1
|
Zare MS, Abedpoor N, Hajibabaie F, Walker AK. Gene co-expression patterns shared between chemobrain and neurodegenerative disease models in rodents. Neurobiol Dis 2025; 211:106944. [PMID: 40339619 DOI: 10.1016/j.nbd.2025.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI), is a well-recognized phenomenon in cancer patients who have undergone chemotherapy but the exact molecular mechanisms underpinning CRCI remain elusive. Symptoms reported by people with CRCI resemble those experienced by people with age-related neurodegenerative disorders (ARNDDs), yet no clear connection between CRCI and ARNDDs has been reported to date. The existence of shared mechanisms between these conditions offers opportunities for repurposing drugs already approved for the treatment of ARNDDs to improve symptoms of CRCI. Given that there is no available microarray or RNA-Seq data from the brains of people who have experienced CRCI, we investigated to what extent brain gene expression perturbations from validated rodent models of CRCI induced by chemotherapy compared with validated rodent models of Alzheimer's disease and Parkinson's disease. We utilized multiple bioinformatic analyses, including functional enrichment, protein-protein interaction network analyses, gene ontology analyses and identification of hub genes to reveal connections between comparable gene expression perturbations observed in these conditions. Collectively 165 genes overlapped between CRCI and Parkinson's disease and/or Alzheimer's disease, and 15 overlapped between all three conditions. The joint genes between Alzheimer's disease, Parkinson's disease and CRCI demonstrate an average of 83.65% nucleotide sequence similarity to human orthologues. Gene ontology and pathway enrichment analyses suggest mechanisms involved in neural activity and inflammatory response as the key components of the studied neuropathological conditions. Accordingly, genes in which expression was comparably affected in all three condition models could be attributed to neuroinflammation, cell cycle arrest, and changes in physiological neural activity.
Collapse
Affiliation(s)
- Mohammad-Sajad Zare
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Iranian Cancer Control Center (MACSA), Isfahan, Iran.
| | - Navid Abedpoor
- Department of Sports Physiology, Isf.C., Islamic Azad University, Isfahan, Iran
| | - Fatemeh Hajibabaie
- Department of Biology, ShK.C., Islamic Azad University, Shahrekord, Iran
| | - Adam K Walker
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.; Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick 2031, NSW, Australia..
| |
Collapse
|
2
|
Song KW, Lim M, Monje M. Complex neural-immune interactions shape glioma immunotherapy. Immunity 2025; 58:1140-1160. [PMID: 40324379 DOI: 10.1016/j.immuni.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Rich neural-immune interactions in the central nervous system (CNS) shape its function and create a unique immunological microenvironment for immunotherapy in CNS malignancies. Far from the now-debunked concept of CNS "immune privilege," it is now understood that unique immunological niches and constant immune surveillance of the brain contribute in multifaceted ways to brain health and robustly influence immunotherapy approaches for CNS cancers. Challenges include immune-suppressive and neurotoxicity-promoting crosstalk between brain, immune, and tumor cells. Developing effective immunotherapies for cancers of the nervous system will require a deeper understanding of these neural-immune-malignant cell interactions. Here, we review progress and challenges in immunotherapy for gliomas of the brain and spinal cord in light of these unique neural-immune interactions and highlight future work needed to optimize promising immunotherapies for gliomas.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Geraghty AC, Acosta-Alvarez L, Rotiroti MC, Dutton S, O'Dea MR, Kim W, Trivedi V, Mancusi R, Shamardani K, Malacon K, Woo PJ, Martinez-Velez N, Pham T, Reche-Ley NN, Otubu G, Castenada EH, Nwangwu K, Xu H, Mulinyawe SB, Zamler DB, Ni L, Cross K, Rustenhoven J, Kipnis J, Liddelow SA, Mackall CL, Majzner RG, Monje M. Immunotherapy-related cognitive impairment after CAR T cell therapy in mice. Cell 2025:S0092-8674(25)00391-5. [PMID: 40359942 DOI: 10.1016/j.cell.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/06/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Immunotherapies have revolutionized cancer care for many tumor types, but their potential long-term cognitive impacts are incompletely understood. Here, we demonstrated in mouse models that chimeric antigen receptor (CAR) T cell therapy for both central nervous system (CNS) and non-CNS cancers impaired cognitive function and induced a persistent CNS immune response characterized by white matter microglial reactivity, microglial chemokine expression, and elevated cerebrospinal fluid (CSF) cytokines and chemokines. Consequently, oligodendroglial homeostasis and hippocampal neurogenesis were disrupted. Single-nucleus sequencing studies of human frontal lobe from patients with or without previous CAR T cell therapy for brainstem tumors confirmed reactive states of microglia and oligodendrocytes following treatment. In mice, transient microglial depletion or CCR3 chemokine receptor blockade rescued oligodendroglial deficits and cognitive performance in a behavioral test of attention and short-term memory function following CAR T cell therapy. Taken together, these findings illustrate targetable neural-immune mechanisms underlying immunotherapy-related cognitive impairment.
