1
|
Chen X, Fu W, Hu K, Yin G, Liu S, Zhu N, Zhao Y, Cui Z, Yuan X. Economic and environmental analysis: Straw biogas project operating at full load with dry yellow corn straw. BIORESOURCE TECHNOLOGY 2025; 426:132335. [PMID: 40044059 DOI: 10.1016/j.biortech.2025.132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Due to the unique straw raw materials in China, the current straw biogas project based on the "two-stage" process of wet anaerobic digestion still has problems such as deficient technology, low production capacity, and weak profitability. In this study, we improved the original process for the biogas project, aiming at increasing biogas yield and profit. The results show that the new process (NP) can effectively recover the "carbon" by anaerobic hydrolysis, solve the problems of scum and crust, and significantly improve the biomethane yield (141.3%-321.8%), net profit ($599,667-$772,004/year), and carbon emission reduction equivalent (2.7×107-4.6×107 kg CO2e/year). Based on the amount of dry yellow corn straw that can be collected annually for energy-oriented production, NP's potential economic and environmental value is estimated to be significant. This study provides reliable technical support for efficient utilization of agricultural resources and circular economy.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wei Fu
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Kai Hu
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Guofeng Yin
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Song Liu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Na Zhu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Yehua Zhao
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| | - Xufeng Yuan
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Giangeri G, Campanaro S, Kyrpides NC, Angelidaki I. Unlocking the potential of designed microbial consortia: A breakthrough for sustainable waste management and climate resilience. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100558. [PMID: 40235648 PMCID: PMC11999620 DOI: 10.1016/j.ese.2025.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025]
Affiliation(s)
- Ginevra Giangeri
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121, Padua, Italy
| | - Nikos C. Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
3
|
Vizzarro A, Abdel Azim A, Bassani I, Bellini R, Vasile NS, Pirri CF, Verga F, Menin B. Assessing the methanogenic activity of microbial communities enriched from a depleted reservoir. FEMS Microbiol Ecol 2025; 101:fiaf040. [PMID: 40234215 PMCID: PMC12054477 DOI: 10.1093/femsec/fiaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/17/2025] Open
Abstract
Using a depleted gas reservoir as a natural reactor is a novel approach for microbial methanation of hydrogen (H2) and carbon dioxide (CO2) into methane (CH4). This approach, known as underground biomethanation reactor (UMR), could enable the simultaneous valorization of geologically sequestered CO2 and the excess renewable energy, stored in the form of H2 in the same formation as the CO2. In this study, we explore the possibility to trigger biomethanation from formation water sample by testing various carbon sources (CO2, trypticase peptone, glucose, and acetate) in batch test with a defined mineral medium. Obtained results show that trypticase peptone supplementation greatly increased methane production and the enrichment of methanogenic archaea, outperforming alternative carbon sources. 16S rRNA amplicon sequencing of the enriched consortia revealed that supplementation of trypticase peptone and a mixture of H2:CO2 (80:20), resulted in the selection of a mixed culture dominated by microorganisms assigned to the Methanothermobacterium, Garciella, and Caminicella genera. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Genes) predictive functional analyses underline a possible syntrophic relationship, enhancing the conversion of H2 and CO2 into CH4. This work lays the groundwork for biologically exploiting a depleted gas reservoir by implementing the UMR technology.
Collapse
Affiliation(s)
- Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Nicolò Santi Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy
| |
Collapse
|
4
|
Li C, Bao R, Sun Y, Quan J, Angelidaki I, Yuan Z. Microbial dynamics and CO consumption enhancement via co-digestion with carbohydrate-rich synthetic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178887. [PMID: 39983491 DOI: 10.1016/j.scitotenv.2025.178887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Due to the toxicity and low mass transfer of CO, its efficient conversion is crucial for syngas biomethanation. In the present study, anaerobic co-digestion of CO and carbohydrate-rich synthetic wastewater was conducted to facilitate the CO conversion performance, followed by microbial analysis with and without methanogenic activity inhibition (namely, digestion and acidification systems). The results indicated that glucose addition in co-digestion system dramatically enhanced CO consumption. The maximum consumption rate (μ-max) of CO increased by about 65 % with adding glucose. However, CO presented partial inhibition on methanogenic activity without declining methane yield. Microbial analysis showed that microbial diversity increased in co-digestion systems. Hydrogenotrophic methanogens from Methanobrevibacter became dominant in all individual and co-digested systems. Methanogenic activity inhibited community proved the bacteria mainly mediated CO conversion, and glucose addition promoted the growth of acetogenic bacteria from Firmicutes, relating to the enhancement in CO consumption. Species from Synergistota worked as the main syntrophic oxidizers, along with Defluviitoga, Syntrophomonas, and Syntrophaceticus, assisting methane production by hydrogenotrophic methanogens. The outcomes in the present study supply an efficient strategy for synergetic treatment of syngas (CO-rich gas) and organic waste/wastewater for energy recovery.
Collapse
Affiliation(s)
- Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China
| | - Ruihan Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China.
| |
Collapse
|
5
|
Iltchenco J, Smiderle MD, Gaio J, Magrini FE, Paesi S. Metataxonomic characterization of the microbial present in the anaerobic digestion of turkey litter waste with the addition of two inocula: allochthonous and commercial. Int Microbiol 2025; 28:539-551. [PMID: 39039379 DOI: 10.1007/s10123-024-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Turkey litter waste is lignocellulosic waste that can be sustainably used as an energy source through anaerobic digestion (AD). The 16S ribosomal RNA technique helps to unravel microbial diversity and predominant metabolic pathways. The assays were performed in 600-mL-glass bottles with 400 mL volume, for 60 days at 37 °C. The study evaluated the physicochemical parameters, the composition of the microbiota, and the functional inference in AD of different concentrations of turkey litter (T) using two inocula: granular inoculum (S) and commercial inoculum (B). The highest accumulated methane production (633 mL CH4·L-1) was observed in the test containing 25.5 g VS·L-1 of turkey litter with the addition of the two inocula (T3BS). In tests without inoculum (T3) and with commercial inoculum (T3B), there was an accumulation of acids and consequent inhibition of methane production 239 mL CH4·L-1 and 389 mL CH4·L-1, respectively. Bacteroidota, Firmicutes, and Actinobacteria were the main phyla identified. The presence of archaea Methanobacterium, Methanocorpusculum, and Methanolinea highlighted the hydrogenotrophic metabolic pathway in T3BS. Functional prediction showed enzymes involved in three metabolic pathways in turkey litter biodigestion: acetotrophic, hydrogenotrophic, and methylotrophic methanogenesis. The predominant hydrogenotrophic pathway can be observed by analyzing the microbiota, archaea involved in this specific pathway, genes involved, and relative acid consumption for T3S and T3BS samples with higher methane production. Molecular tools help to understand the main groups of microorganisms and metabolic pathways involved in turkey litter AD, such as the use of different inocula, allowing the development of strategies for the sustainable disposal of turkey litter.
