information on gene transcription and the metabolic mechanism associated with GOS utilization, and confirm that CcpA plays an important role in carbon metabolism regulation in L. plantarum.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Linlin Wang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yanqing Lu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huanxiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
49
|
Abdella A, Segato F, Wilkins MR. Optimization of nutrient medium components for production of a client endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Simpson-Lavy K, Kupiec M. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Sci Rep 2019; 9:6491. [PMID: 31019232 PMCID: PMC6482301 DOI: 10.1038/s41598-019-43032-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between “poor” carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between “poor” carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for “poor” carbon sources.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|