Collapse
Affiliation(s)
- Anna C Geraghty
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Lehi Acosta-Alvarez
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Maria C Rotiroti
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Selena Dutton
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wonju Kim
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Vrunda Trivedi
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karen Malacon
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Theresa Pham
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Noemi N Reche-Ley
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gabriel Otubu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Enrique H Castenada
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kamsi Nwangwu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Haojun Xu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Daniel B Zamler
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lijun Ni
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kevin Cross
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Justin Rustenhoven
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jonathan Kipnis
- Brain immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Haller OJ, Semendric I, Collins-Praino LE, Whittaker AL, George RP. Changes in cognition and astrocytic reactivity in a female rodent model of chemotherapy-induced cognitive impairment are variable both acutely and chronically. Behav Brain Res 2025; 480:115391. [PMID: 39667647 DOI: 10.1016/j.bbr.2024.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI) affects female cancer survivors, with impairment recognised in populations such as breast cancer survivors, where 1 in 3 are affected. Impairments include issues with memory, learning, concentration, and processing speed, negatively impacting quality of life. Several mechanisms are proposed to drive these, with evidence implicating neuroinflammation as a key contributor. However, the time course over which impairments occur is less well-established, with fewer longer-term time-points investigated. This study aimed to understand the evolution of cognitive changes following methotrexate (MTX) or 5- fluorouracil (5-FU) chemotherapy, assessing three time-points: acute (96-hour), sub-acute (31-days) and chronic (93-days). Further, we investigated whether alterations in cognition were associated with concomitant changes in astrocytic reactivity. Female Sprague Dawley rats received two intraperitoneal injections of MTX, 5-FU or saline and were assessed on the novel object recognition, 5-choice serial reaction time task and Barnes maze. Hippocampal and prefrontal cortex tissue was examined for GFAP expression. Both MTX and 5-FU exposure were associated with spatial memory, task acquisition, and processing speed impairments at 31-days, with impairment ameliorated by 93-days. While both MTX and 5-FU induced changes in GFAP expression across various time-points and regions, with most notable changes at 96-hours, 5-FU exhibited expression changes in the hippocampus consistently across all time-points. These results provide valuable insight into the complexity of a mediator of neuroinflammation in CICI. While neuroinflammation may be a promising therapeutic target, further markers should be assessed to elucidate the full neuroimmune response, and thus which aspects to target and when, to ensure optimal outcomes for cancer patients treated with chemotherapy.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, South Australia, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Rebecca P George
- School of Biomedicine, The University of Adelaide, South Australia, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| |
Collapse
|
5
|
Wang J, Zhang H, Augenreich M, Martinez-Lemus A L, Liu Z, Kang X, Lu B, Chang HM, Yeh ET, Cata J, Rangaraju S, Wulff H, Li DP. Microglia-Mediated Synaptic Dysfunction Contributes to Chemotherapy-Related Cognitive Impairment. J Neurochem 2025; 169:e70024. [PMID: 40019120 PMCID: PMC11927766 DOI: 10.1111/jnc.