Collapse
Affiliation(s)
- Janaina Iltchenco
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil.
| | - Mariana Dalsoto Smiderle
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
6
|
Rocha ME, Mangiavacchi N, Marques M, Teixeira L. Succession from acetoclastic to hydrogenotrophic microbial community during sewage sludge anaerobic digestion for bioenergy production. Biotechnol Lett 2024; 46:997-1011. [PMID: 39261355 DOI: 10.1007/s10529-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Gao Z, Zhang Z, Li Q, Wu H, Wang M, Tian X, Wang A, Li J. Improving contaminant removal and inhibiting CH 4 and H 2S emissions from septic tanks: Nitrified human urine as a source of electron acceptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175410. [PMID: 39127217 DOI: 10.1016/j.scitotenv.2024.175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Septic tanks are widely adopted in decentralized household wastewater treatment systems serving billions of people globally. Due to the lack of effective electron acceptors, insufficient nutrient removal and the emission of harmful gases, e. g. H2S, CH4, etc., are the common drawbacks. In the present work, we attempted to supplement nitrite into septic tanks as an electron acceptor, via nitrifying human urine source-separated from blackwater, to overcome these drawbacks. Partial or complete nitritation of source-separated urine was achieved in a sequencing batch reactor. The addition of nitrified urine into septic tanks improved organic and nitrogen removals in blackwater up to 90 % and 70 %, respectively. The emission of harmful gases from the septic tanks was stably diminished, with more than 75 % of CH4, CO2 and H2S reductions. Nitrite addition significantly reduced the abundance of hydrogenotrophic methanogens in septic tanks. Though the activity of sulfate-reducing bacteria recovered after the initial inhibition upon nitrite addition, the bio-generated H2S was retained in water since the increased wastewater pH after nitrite addition promoted the disassociation of H2S in aqueous solution.
Collapse
Affiliation(s)
- Zhenchao Gao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China.
| | - Qingyun Li
- China Academy of Space Technology, Beijing 100081, China
| | - Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Aimin Wang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
8
|
Tian L, An M, Liu F, Zhang Y. Fungal community characteristics of the last remaining habitat of three paphiopedilum species in China. Sci Rep 2024; 14:24737. [PMID: 39433552 PMCID: PMC11494054 DOI: 10.1038/s41598-024-75185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Paphiopedilum armeniacum, Paphiopedilum wenshanense and Paphiopedilum emersonii are critically endangered wild orchids. Their populations are under severe threat, with a dramatic decline in the number of their natural distribution sites. Ex situ conservation and artificial breeding are the keys to maintaining the population to ensure the success of ex situ conservation and field return in the future. The habitat characteristics and soil nutrient information of the last remaining wild distribution sites of the three species were studied. ITS high-throughput sequencing was used to reveal the composition and structure of the soil fungal community, analyze its diversity and functional characteristics, and reveal its relationship with soil nutrients. The three species preferred to grow on low-lying, ventilated and shaded declivities with good water drainage. There were significant differences in soil alkali-hydrolyzed nitrogen and available phosphorus among the three species. There were 336 fungal species detected in the samples. On average, there were different dominant groups in the soil fungal communities of the three species. The functional groups of soil fungi within their habitats were dominated by saprophytic fungi and ectomycorrhizae, with significant differences in diversity and structure. The co-occurrence network of habitat soil fungi was mainly positive. Soil pH significantly affected soil fungal diversity within their habitats of the three paphiopedilum species. The study confirmed that the dominant groups of soil fungi were significantly correlated with soil nutrients. The three species exhibit comparable habitat inclinations, yet they display substantial variations in the composition, structure, and diversity of soil fungi. The fungal functional group is characterized by a rich presence of saprophytic fungi, a proliferation of ectomycorrhizae, and a modest occurrence of orchid mycorrhizae. The symbiotic interactions among the soil fungi associated with these three species are well-coordinated, enhancing their resilience against challenging environmental conditions. There is a significant correlation between soil environmental factors and the composition of soil fungal communities, with pH emerging as a pivotal factor regulating fungal diversity. Our research into the habitat traits and soil fungal ecosystems of the three wild Paphiopedilum species has established a cornerstone for prospective ex situ conservation measures and the eventual reestablishment of these species in their native landscapes.
Collapse
Affiliation(s)
- Li Tian
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Mingtai An
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China.
| | - Feng Liu
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Yang Zhang
- Guiyang City, Guizhou Province Forestry Bureau, Nanming District, Guiyang City, Guizhou Province, 550002, China
| |
Collapse
|
9
|
Faria D, Carvalho APAD, Conte-Junior CA. Fermentation of Biomass and Residues from Brazilian Agriculture for 2G Bioethanol Production. ACS OMEGA 2024; 9:40298-40314. [PMID: 39372026 PMCID: PMC11447871 DOI: 10.1021/acsomega.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Brazil is one of the world's leading producers of staple foods and bioethanol. Lignocellulosic residual sources have been proposed as a promising feedstock for 2G bioethanol and to reduce competition between food and fuels. This work aims to discuss residual biomass from Brazilian agriculture as lignocellulosic feedstock for 2G bioethanol production as bagasse, stalk, stem, and peels, using biorefining concepts to increase ethanol yields. Herein, we focused on biomass chemical characteristics, pretreatment, microorganisms, and optimization of process parameters that define ethanol yields for bench-scale fermentation. Although several techniques, such as carbon capture, linking enzymes to supports, and a consortium of microorganisms, emerge as future alternatives in bioethanol synthesis, these technologies entail necessary optimization efforts before commercial availability. Overcoming these challenges is essential to linking technological innovation to synthesizing environmentally friendly fuels and searching other biomass wastes for 2G bioethanol to increase the biofuel industry's potential. Thus, this work is the first to discuss underutilized lignocellulosic feedstock from other agrifoods beyond sugar cane or corn, such as babassu, tobacco, cassava, orange, cotton, soybean, potatoes, and rice. Residual biomasses combined with optimized pretreatment and mixed fermentation increase hydrolysis efficiency, fermentation, and purification. Therefore, more than a product with a high added value, bioethanol synthesis from Brazilian residual biomass prevents waste production.
Collapse
Affiliation(s)
- Douglas
José Faria
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| | - Carlos Adam Conte-Junior
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
10
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Urasaki K, Morono Y, Uramoto GI, Uesugi K, Yasutake M, Akishiba M, Guo G, Li YY, Kubota K. Nondestructive and three-dimensional visualization by identifying elements using synchrotron radiation microscale X-ray CT reveals microbial and cavity distributions in anaerobic granular sludge. Appl Environ Microbiol 2024; 90:e0056324. [PMID: 39023264 PMCID: PMC11337819 DOI: 10.1128/aem.00563-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
We developed a nondestructive three-dimensional microbial visualization method utilizing synchrotron radiation X-ray microscale computed tomography to better understand the relationship between microorganisms and their surrounding habitats. The method was tested and optimized using a mixture of axenic Escherichia coli and Comamonas testosteroni. The osmium-thiocarbohydrazide-osmium method was used to stain all the microbial cells, and gold in situ hybridization was used to detect specific phylogenetic microbial groups. The stained samples were embedded in epoxy resin for microtomographic analysis. Differences in X-ray absorbances were calculated by subtracting the pre-L3-edge images from the post-L3-edge images to visualize the osmium and gold signals. Although we successfully detected cells stained with osmium, those labeled with gold were not detected, probably because of the insufficient density of gold atoms in the microbial cells. We then applied the developed technique to anaerobic granules and visualized the distribution of microbial cells and extracellular polymeric substances. Empty spaces were highlighted to determine the cavity distribution in granules. Numerous independent cavities of different sizes were identified in the granules. The developed method can be applied to various environmental samples for deeper insights into microbial life in their habitats. IMPORTANCE Microorganisms inhabit diverse environments and often form biofilms. One factor that affects their community structure is the surrounding physical environment. The arrangement of residential space within the formed biofilm plays a crucial role in the supply and transportation of substances, as well as the discharge of metabolites. Conventional approaches, such as scanning electron microscopy and confocal laser scanning microscopy combined with fluorescence in situ hybridization, have limitations as they provide information primarily from the biofilm surface and cross-sections. In this study, we developed a method for detecting microorganisms in biofilms using synchrotron radiation X-ray microscale computer tomography. The developed method allows nondestructive three-dimensional observation of biofilms at a single-cell resolution (voxel size of approximately 200 nm), facilitating an understanding of the relationship between microorganisms and their physical habitats.
Collapse
Affiliation(s)
- Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Go-Ichiro Uramoto
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | | | - Manato Akishiba
- Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Kochi, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Macêdo WV, Harpøth RD, Poulsen JS, de Jonge N, Fischer CH, Agneessens LM, Nielsen JL, Biller P, Rickers CK, Vergeynst L. Anaerobic digestion of wastewater from hydrothermal liquefaction of sewage sludge and combined wheat straw-manure. BIORESOURCE TECHNOLOGY 2024; 399:130559. [PMID: 38460566 DOI: 10.1016/j.biortech.2024.130559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Hydrothermal liquefaction (HTL) shows promise for converting wet biomass waste into biofuel, but the resulting high-strength process water (PW) requires treatment. This study explored enhancing energy recovery by anaerobic digestion using semi-batch reactors. Co-digesting manure with HTL-PW from wheat straw-manure co-HTL yielded methane (43-49% of the chemical oxygen demand, COD) at concentrations up to 17.8 gCOD·L-1, whereas HTL-PW from sewage sludge yielded methane (43% of the COD) up to only 12.8 gCOD·L-1 and complete inhibition occurred at 17 gCOD·L-1. Microbial community shifts confirmed inhibition of methanogenic archaea, while hydrolytic-fermentative bacteria were resilient. Differences in chemical composition, particularly higher levels of N-containing heterocyclic compounds in PW of sewage sludge, likely caused the microbial inhibition. The considerable potential of combining HTL with anaerobic digestion for enhanced energy recovery from straw-manure in an agricultural context is demonstrated, yet sewage sludge HTL-PW requires more advanced approaches to deal with methanogenesis inhibitors.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark.
| | - Rune Dall Harpøth
- Danish Technological Institute, Teknologiparken, 8000 Aarhus C, Denmark
| | - Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | | | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Patrick Biller
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | | | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Zhao X, Hong JK, Park SY, Yun J, Jho EH. Stabilization of microbial network by co-digestion of swine manure and organic wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120475. [PMID: 38447511 DOI: 10.1016/j.jenvman.2024.120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
The production of biogas from organic waste has attracted considerable interest as a solution to current energy and waste management challenges. This study explored the methane (CH4) production potential of swine manure (SM), food waste (FW), and tomato waste (TW) and the changes in the microbial community involved in the anaerobic digestion process. The results revealed that the CH4 production potentials of the four kinds of SM samples were influenced by the characteristics of SM (e.g., age and storage period). Among the four kinds of SM samples, the CH4 yield from the manure directly sampled from primiparous sows (SM3) was the highest. The CH4 yield was significantly improved when SM3 was co-digested with FW, but not with TW. The addition of SM fostered a stable CH4 production community by enhancing the interaction between methanogens and syntrophic bacteria. Furthermore, the addition of FW as a co-substrate may improve the functional redundancy structure of the methanogenesis-associated network. Overall, the characteristics of SM must be considered to achieve consistent CH4 yield efficiency from anaerobic digestion since CH4 production potentials of SM can be different. Also, the contribution of co-substrate to the synergistic relationship between methanogens and syntrophic bacteria can be considered when a co-substrate is selected in order to enhace CH4 yield from SM.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanakgu, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - So Yun Park
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinhyeon Yun
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
15
|
Yao Y, Wei Y, Li J, Han R, Jing C, Liu R, Niu Q. Microbial electron flow promotes naphthalene degradation in anaerobic digestion in the presence of nitrate electron acceptor: Focus on electron flow regulation and microbial interaction succession. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132293. [PMID: 37597391 DOI: 10.1016/j.jhazmat.2023.132293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Microbial electron flow (MEF) is produced from microbial degradation of organic compounds. Regulating MEF to promote organic pollutants biodegradation such as naphthalene (Nap) is a potential way but remains a lack of theoretical basis. Here, we regulated MEF by adding electron acceptor NO3- to achieve 2.6 times increase of Nap biodegradation with cyclodextrin as co-metabolism carbon source. With the NO3- addition, the genes inhibited by Nap of electron generation significantly up-regulated. Especially, key genes ubiD and nahD for anaerobic Nap degradation significantly up-regulated respectively 3.7 times and 6.7 times. Moreover, the ability of electron transfer in MEF was also improved consistent with 7.2 times increase of electron transfer system (ETS) activity. Furthermore, total 60 metagenome-assembled genomes (MAGs) were reconstructed through the metagenomic sequencing data with assembly and binning strategies. Interestingly, it was also first found that the Klebsiella MAG. SDU (Shandong University) 14 had the ability of simultaneous Nap biodegradation and denitrification. Our results firstly offered an effective method of regulating MEF to promote polycyclic aromatic hydrocarbons (PAHs) degradation and simultaneous methanogenesis.
Collapse
Affiliation(s)
- Yilin Yao
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yanhao Wei
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jingyi Li
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Ruotong Han
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Chuanyong Jing
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Rutao Liu
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao, Shandong 266237, China.
| | - Qigui Niu
- China-America CRC for Environment & Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
16
|
Loughrin JH, Parekh RR, Agga GE, Silva PJ, Sistani KR. Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound. Microorganisms 2023; 11:2349. [PMID: 37764193 PMCID: PMC10535533 DOI: 10.3390/microorganisms11092349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L-1 digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth.
Collapse
Affiliation(s)
- John H. Loughrin
- United States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USA; (R.R.P.); (G.E.A.); (P.J.S.); (K.R.S.)
| | | | | | | | | |
Collapse
|
17
|
Zhang F, Hou H, Fu J, Bastidas-Oyanedel JR. Editorial: Anaerobic digestion of waste organics: toxicity and management. Front Microbiol 2023; 14:1243205. [PMID: 37533833 PMCID: PMC10392921 DOI: 10.3389/fmicb.2023.1243205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Fang Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Juan-Rodrigo Bastidas-Oyanedel
- SDU-Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Kumari S, Das S. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79676-79705. [PMID: 37330441 DOI: 10.1007/s11356-023-28130-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
19
|
Hu X, Liu J, Cheng W, Li X, Zhao Y, Wang F, Geng Z, Wang Q, Dong Y. Synergistic interactions of microbial fuel cell and microbially induced carbonate precipitation technology with molasses as the substrate. ENVIRONMENTAL RESEARCH 2023; 228:115849. [PMID: 37024030 DOI: 10.1016/j.envres.2023.115849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
The application of microbially induced carbonate precipitation (MICP) technology is critical, but many challenges remain. In this paper, a microbial fuel cell (MFC) is used to treat molasses wastewater, and the effluent is used as the substrate to promote the growth of urease-producing bacteria. The results showed that the maximum voltage of MFC was 500 mV, and the maximum power density was 169.86 mW/m2. The mineralization rate reached 100% on the 15th day, and the mineralized product was calcite CaCO3. According to the microbial community analysis, the unclassified_Comamondaceae, Arcobacter, and Aeromonas, which could improve the OH-, signal molecular transmission and small molecular nutrients to promote the urease activity of urease-producing bacteria. The above conclusions provide a new way to reuse molasses wastewater efficiently and to apply MICP technology in dust suppression.