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Chemotherapy-related cognitive impairment (CRCI) significantly impacts cancer survivors. Due to unclear mechanisms, effective treatments for cognitive deficits are lacking. Here, we examined if microglia-mediated deficits in synaptic plasticity drive CRCI. Adult male mice were treated with the chemotherapeutic drugs 5-fluorouracil and leucovorin (5-Fu/LV, intraperitoneal injection, I.P.) on Days 1, 8, and 15 at a dosage of 50 mg/kg for 5-Fu and 90 mg/kg for LV for 3 weeks. Cognitive function was assessed using a novel object recognition (NOR) test 4 weeks after completion of 5-Fu/LV treatment. Compared with vehicle treatment, 5-Fu/LV treatment reduced the preference for exploring novel objects in the NOR test. Treatment with 5-Fu/LV increased the numbers of Iba1-positive microglial and CD68-positive/Iba1-positive microglia with shortened process lengths and diminished endpoints but decreased the number of phagocytotic (≤ 1 FITC-labeled beads) Iba1-positive microglia. Furthermore, 5-Fu/LV treatment reduced the long-term potentiation (LTP) recorded in the hippocampal CA1 region in response to a theta burst stimulation of the CA3-CA1 pathway and decreased the evoked N-methyl-D-aspartic acid receptor (NMDAR)-excitatory postsynaptic currents (NMDAR-EPSCs) in CA1 neurons. Cotreatment with the microglial inhibitor minocycline (33 mg/kg, daily for 3 weeks) restored cognitive deficits and microglial ramification, decreased the number of CD68-positive microglia, and reversed the reductions in LTP and the amplitude of NMDAR-EPSCs in 5-Fu/LV-treated mice. Our data suggest that microglial dysfunction and related synaptic dysfunction contribute to 5-Fu/LV-induced cognitive impairment.
Collapse
Affiliation(s)
- Jingxiong Wang
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Hua Zhang
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Marc Augenreich
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Luis Martinez-Lemus A
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Zhenguo Liu
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Xunlei Kang
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Bo Lu
- Department of Radiation Oncology, NextGen Precision Health, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | - Hui-Ming Chang
- Departments of Pharmacology and Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward T.H. Yeh
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Juan Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, Houston TX 77030 USA
| | - Srikant Rangaraju
- Department of Neurology, Yale University School of Medicine, New Heaven, CT 06510, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Ni T, Sun J, He Q, Dai Y, Wang X, Yu E, Shen G. Risk factors and prediction model for cancer-related cognitive impairment in thyroid cancer patients. Am J Cancer Res 2025; 15:153-167. [PMID: 39949943 PMCID: PMC11815387 DOI: 10.62347/aotu1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cognitive impairment is a common, yet often overlooked, complication in thyroid cancer patients, potentially influenced by various demographic, clinical, biochemical, and psychological factors. This study aims to analyze the prevalence and determinants of cancer-related cognitive impairment (CRCI) in thyroid cancer patients. METHODS A retrospective case-control study was conducted involving 246 thyroid cancer patients treated at our The First Affiliated Hospital of Soochow University from January 2021 to January 2023. Patients were categorized into high cognitive function (n = 125) and low cognitive function groups (n = 121) based on Mini Mental State Examination (MMSE) scores. Data were collected on demographic variables, Charlson Comorbidity Index (CCI), disease duration, clinical stage, blood test results, inflammatory factors (interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP)), psychological status (Self-Rating Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), Self-Esteem Scale (SES)), sleep quality (Pittsburgh Sleep Quality Index (PSQI)), and quality of life (36-item Short-Form Health Survey (SF-36)). Additionally, an external validation set was established, with patients being divided into a high cognitive level group (n = 135) and a low cognitive level group (n = 128), and the model's predictive performance was validated through the external dataset. RESULTS Factors significantly associated with lower cognitive function included age (P < 0.001), education level (P < 0.001), CCI scores (P < 0.001), disease duration (P < 0.001), clinical stage (P = 0.003), IL-6 (P < 0.001), IL-8 (P = 0.005), TNF-α (P < 0.001) and CRP (P < 0.001). SDS (P < 0.001), SAS (P < 0.001) and PSQI (P < 0.001) were also associated with reduced cognitive function. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model demonstrated strong predictive performance with an area under the curve (AUC) of 0.903 in the training set and an AUC of 0.835 in the validation set. CONCLUSION CRCI in thyroid cancer patients is multifactorial, with significant contributions from demographic, clinical, inflammatory, and psychological factors. The developed predictive model may serve as a valuable tool in clinical practice for identifying thyroid cancer patients at high risk of cognitive impairment.