Collapse
Affiliation(s)
- Xiangming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Jindi Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weimin Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Xiao Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Feng Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Zhi Geng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Qingshan Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yue Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
20
|
Saha S, Xiong JQ, Patil SM, Ha GS, Hoh JK, Park HK, Chung W, Chang SW, Khan MA, Park HB, Jeon BH. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131200. [PMID: 36958158 DOI: 10.1016/j.jhazmat.2023.131200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.
Collapse
Affiliation(s)
- Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Woojin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
21
|
Sun Z, He J, Yu N, Chen Y, Chen Y, Tang Y, Kida K. Biomethane production and microbial strategies corresponding to high organic loading treatment for molasses wastewater in an upflow anaerobic filter reactor. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02882-5. [PMID: 37209175 DOI: 10.1007/s00449-023-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. In this study, an upflow anaerobic filter (UAF) reactor was employed to establish a high organic loading treatment system for molasses wastewater and further investigated the microbial community dynamics in response to this stressful operation. The biogas production increased with an increase in total organic carbon (TOC) loading rate from 1.0 to 14 g/L/day, and then it decreased with further TOC loading rate addition until 16 g/L/day. The UAF reactor achieved a maximum biogas production of 6800 mL/L/day with a TOC removal efficiency of 66.5% at a TOC loading rate of 14 g/L/day. Further microbial analyses revealed that both the bacterial and archaeal communities developed multiple strategies to maintain stable operation of the reactor at high organic loading (e.g., Proteiniphilum and Defluviitoga maintained high abundances throughout the operation; Tissierella temporarily dominated the bacterial community at TOC loading rates of 8.0 to 14 g/L/day; and multi-trophic Methanosarcina shifted as the dominant methanogen at the TOC loading rates of 8.0 to 16 g/L/day). This study presents insights into a high organic loading molasses wastewater treatment system and the microbial flexibility in methane fermentation in response to process disturbances.
Collapse
Affiliation(s)
- Zhaoyong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinting He
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Na Yu
- School of Environmental and Planning, Liaocheng University, Liaocheng, 252000, China
| | - Yuwei Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yating Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
22
|
Singh S, Keating C, Ijaz UZ, Hassard F. Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162420. [PMID: 36842571 DOI: 10.1016/j.scitotenv.2023.162420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1-41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10-20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1-41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10-20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.
Collapse
Affiliation(s)
- Suniti Singh
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK.
| | - Ciara Keating
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK; College of Science and Engineering, NUI Galway, Ireland.
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK; Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710 Roodepoort, Johannesburg, South Africa.
| |
Collapse
|
23
|
Xiong G, Ji L, Cheng M, Ning K. Niche-Based Microbial Community Assemblage in Urban Transit Systems and the Influence of City Characteristics. Microbiol Spectr 2023; 11:e0016723. [PMID: 36916942 PMCID: PMC10101094 DOI: 10.1128/spectrum.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Microbiota residing on the urban transit systems (UTSs) can be shared by travelers and have niche-specific assemblage. However, it remains unclear how the assemblages are influenced by city characteristics, rendering city-specific and microbial-aware urban planning challenging. Here, we analyzed 3,359 UTS microbial samples collected from 16 cities around the world. We found the stochastic process dominated in all UTS microbiota assemblages, with the explanation rate (R2) of the neutral community model (NCM) higher than 0.7. Moreover, city characteristics predominantly drove such assemblage, largely responsible for the variation in the stochasticity ratio (50.1%). Furthermore, by utilizing an artificial intelligence model, we quantified the ability of UTS microbes in discriminating between cities and found that the ability was also strongly affected by city characteristics, especially climate and continent. From these, we found that although the NCM R2 of the New York City UTS microbiota was 0.831, the accuracy of the microbial-based city characteristic classifier was higher than 0.9. This is the first study to demonstrate the effects of city characteristics on the UTS microbiota assemblage, paving the way for city-specific and microbial-aware applications. IMPORTANCE We analyzed the urban transit system microbiota assemblage across 16 cities. The stochastic process was dominant in the urban transit system microbiota assemblage. The urban transit system microbe's ability in discriminating between cities was quantified using transfer learning based on random forest (RF) methods. Certain urban transit system microbes were strongly affected by city characteristics.
Collapse
Affiliation(s)
- Guangzhou Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Liu C, Zhang X, Chen C, Yin Y, Zhao G, Chen Y. Physiological Responses of Methanosarcina barkeri under Ammonia Stress at the Molecular Level: The Unignorable Lipid Reprogramming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3917-3929. [PMID: 36820857 DOI: 10.1021/acs.est.2c09631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acetotrophic methanogens' dysfunction in anaerobic digestion under ammonia pressure has been widely concerned. Lipids, the main cytomembrane structural biomolecules, normally play indispensable roles in guaranteeing cell functionality. However, no studies explored the effects of high ammonia on acetotrophic methanogens' lipids. Here, a high-throughput lipidomic interrogation deciphered lipid reprogramming in representative acetoclastic methanogen (Methanosarcina barkeri) upon high ammonia exposure. The results showed that high ammonia conspicuously reduced polyunsaturated lipids and longer-chain lipids, while accumulating lipids with shorter chains and/or more saturation. Also, the correlation network analysis visualized some sphingolipids as the most active participant in lipid-lipid communications, implying that the ammonia-induced enrichment in these sphingolipids triggered other lipid changes. In addition, we discovered the decreased integrity, elevated permeability, depolarization, and diminished fluidity of lipid-supported membranes under ammonia restraint, verifying the noxious ramifications of lipid abnormalities. Additional analysis revealed that high ammonia destabilized the structure of extracellular polymeric substances (EPSs) capable of protecting lipids, e.g., declining α-helix/(β-sheet + random coil) and 3-turn helix ratios. Furthermore, the abiotic impairment of critical EPS bonds, including C-OH, C═O-NH-, and S-S, and the biotic downregulation of functional proteins involved in transcription, translation, and EPS building blocks' supply were unraveled under ammonia stress and implied as the crucial mechanisms for EPS reshaping.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chuang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
25
|
Lee M, Yoo K, Kim H, Song KG, Kim D, Tiedje JM, Lee PH, Park J. Metatranscriptional characterization of metabolic dynamics in anaerobic membrane bioreactor producing methane from low-strength wastewater. BIORESOURCE TECHNOLOGY 2023; 370:128532. [PMID: 36574886 DOI: 10.1016/j.biortech.2022.128532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) with media is an emerging carbon-neutral biotechnology for low-strength wastewater (LSWW) treatment and methane recovery. Understanding metabolic dynamics among methanogens and syntrophic bacteria is important in optimizing the design and operation of AnMBR. However, little is known about it, especially in media-attached microbial communities. This study explored metabolic dynamics to compare media-attached and suspended conditions. Accordingly, metagenomes and metatranscriptomes from AnMBRs with polymeric media and fed with different influent concentrations (350 and 700 mg-COD/L) were analyzed. Metabolic dynamics were profoundly influenced by the different growth habitats and influent conditions, although the applied influent concentrations are within the range of typical LSWW. Metabolic dynamics prediction results suggest that media-attached-growth habitats may have provided a more favorable microenvironment for methanogens to grow and produce methane, especially under low influent conditions. These findings provide significant implications for optimizing floating media design and operation of AnMBR-producing methane from LSWW.
Collapse
Affiliation(s)
- Minjoo Lee
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, Republic of Korea
| | - Hyemin Kim
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Guen Song
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dajung Kim
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
26
|
Basak B, Kumar R, Bharadwaj AVSLS, Kim TH, Kim JR, Jang M, Oh SE, Roh HS, Jeon BH. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. BIORESOURCE TECHNOLOGY 2023; 369:128413. [PMID: 36462762 DOI: 10.1016/j.biortech.2022.128413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The inherent recalcitrance of lignocellulosic biomass is a significant barrier to efficient lignocellulosic biorefinery owing to its complex structure and the presence of inhibitory components, primarily lignin. Efficient biomass pretreatment strategies are crucial for fragmentation of lignocellulosic biocomponents, increasing the surface area and solubility of cellulose fibers, and removing or extracting lignin. Conventional pretreatment methods have several disadvantages, such as high operational costs, equipment corrosion, and the generation of toxic byproducts and effluents. In recent years, many emerging single-step, multi-step, and/or combined physicochemical pretreatment regimes have been developed, which are simpler in operation, more economical, and environmentally friendly. Furthermore, many of these combined physicochemical methods improve biomass bioaccessibility and effectively fractionate ∼96 % of lignocellulosic biocomponents into cellulose, hemicellulose, and lignin, thereby allowing for highly efficient lignocellulose bioconversion. This review critically discusses the emerging physicochemical pretreatment methods for efficient lignocellulose bioconversion for biofuel production to address the global energy crisis.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - A V S L Sai Bharadwaj
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si 200-701, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
27
|
Zhang K, Deng Y, Liu Z, Feng Y, Hu C, Wang Z. Biochar Facilitated Direct Interspecies Electron Transfer in Anaerobic Digestion to Alleviate Antibiotics Inhibition and Enhance Methanogenesis: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032296. [PMID: 36767663 PMCID: PMC9915179 DOI: 10.3390/ijerph20032296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Efficient conversion of organic waste into low-carbon biofuels such as methane through anaerobic digestion (AD) is a promising technology to alleviate energy shortages. However, issues such as inefficient methane production and poor system stability remain for AD technology. Biochar-facilitated direct interspecies electron transfer (DIET) has recently been recognized as an important strategy to improve AD performance. Nonetheless, the underlying mechanisms of biochar-facilitated DIET are still largely unknown. For this reason, this review evaluated the role of biochar-facilitated DIET mechanism in enhancing AD performance. First, the evolution of DIET was introduced. Then, applications of biochar-facilitated DIET for alleviating antibiotic inhibition and enhancing methanogenesis were summarized. Next, the electrochemical mechanism of biochar-facilitated DIET including electrical conductivity, redox-active characteristics, and electron transfer system activity was discussed. It can be concluded that biochar increased the abundance of potential DIET microorganisms, facilitated microbial aggregation, and regulated DIET-associated gene expression as a microbial mechanism. Finally, we also discussed the challenges of biochar in practical application. This review elucidated the role of DIET facilitated by biochar in the AD system, which would advance our understanding of the DIET mechanism underpinning the interaction of biochar and anaerobic microorganisms. However, direct evidence for the occurrence of biochar-facilitated DIET still requires further investigation.
Collapse
Affiliation(s)
- Kaoming Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yuepeng Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
28
|
Mit Prohim Y, Cayetano RDA, Anburajan P, Tang Thau N, Kim S, Oh HS. Enhancement of biomethane recovery from batch anaerobic digestion by exogenously adding an N-acyl homoserine lactone cocktail. CHEMOSPHERE 2023; 312:137188. [PMID: 36400188 DOI: 10.1016/j.chemosphere.2022.137188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Biomethane recovered through anaerobic digestion (AD) is a renewable, sustainable, and cost-effective alternative energy source that has the potential to help address rising energy demands. Efficient bioconversion during AD depends on the symbiotic relationship between hydrolytic bacteria and methanogenic archaea. Interactions between microorganisms occur in every biological system via a phenomenon known as quorum sensing (QS), in which signaling molecules are simultaneously transmitted and detected as a mode of cell-to-cell communication. However, there's still a lack of understanding on how QS works in the AD system, where diverse bacteria and archaea interact in a complex manner. In this study, different concentrations (0.5 and 5 μM) of signaling molecules in the form of an N-acyl homoserine lactone cocktail (C6-, C8-, C10-, and 3-oxo-C6-HSL) were prepared and introduced into anaerobic batch reactors to clearly assess how QS affects AD systems. It was observed that the methane yield increased with the addition of AHLs: a 5 μM AHL cocktail improved the methane yield (341.9 mL/g-COD) compared to the control without AHLs addition (285.9 mL/g-COD). Meanwhile, evidence of improved microbial growth and cell aggregation was noticed in AHLs-supplemented systems. Our findings also show that exogenously adding AHLs alters the microbial community structure by increasing the overall bacterial and archaeal population counts while favoring the growth of the methanogenic archaea group, which is essential in biomethane synthesis.
Collapse
Affiliation(s)
- You Mit Prohim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Roent Dune A Cayetano
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Nguyen Tang Thau
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Sungmi Kim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
29
|
Reconfiguring the Challenge of Biological Complexity as a Resource for Biodesign. mSphere 2022; 7:e0054722. [PMID: 36472448 PMCID: PMC9769621 DOI: 10.1128/msphere.00547-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biological complexity is widely seen as the central, intractable challenge of engineering biology. Yet this challenge has been constructed through the field's dominant metaphors. Alternative ways of thinking-latent in progressive experimental approaches, but rarely articulated as such-could instead position complexity as engineering biology's greatest resource. We outline how assumptions about engineered microorganisms have been built into the field, carried by entrenched metaphors, even as contemporary methods move beyond them. We suggest that alternative metaphors would better align engineering biology's conceptual infrastructure with the field's move away from conventionally engineering-inspired methods toward biology-centric ones. Innovating new conceptual frameworks would also enable better aligning scientific work with higher-level conversations about that work. Such innovation-thinking about how engineering microbes might be more like user-centered design than like programming a computer or building a car-could highlight complexity as a resource to leverage, not a problem to erase or negate.
Collapse
|
30
|
Kim HH, Saha S, Hwang JH, Hosen MA, Ahn YT, Park YK, Khan MA, Jeon BH. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. BIORESOURCE TECHNOLOGY 2022; 365:128145. [PMID: 36257521 DOI: 10.1016/j.biortech.2022.128145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.