Collapse
Affiliation(s)
- Ting Ni
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Jie Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Qin He
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Yuning Dai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Xiaobei Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Enqiao Yu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Guodong Shen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215031, Jiangsu, China
- Suzhou Xiangcheng People’s HospitalXiangcheng District, Suzhou 215134, Jiangsu, China
| |
Collapse
|
7
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
9
|
Lavoie Smith EM, Von Ah D. Neurotoxicity in Cancer Survivorship: The Significance of Cancer-Related Cognitive Impairment and Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151724. [PMID: 39183088 DOI: 10.1016/j.soncn.2024.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Ellen M Lavoie Smith
- Professor and Marie O'Koren Endowed Chair, Assistant Dean of Research and Scholarship, University of Alabama at Birmingham School of Nursing, Department of Acute, Chronic & Continuing Care, Birmingham, AL
| | - Diane Von Ah
- Mildred E. Newton Endowed Professor, Distinguished Professor of Cancer Research, The Ohio State University, College of Nursing, Columbus, OH.
| |
Collapse
|
10
|
Lastra Romero A, Seitz T, Zisiadis GA, Jeffery H, Osman AM. EDA2R reflects the acute brain response to cranial irradiation in liquid biopsies. Neuro Oncol 2024; 26:1617-1627. [PMID: 38683135 PMCID: PMC11376461 DOI: 10.1093/neuonc/noae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Cranial radiotherapy is standard of care for high-grade brain tumors and metastases; however, it induces debilitating neurocognitive impairments in cancer survivors, especially children. As the numbers of pediatric brain cancer survivors continue improving, the numbers of individuals developing life-long neurocognitive sequalae are consequently expected to rise. Yet, there are no established biomarkers estimating the degree of the irradiation-induced brain injury at completion of radiotherapy to predict the severity of the expected neurocognitive complications. We aimed to identify sensitive biomarkers associated with brain response to irradiation that can be measured in easily accessible clinical materials, such as liquid biopsies. METHODS Juvenile mice were subjected to cranial irradiation with 0.5, 1, 2, 4, and 8 Gy. Cerebrospinal fluid (CSF), plasma, and brains were collected at acute, subacute, and subchronic phases after irradiation, and processed for proteomic screens, and molecular and histological analyses. RESULTS We found that the levels of ectodysplasin A2 receptor (EDA2R), member of tumor necrosis factor receptor superfamily, increased significantly in the CSF after cranial irradiation, even at lower irradiation doses. The levels of EDA2R were increased globally in the brain acutely after irradiation and decreased over time. EDA2R was predominantly expressed by neurons, and the temporal dynamics of EDA2R in the brain was reflected in the plasma samples. CONCLUSIONS We propose EDA2R as a promising potential biomarker reflecting irradiation-induced brain injury in liquid biopsies. The levels of EDA2R upon completion of radiotherapy may aid in predicting the severity of IR-induced neurocognitive sequalae at a very early stage after treatment.