Collapse
Affiliation(s)
- Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA
| | - Md Aoulad Hosen
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Yong-Tae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
31
|
Haque S, Singh R, Pal DB, Harakeh S, Alghanmi M, Teklemariam AD, Abujamel TS, Srivastava N, Gupta VK. Recent Update on anaerobic digestion of paddy straw for biogas production: Advancement, limitation and recommendations. ENVIRONMENTAL RESEARCH 2022; 215:114292. [PMID: 36100106 DOI: 10.1016/j.envres.2022.114292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
At present, development and production of advanced green energy sources are highly demanded, and this may offer a clean and sustainable environment to our modern society. In this reference, biogas is emerging as a promising green energy source and seems to have high potential to replace fossil-fuel based energy sources in the coming future. Further, lignocellulosic biomass (LCB) based biogas production technology has been found to be highly promising owing to several advantages associated therewith. Rich inorganic content, renewable nature, huge availability and low-cost are the key beneficial factors of LCB-based feedstock l to produce biogas. Among the varieties of LCB, paddy straw is one of the most demanding feedstocks and is highly rich in organic compounds that are imperative to producing biogas. Nevertheless, it is noticed that paddy straw as a waste material is usually disposed-off by direct burning, whereas it exhibits low natural digestibility due to the presence of high lignin and silica content which causes severe environmental pollution. On the other hand, paddy straw can be a potential feedstock to produce biogas through anaerobic digestion. Therefore, based on the current ongoing research studies worldwide, this review evaluates the advancements made in the AD process. Meanwhile, existing limitations and future recommendations to improve the yield and productivity of the biogas using paddy straw have been discussed. The emphasis has also been given to various operational parameters developments, related shortcomings, and strategies to improve biogas production at pilot scale.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur, 208002, Uttar Pradesh, India
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Addisu Demeke Teklemariam
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, Uttar Pradesh, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
32
|
Jiao Y, Yuan Y, He C, Liu L, Pan X, Li P. Enrichment culture combined with microbial electrochemical enhanced low-temperature anaerobic digestion of cow dung. BIORESOURCE TECHNOLOGY 2022; 360:127636. [PMID: 35853591 DOI: 10.1016/j.biortech.2022.127636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Enrichment culture combined with the microbial electrochemical system was used to co-enhance the low-temperature (20 °C) anaerobic digestion. The results showed that enrichment culture combined with microbial electrochemical system increased the cumulative methane production in low-temperature anaerobic digestion system by 39.64 % and 133.29 % compared to single and no enrichment culture, respectively. Enrichment culture combined with microbial electrochemical system increased the relative abundance of methanogenic archaea (Methanomassiliicoccus, Methanocorpusculum, unclassified Methanomicrobiaceae, Methanobacterium, Methanoculleus, Methanocalculus) and the relative abundance of cold-tolerant hydrolytic acidifying bacteria (unclassified Bacteroidetes, Treponema). The expressions of specific enzyme genes in the methanogenesis pathway were enhanced, including acetyl-CoA synthetase, formylmethanofuran dehydrogenase, methanol cobalamin methyltransferase, etc. These results indicated that enrichment culture combined with microbial electrochemical system enhanced low-temperature anaerobic digestion methanogenesis by altering microbial communities and stimulating enzyme gene expression to affect volatile fatty acids, pH, redox potential, and reducing sugar parameters.
Collapse
Affiliation(s)
- Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongkang Yuan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
33
|
Basak B, Patil SM, Kumar R, Ahn Y, Ha GS, Park YK, Ali Khan M, Jin Chung W, Woong Chang S, Jeon BH. Syntrophic bacteria- and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. BIORESOURCE TECHNOLOGY 2022; 360:127602. [PMID: 35835420 DOI: 10.1016/j.biortech.2022.127602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
An inadequate lignocellulolytic capacity of a conventional anaerobic digester sludge (ADS) microbiota is the bottleneck for the maximal utilization of lignocellulose in anaerobic digestion. A well-constructed microbial consortium acclimatized to lignocellulose outperformed the ADS in terms of biogas productivity when fractionated biocomponents of rice straw were used to achieve a high methane bioconversion rate. A 33.3 % higher methane yield was obtained with the acclimatized consortium (AC) compared to that of ADS control. The dominant pair-wise link between Firmicutes (18.99-40.03 %), Bacteroidota (10.94-28.75 %), and archaeal Halobacteriota (3.59-20.57 %) phyla in the AC seed digesters indicated that the keystone members of these phyla were responsible for higher methane yield. A high abundance of syntrophic bacteria such as Proteiniphilum (1.22-5.19 %), Fermentimonas (0.71-5.31 %), Syntrophomonas (0.87-3.59 %), and their syntrophic partner Methanosarcina (4.26-18.80 %) maintained the digester stability and facilitated higher substrate-to-methane conversion in the AC seed digesters. The present combined strategy will help in boosting the 'biomass-to-methane" conversion.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Swapnil M Patil
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Each prokaryotic domain, Bacteria and Archaea, contains a large and diverse group of organisms characterized by their ultrasmall cell size and symbiotic lifestyles (potentially commensal, mutualistic, and parasitic relationships), namely, Candidatus Patescibacteria (also known as the Candidate Phyla Radiation/CPR superphylum) and DPANN archaea, respectively. Cultivation-based approaches have revealed that Ca. Patescibacteria and DPANN symbiotically interact with bacterial and archaeal partners and hosts, respectively, but that cross-domain symbiosis and parasitism have never been observed. By amending wastewater treatment sludge samples with methanogenic archaea, we observed increased abundances of Ca. Patescibacteria (Ca. Yanofskybacteria/UBA5738) and, using fluorescence in situ hybridization (FISH), discovered that nearly all of the Ca. Yanofskybacteria/UBA5738 cells were attached to Methanothrix (95.7 ± 2.1%) and that none of the cells were attached to other lineages, implying high host dependency and specificity. Methanothrix filaments (multicellular) with Ca. Yanofskybacteria/UBA5738 attached had significantly more cells with no or low detectable ribosomal activity (based on FISH fluorescence) and often showed deformations at the sites of attachment (based on transmission electron microscopy), suggesting that the interaction is parasitic. Metagenome-assisted metabolic reconstruction showed that Ca. Yanofskybacteria/UBA5738 lacks most of the biosynthetic pathways necessary for cell growth and universally conserves three unique gene arrays that contain multiple genes with signal peptides in the metagenome-assembled genomes of the Ca. Yanofskybacteria/UBA5738 lineage. The results shed light on a novel cross-domain symbiosis and inspire potential strategies for culturing CPR and DPANN.
Collapse
|
35
|
Zhu Y, Han Y, Liu G, Bian Z, Yan X, Li Y, Long H, Yu G, Wang Y. Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. THE ISME JOURNAL 2022; 16:1717-1729. [PMID: 35319020 PMCID: PMC9213462 DOI: 10.1038/s41396-022-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Interspecific and intraspecific communication systems of microorganisms are involved in the regulation of various stress responses in microbial communities. Although the significance of signaling molecules in the ubiquitous family Xanthomonadaceae has been reported, the role bacterial communications play and their internal mechanisms are largely unknown. Here, we use Lysobacter enzymogenes, a member of Xanthomonadaceae, to identify a novel potassium ion import system, LeKdpXFABC. This import system participates in the indole-mediated interspecies signaling pathway and matters in environmental adaptation. Compared with the previously reported kdpFABC of Escherichia coli, LekdpXFABC contains a novel indispensable gene LekdpX and is directly regulated by the indole-related two-component system QseC/B. QseC autophosphorylation is involved in this process. The operon LekdpXFABC widely exists in Xanthomonadaceae. Moreover, indole promotes antimicrobial product production at the early exponential phase. Further analyses show that indole enhances potassium ion adsorption on the cell surface by upregulating the production of O-antigenic polysaccharides. Finally, we confirm that LeKdpXFABC mediation by indole is subject to the intraspecific signaling molecules DSFs, of which the biosynthesis genes always exist together with LekdpXFABC. Therefore, as a new idea, the signal collaborative strategy of indole and DSFs might ensure the persistent fitness advantage of Xanthomonadaceae in variable environments.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Guanglei Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zeran Bian
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiayi Yan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hongan Long
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guanshuo Yu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
36
|
Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C. Appl Microbiol Biotechnol 2022; 106:4801-4811. [PMID: 35759034 DOI: 10.1007/s00253-022-12042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
The electricity production via psychrophilic microbial fuel cell (PMFC) for wastewater treatment in cold regions offers an alternative to avoid the unwanted methane dissolution of traditional anaerobic fermentation. But, it is seldom reported by mixed-culture, especially closed to 0 °C. Thus, a two-chamber mixed-culture PMFC at 4 °C was successfully operated in this study using acetate as an electron donor. The main results demonstrated a good performance of PMFC, including the maximum voltage of 513 mV at 1000 Ω, coulombic efficiency of 53%, and power density of 689 mW/m2. The cyclic voltammetry curves of enriched biofilm showed a direct electron transfer pathway. These good performances of mixed-culture PMFC were due to the high psychrophilic activity of enriched biofilm, including exoelectrogens genera of Geobacter (6.1%), Enterococcus (17.5%), and Clostridium_sensu_stricto_12 (3.8%). Consequently, a mixed-culture PMFC provides a reasonable strategy to enrich exoelectrogens with high activity. For low-temperature regions, the mixed-culture PMFC involved biotechnologies shall benefit energy generation and valuable chemical production in the future. KEY POINTS: • PMFC showed a maximum voltage of around 513 mV under a resistance of 1000 Ω. • The coulombic efficiency was 53% and the max power density was 689 mW/m2. • Geobacter, Enterococcus, and Clostridium_sensu_stricto_12 were key exoelectrogens.