Collapse
Affiliation(s)
| | - Thea Seitz
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Holli Jeffery
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
12
|
Zhang W, Wu Q, Zhang X, Qin Y, Gao L, Hu S, Du S, Ren C. NLRP3 promotes radiation-induced brain injury by regulating microglial pyroptosis. Neuropathol Appl Neurobiol 2024; 50:e12992. [PMID: 38831600 DOI: 10.1111/nan.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Radiation Oncology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shushu Hu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Demos-Davies K, Lawrence J, Coffey J, Morgan A, Ferreira C, Hoeppner LH, Seelig D. Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice. Int J Mol Sci 2024; 25:5731. [PMID: 38891920 PMCID: PMC11171684 DOI: 10.3390/ijms25115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a consequence of chemotherapy and extracranial radiation therapy (ECRT). Our prior work demonstrated gliosis in the brain following ECRT in SKH1 mice. The signals that induce gliosis were unclear. Right hindlimb skin from SKH1 mice was treated with 20 Gy or 30 Gy to induce subclinical or clinical dermatitis, respectively. Mice were euthanized at 6 h, 24 h, 5 days, 12 days, and 25 days post irradiation, and the brain, thoracic spinal cord, and skin were collected. The brains were harvested for spatial proteomics, immunohistochemistry, Nanostring nCounter® glial profiling, and neuroinflammation gene panels. The thoracic spinal cords were evaluated by immunohistochemistry. Radiation injury to the skin was evaluated by histology. The genes associated with neurotransmission, glial cell activation, innate immune signaling, cell signal transduction, and cancer were differentially expressed in the brains from mice treated with ECRT compared to the controls. Dose-dependent increases in neuroinflammatory-associated and neurodegenerative-disease-associated proteins were measured in the brains from ECRT-treated mice. Histologic changes in the ECRT-treated mice included acute dermatitis within the irradiated skin of the hindlimb and astrocyte activation within the thoracic spinal cord. Collectively, these findings highlight indirect neuronal transmission and glial cell activation in the pathogenesis of ECRT-related CRCI, providing possible signaling pathways for mitigation strategies.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Jessica Coffey
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Amy Morgan
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Luke H. Hoeppner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
14
|
Geraghty AC, Acosta-Alvarez L, Rotiroti M, Dutton S, O’Dea MR, Woo PJ, Xu H, Shamardani K, Mancusi R, Ni L, Mulinyawe SB, Kim WJ, Liddelow SA, Majzner RG, Monje M. Immunotherapy-related cognitive impairment after CAR T cell therapy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594163. [PMID: 38798554 PMCID: PMC11118392 DOI: 10.1101/2024.05.14.594163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Persistent central nervous system (CNS) immune dysregulation and consequent dysfunction of multiple neural cell types is central to the neurobiological underpinnings of a cognitive impairment syndrome that can occur following traditional cancer therapies or certain infections. Immunotherapies have revolutionized cancer care for many tumor types, but the potential long-term cognitive sequelae are incompletely understood. Here, we demonstrate in mouse models that chimeric antigen receptor (CAR) T cell therapy for both CNS and non-CNS cancers can impair cognitive function and induce a persistent CNS immune response characterized by white matter microglial reactivity and elevated cerebrospinal fluid (CSF) cytokines and chemokines. Consequently, oligodendroglial homeostasis and hippocampal neurogenesis are disrupted. Microglial depletion rescues oligodendroglial deficits and cognitive performance in a behavioral test of attention and short-term memory function. Taken together, these findings illustrate similar mechanisms underlying immunotherapy-related cognitive impairment (IRCI) and cognitive impairment following traditional cancer therapies and other immune challenges.