Collapse
|
37
|
Zhao S, Wu Y, Yao Y, Li J, Niu Q. Biochar assisted cellulose anaerobic digestion under the inhibition of dodecyl dimethyl benzyl ammonium chloride: Dose-response kinetic assays, performance variation, potential promotion mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114934. [PMID: 35339793 DOI: 10.1016/j.jenvman.2022.114934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the inhibitory effect and mitigation strategy of dodecyl dimethyl benzyl ammonium chloride (DDBAC) suppression on anaerobic digestion. With the 12 h-suppression, only 16.64% of anaerobes were alive, and acetotrophic methanogens were significantly inhibited. As for batch test, DDBAC suppression significantly prolonged the start-up of systems and decreased the biogas production. In cellulose semi-continuous digestion process, the DDBAC suppression induced volatile fatty acids accumulation and pH decrease. However, the biochar amended reactor effectively mitigated the DDBAC suppression and achieved 370.5 mL/d·g-chemical-oxygen-demand biogas production. Moreover, 17.8% more protein in extracellular polymeric substances was secreted as the bio-barrier to defense the DDBAC suppression. Furthermore, microbial analysis showed that biochar addition selectively enriched directed interspecies electron transfer (DIET) participant bacteria (Anaerolineaceae and Syntrophomonas) and methanogens (Methanosaeta and Methanobacterium). Meanwhile, the potential metabolic pathway analysis showed that the abundance of amino acids and energy metabolism were increased 28% and 8%, respectively. The abundance of encoding enzyme related to hydrogenotrophic and acetotrophic methanogenesis enriched 1.88 times and 1.48 times, respectively. These results showed the performance and mechanisms involved in DIET establishment with ethanol stimulation biochar addition.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China; School of Environment, Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, 30# Haidian Shuangqing Road, Beijing, 100084, China
| | - Yuehan Wu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Yilin Yao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Jingyi Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
38
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
39
|
Shi J, Li H, Jiang Z, Wang C, Sun L, Wang S. Impact of substrate digestibility on microbial community stability in methanogenic digestors: The mechanism and solution. BIORESOURCE TECHNOLOGY 2022; 352:127103. [PMID: 35378285 DOI: 10.1016/j.biortech.2022.127103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the temporal dynamics of digestion efficiency and community stability in digesters fed with waste activated sludge (WAS), straw (STR-AD), food waste (FW-AD) and mixture of straw-and-food waste (STR-FW-AD). Results showed that carbon removals of recalcitrant substrates (i.e., 48.2 ± 3.9% in WAS-AD and 57.8 ± 4.9% in STR-AD) were lower than that of labile substrates (i.e., 70.7 ± 4.0% in FW-AD). Nonetheless, carbon removal of recalcitrant substrates was largely improved through co-digestion (70.3 ± 3.2% in STR-FW-AD). In contrast to monopoly communities (e.g., the highly enriched Paludibacter) fed with the labile substrates, recalcitrant substrates supported highly diverse communities. Accordingly, the medians of negative/positive cohesions of communities in WAS-AD, STR-AD, STR-FW-AD and FW-AD decreased from 0.86 to 0.63, suggesting their decreasing community stability. Microbial source tracking analyses showed the major contribution of the STR-AD community to the co-digestion community. This study provided unprecedented mechanistic insight into stability improvement of substrate co-digestion on the methanogenic digestion microbiome.
Collapse
Affiliation(s)
- Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haocong Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zekai Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
40
|
Deciphering Molecular Mechanism Underlying Self-Flocculation of Zymomonas mobilis for Robust Production. Appl Environ Microbiol 2022; 88:e0239821. [PMID: 35465724 DOI: 10.1128/aem.02398-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis metabolizes sugar anaerobically through the Entner-Doudoroff pathway with less ATP generated for lower biomass accumulation to direct more sugar for product formation with improved yield, making it a suitable host to be engineered as microbial cell factories for producing bulk commodities with major costs from feedstock consumption. Self-flocculation of the bacterial cells presents many advantages, such as enhanced tolerance to environmental stresses, a prerequisite for achieving high product titers by using concentrated substrates. ZM401, a self-flocculating mutant developed from ZM4, the unicellular model strain of Z. mobilis, was employed in this work to explore the molecular mechanism underlying this self-flocculating phenotype. Comparative studies between ZM401 and ZM4 indicate that a frameshift caused by a single nucleotide deletion in the poly-T tract of ZMO1082 fused the putative gene with the open reading frame of ZMO1083, encoding the catalytic subunit BcsA of the bacterial cellulose synthase to catalyze cellulose biosynthesis. Furthermore, the single nucleotide polymorphism mutation in the open reading frame of ZMO1055, encoding a bifunctional GGDEF-EAL protein with apparent diguanylate cyclase/phosphodiesterase activities, resulted in the Ala526Val substitution, which consequently compromised in vivo specific phosphodiesterase activity for the degradation of cyclic diguanylic acid, leading to intracellular accumulation of the signaling molecule to activate cellulose biosynthesis. These discoveries are significant for engineering other unicellular strains from Z. mobilis with the self-flocculating phenotype for robust production. IMPORTANCE Stress tolerance is a prerequisite for microbial cell factories to be robust in production, particularly for biorefinery of lignocellulosic biomass to produce biofuels, bioenergy, and bio-based chemicals for sustainable socioeconomic development, since various inhibitors are released during the pretreatment to destroy the recalcitrant lignin-carbohydrate complex for sugar production through enzymatic hydrolysis of the cellulose component, and their detoxification is too costly for producing bulk commodities. Although tolerance to individual stress has been intensively studied, the progress seems less significant since microbial cells are inevitably suffering from multiple stresses simultaneously under production conditions. When self-flocculating, microbial cells are more tolerant to multiple stresses through the general stress response due to enhanced quorum sensing associated with the morphological change for physiological and metabolic advantages. Therefore, elucidation of the molecular mechanism underlying such a self-flocculating phenotype is significant for engineering microbial cells with the unique multicellular morphology through rational design to boost their production performance.
Collapse
|
41
|
Usman M, Zhao S, Jeon BH, Salama ES, Li X. Microbial β-oxidation of synthetic long-chain fatty acids to improve lipid biomethanation. WATER RESEARCH 2022; 213:118164. [PMID: 35176594 DOI: 10.1016/j.watres.2022.118164] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
β-oxidation is a well-known pathway for fatty acid (FA) degradation. However, the wide range of feedstocks, their intermediates, and complex microbial networks involved in anaerobic digestion (AD) make β-oxidation unclear during lipid digestion having a variety of long-chain fatty acids (LCFAs). Here, we demonstrated the detailed metabolic pathway of major bacteria and enzymes responsible for the β-oxidation of individual saturated FAs (C16:0 and C18:0) and unsaturated FAs (C18:1 and C18:2). C16:0 showed no negative impact on AD. The relative enzyme abundance and production of shorter-chain FAs (
Collapse
Affiliation(s)
- Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China
| | - Shuai Zhao
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
42
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
43
|
Wang G, Chu Y, Zhu J, Sheng L, Liu G, Xing Y, Fu P, Li Q, Chen R. Multi-faceted influences of biochar addition on swine manure digestion under tetracycline antibiotic pressure. BIORESOURCE TECHNOLOGY 2022; 346:126352. [PMID: 34798251 DOI: 10.1016/j.biortech.2021.126352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
This study explored the influence of biochar (BC) on anaerobic digestion (AD) of swine manure under various tetracycline (TC) pressures. It was found that both low (0.5 mg/L) and high (50 mg/L) TC pressures inhibited AD performance, while BC mitigated it in multi-facets. Under high TC pressure, BC accelerated syntrophic methanogenesis by boosting direct interspecies electron transfer pathway. The TC removal efficiencies were enhanced by 24.3-158.2% with BC assistance, which was attributed to the enhanced biological degradation rather than BC's physiochemical adsorption. Moreover, BC possibly acted as a protective role to alleviate intensive extracellular polymeric substances secretion under TC pressures. Integrated microbial community, metabolic function predicting, and antibiotic resistance genes (ARG) analysis revealed that BC addition not only enriched Anaerolineceae, which likely responsible for the 24.2-41.9% higher level expression of organics metabolic pathways and xenobiotics biodegradation, but also reduced ARG abundance by controlling the potential ARG host (Firmicutes) proliferation.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yuxi Chu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
44
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
45
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
46
|
Effect of feed-to-inoculum ratio on anaerobic digestibility of high-fat content animal rendering wastewater. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Kassongo J, Shahsavari E, Ball AS. Dynamic Effect of Operational Regulation on the Mesophilic BioMethanation of Grape Marc. Molecules 2021; 26:molecules26216692. [PMID: 34771101 PMCID: PMC8588447 DOI: 10.3390/molecules26216692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Wine production annually generates an estimated 11 million metric tonnes of grape marc (GM) worldwide. The diversion of this organic waste away from landfill and towards its use in the generation of renewable energy has been investigated. This study aimed to evaluate the effectiveness of operational parameters relating to the treatment regime and inoculum source in the extraction of methane from GM under unmixed anaerobic conditions at 35 °C. The study entailed the recirculation of a previously acclimated sludge (120 days) as downstream inoculum, an increased loading volume (1.3 kg) and a low substrate-to-inoculum ratio (10:3 SIR). The results showed that an incorporation of accessible operational controls can effectively enhance cumulative methane yield (0.145 m3 CH4 kg−1 VS), corresponding to higher amounts of digestible organics converted. The calculated average volumetric methane productivity equalled 0.8802 L CH4 LWork−1 d−1 over 33.6 days whilst moderate pollutant removal (43.50% COD removal efficiency) was achieved. Molecular analyses identified Firmicutes and Bacteroidetes phyla as core organisms for hydrolytic and fermentative stages in trophic relationships with terminal electron acceptors from the methane-producing Methanosarcina genus. Economic projections established that the cost-effective operational enhancements were sustainable for valorisation from grape marc by existing wineries and distilleries.
Collapse
|
48
|
Tian T, Qiao W, Han Z, Wen X, Yang M, Zhang Y. Effect of temperature on the persistence of fecal bacteria in ambient anaerobic digestion systems treating swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148302. [PMID: 34126495 DOI: 10.1016/j.scitotenv.2021.148302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the effect of temperature on the persistence of fecal bacteria by multiple approaches in ambient anaerobic digestion systems treating swine manure. Both lab-scale (15 °C, 20 °C, and 25 °C) and field (26 °C on average) studies were conducted by high-throughput sequencing and culture-based methods. A community-wide Bayesian SourceTracker method was used to identify and estimate the fecal bacterial proportion in anaerobic effluent. High proportional contributions of fecal bacteria were observed in effluent at 15 °C (73%) and 20 °C (75%), while less was found at 25 °C (19%). This was further verified by a field study (23%) and an anaerobic reactor study at 37 °C (0.01%). To explore the potential reasons for differences in fecal bacterial proportions, bacterial taxa were divided into "lost" and "survivor" taxa in manure waste by LEfSe. The "survivor" taxa abundance was positively correlated with SourceTracker proportion (r = 0.913, P = 0.001), but negatively correlated with temperature (r = -0.826, P = 0.006). In addition, biomarkers in effluent were divided into "enriched" and "de novo" taxa. "Enriched" taxa, including acidogenic and acetogenic bacteria, were found at all temperatures, whereas taxa related to organic degradation were multiplied "de novo" at 25 °C. Variation partition analysis showed that temperature could explain 30% of variations in effluent bacterial community. Moreover, coliforms isolated from the manure and effluents at 15 °C and 20 °C were also phylogenetically related. This study provided comprehensive insight into the impact of temperature on the persistence of fecal bacteria in anaerobic effluent, with temperatures over 25 °C recommended to reduce fecal pollution.
Collapse
Affiliation(s)
- Tiantian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Bao H, Gao H, Zhang J, Lu H, Yu N, Shao X, Zhang Y, Jin W, Li S, Xu X, Tian J, Xu Z, Li Z, Liu Z. Neonicotinoids stimulate H 2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117237. [PMID: 33957515 DOI: 10.1016/j.envpol.2021.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
Collapse
Affiliation(s)
- Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling 50, Nanjing, 210014, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling 50, Nanjing, 210014, China
| | - Haiyan Lu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Wei Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shuqing Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
50
|
Saha S, Kurade MB, Ha GS, Lee SS, Roh HS, Park YK, Jeon BH. Syntrophic metabolism facilitates Methanosarcina-led methanation in the anaerobic digestion of lipidic slaughterhouse waste. BIORESOURCE TECHNOLOGY 2021; 335:125250. [PMID: 33991880 DOI: 10.1016/j.biortech.2021.125250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Different inoculum to slaughterhouse waste (SHW) ratios (Ino/SHW) influences the digester performance, substrate utilization, and methane yield through microbial shift and their metabolic syntrophy. Acetoclastic Methanosarcina (68-87%) was dominant in the exponential phase, overpowering the initial abundance of Methanosaeta (86% of methanogens) in the SHW digesters. Positive interactions among acetogenic and acetate-oxidizing species of Clostridium (11%) with Methanosarcina (84% of methanogens) improved the methanogenic activity (292 mL g-1 VSinitial d-1) and final VS utilization (90%) at the highest Ino/SHW loading. In contrast, significant improvement of methane yield (152% higher than the control) at the lowest Ino/SHW loading was attributed to strong syntrophy among Methanosaeta (24% of methanogens) and its exoelectrogenic partners, Bythopirellula (0.52%) and Mariniphaga (0.08%) and the acetogenic Cloacimonas (0.16%) and Longilinea (0.32%). These syntrophic interactions among the core microbiota induced major metabolic activities, including butanoate, glycine, serine and threonine, methane, propanoate, and pyruvate metabolism, and quorum sensing.
Collapse
Affiliation(s)
- Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sean S Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|