Collapse
Affiliation(s)
- Anna C. Geraghty
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Lehi Acosta-Alvarez
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Maria Rotiroti
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA USA 94305
| | - Selena Dutton
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Michael R. O’Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY USA 10016
| | - Pamelyn J. Woo
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Haojun Xu
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Kiarash Shamardani
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Rebecca Mancusi
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Lijun Ni
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Sara B. Mulinyawe
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
| | - Won Ju Kim
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA USA 94305
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY USA 10016
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA 10016
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA 10016
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA 10016
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA USA 94305
- Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA USA 94305
| | - Michelle Monje
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA USA 94305
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA USA 94305
- Center for Cancer Cellular Therapy, Stanford School of Medicine, Stanford, CA USA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA USA 94305
| |
Collapse
|
15
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med 2024; 16:51. [PMID: 38566128 PMCID: PMC10988817 DOI: 10.1186/s13073-024-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut Voor Biotechnologie-KU Leuven, 3000, Louvain, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Arnaud Muller
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Reka Toth
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK): Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Cancer Consortium (DKTK) Partner Site Dresden, and German Cancer Research Center (DKFZ), Dresden, Heidelberg, 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Dieter H Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Petr V Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg.
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg.
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
16
|
Voshart DC, Klaver M, Jiang Y, van Weering HRJ, van Buuren-Broek F, van der Linden GP, Cinat D, Kiewiet HH, Malimban J, Vazquez-Matias DA, Reali Nazario L, Scholma AC, Sewdihal J, van Goethem MJ, van Luijk P, Coppes RP, Barazzuol L. Proton therapy induces a local microglial neuroimmune response. Radiother Oncol 2024; 193:110117. [PMID: 38453539 DOI: 10.1016/j.radonc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes. MATERIALS AND METHODS Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation. RESULTS Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes. CONCLUSION Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.
Collapse
Affiliation(s)
- Daniëlle C Voshart
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Myrthe Klaver
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Yuting Jiang
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences, Section of Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Fleur van Buuren-Broek
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Gideon P van der Linden
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Davide Cinat
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Harry H Kiewiet
- Department of Biomedical Sciences, PARTREC, University Medical Center Groningen, University of Groningen, Groningen 9747 AA, The Netherlands
| | - Justin Malimban
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Daniel A Vazquez-Matias
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Luiza Reali Nazario
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Ayla C Scholma
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Jeffrey Sewdihal
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, PARTREC, University Medical Center Groningen, University of Groningen, Groningen 9747 AA, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Rob P Coppes
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands; Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen 9700 AD, The Netherlands.
| |
Collapse
|
17
|
Chen MY, Zheng WY, Liu YF, Li XH, Lam MI, Su Z, Cheung T, Ungvari GS, Tang L, Ng CH, Zhang Q, Xiang YT. Global prevalence of poor sleep quality in cancer patients: A systematic review and meta-analysis. Gen Hosp Psychiatry 2024; 87:92-102. [PMID: 38382421 DOI: 10.1016/j.genhosppsych.2023.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Poor sleep quality is common in patients with cancer, but the prevalence rates varied widely across studies. This systematic review and meta-analysis examined the pooled prevalence of poor sleep quality among patients with cancer. METHODS Systematic literature searches were independently conducted in the major databases (Web of Science, PubMed, EMBASE and PsycINFO). Studies that reported the prevalence of poor sleep quality in patients with cancer were analyzed using a random effects model. Funnel plots and Egger's tests were used to assess publication bias. Statistical analyses were performed using R software. RESULTS A total of 59 epidemiological studies involving 16,223 patients were included. The pooled prevalence of poor sleep quality in patients with cancer was 57.4% [95% confidence interval (CI): 53.3% - 61.6%]. Additionally, three comparative studies with 372 patients and 412 healthy controls were included. Compared to healthy controls, patients with cancer had a significantly higher risk for poor sleep quality [odd ratio (OR) = 3.0; 95%CI: 1.2-7.2; P < 0.05]. Subgroup analyses of the studies revealed that studies from Middle East & North Africa region and low income countries, and on gynecological cancer as well as those with a lower cut-off value of sleep quality (all P < 0.01) reported a higher prevalence of poor sleep quality. Meta-regression analyses showed that higher prevalence of poor sleep quality was associated with higher prevalence of comorbid depression (P < 0.05) and anxiety (P < 0.01), but was associated with a lower education level (P < 0.05) and alcohol use ratio (P < 0.05). CONCLUSION Poor sleep quality is common among patients with cancer. Considering the overall high prevalence rate and negative impact of poor sleep quality, appropriate measures to identify and improve poor sleep quality are needed to enhance the clinical outcomes in this group.
Collapse
Affiliation(s)
- Meng-Yi Chen
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China
| | - Wan-Ying Zheng
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yu-Fei Liu
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xiao-Hong Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Mei Ieng Lam
- Kiang Wu Nursing College of Macau, Macau SAR, China
| | - Zhaohui Su
- School of Public Health, Southeast University, Nanjing, China
| | - Teris Cheung
- School of Nursing, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gabor S Ungvari
- Psychiatry Section, University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | - Lili Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chee H Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, Victoria, Australia.
| | - Qinge Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital; Advanced Innovation Center for Human rain Protection, Capital Medical University, Beijing, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
18
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
19
|
Ainslie AP, Klaver M, Voshart DC, Gerrits E, den Dunnen WFA, Eggen BJL, Bergink S, Barazzuol L. Glioblastoma and its treatment are associated with extensive accelerated brain aging. Aging Cell 2024; 23:e14066. [PMID: 38234228 PMCID: PMC10928584 DOI: 10.1111/acel.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.
Collapse
Affiliation(s)
- Anna P. Ainslie
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Myrthe Klaver
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Daniëlle C. Voshart
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- University College Groningen, University of GroningenGroningenThe Netherlands
| | - Lara Barazzuol
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Feng Y, Hu X, Zhang Y, Wang Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024; 15:169-185. [PMID: 37307835 PMCID: PMC10796095 DOI: 10.14336/ad.2023.0514] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/14/2023] [Indexed: 06/14/2023] Open
Abstract
Brain metastases and related complications are one of the major fatal factors in cancer. Patients with breast cancer, lung cancer, and melanoma are at a high risk of developing brain metastases. However, the mechanisms underlying the brain metastatic cascade remain poorly understood. Microglia, one of the major resident macrophages in the brain parenchyma, are involved in multiple processes associated with brain metastasis, including inflammation, angiogenesis, and immune modulation. They also closely interact with metastatic cancer cells, astrocytes, and other immune cells. Current therapeutic approaches against metastatic brain cancers, including small-molecule drugs, antibody-coupled drugs (ADCs), and immune-checkpoint inhibitors (ICIs), have compromised efficacy owing to the impermeability of the blood-brain barrier (BBB) and complex brain microenvironment. Targeting microglia is one of the strategies for treating metastatic brain cancer. In this review, we summarize the multifaceted roles of microglia in brain metastases and highlight them as potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Zhu H, Lin R, Wang J, Ruan S, Hu T, Lei Y, Ke X, Luo H. Cognitive function and its associated factors among patients with cancer pain: a multicentre cross-sectional study in China. BMJ Open 2024; 14:e071417. [PMID: 38171624 PMCID: PMC10773328 DOI: 10.1136/bmjopen-2022-071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE This research aimed to assess the levels of cognitive function and its contributing factors among individuals experiencing cancer pain (CP) in mainland China. DESIGN A descriptive, cross-sectional study. SETTING The investigation was undertaken within three tertiary oncology hospitals. PARTICIPANTS We included 220 hospitalised individuals who reported experiencing cancer-related pain and consented to complete the research questionnaires. OUTCOME MEASURES The collected data encompassed sociodemographic and clinical variables, augmented by results from validated questionnaires. Cognitive impairment (CI) was evaluated using the Functional Assessment of Cancer Therapy-Cognitive (FACT-Cog) scale, with scores ranging from 0 to 148. Sleep quality, depression and anxiety were assessed through the Pittsburgh Sleep Quality Index, the Patient Health Questionnaire-9 and the Generalised Anxiety Disorder-7, respectively. A binary logistic regression model was used to identify factors associated with CI in individuals with CP. RESULTS Of the 225 individuals approached, 220 (97.8%) participated in the study. The mean FACT-Cog score for those with CP was 101.29 (SD=25.24; range=25-148). The prevalence of CI among these individuals was 35.90%. Sleep quality was rated below medium in 45% of participants with CP. More than moderate pain was reported by 28.2%, with 64.6% experiencing depression and 38.6% experiencing anxiety. Increased odds of developing CI were observed in those with CP (OR 1.422, 95% CI 1.129 to 1.841), depression (OR 1.119, 95% CI 1.029 to 1.2117), anxiety (OR 1.107, 95% CI 1.005 to 1.220), advancing age (OR 1.042, 95% CI 1.013 to 1.073), poor sleep quality (OR 1.126, 95% CI 1.013 to 1.252) and a history of smoking (OR 3.811, 95% CI 1.668 to 8.707). CONCLUSIONS CI associated with CP is notably prevalent in China. Those older, with a smoking history, inadequate sleep, more severe pain, depression and anxiety, have a heightened risk of CI. Consequently, interventions need to be personalised, addressing these key determinants.
Collapse
Affiliation(s)
- Hongyu Zhu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Rongbo Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | | | - ShuFang Ruan
- Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Tingting Hu
- Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Yan Lei
- Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, China
| | - Xi Ke
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Huiyu Luo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
22
|
Simó M, Rodríguez-Fornells A, Navarro V, Navarro-Martín A, Nadal E, Bruna J. Mitigating radiation-induced cognitive toxicity in brain metastases: More questions than answers. Neurooncol Adv 2024; 6:vdae137. [PMID: 39247496 PMCID: PMC11379916 DOI: 10.1093/noajnl/vdae137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The emergence of advanced systemic therapies added to the use of cranial radiation techniques has significantly improved outcomes for cancer patients with multiple brain metastases (BM), leading to a considerable increase in long-term survivors. In this context, the rise of radiation-induced cognitive toxicity (RICT) has become increasingly relevant. In this critical narrative review, we address the controversies arising from clinical trials aimed at mitigating RICT. We thoroughly examine interventions such as memantine, hippocampal avoidance irradiation during BM treatment or in a prophylactic setting, and the assessment of cognitive safety in stereotactic radiosurgery (SRS). Our focus extends to recent neuroscience research findings, emphasizing the importance of preserving not only the hippocampal cortex but also other cortical regions involved in neural dynamic networks and their intricate role in encoding new memories. Despite treatment advancements, effectively managing patients with multiple BM and determining the optimal timing and integration of radiation and systemic treatments remain areas requiring further elucidation. Future trials are required to delineate optimal indications and ensure SRS safety. Additionally, the impact of new systemic therapies and the potential effects of delaying irradiation on cognitive functioning also need to be addressed. Inclusive trial designs, encompassing patients with multiple BM and accounting for diverse treatment scenarios, are essential for advancing effective strategies in managing RICT and the treatment of BM patients.
Collapse
Affiliation(s)
- Marta Simó
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Valentín Navarro
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Arturo Navarro-Martín
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ernest Nadal
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| |
Collapse
|
23
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
24
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531162. [PMID: 36945572 PMCID: PMC10028830 DOI: 10.1101/2023.03.05.531162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Background A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusions Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Tony Kaoma
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut voor Biotechnologie-KU Leuven, 3000 Leuven, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Arnaud Muller
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Reka Toth
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- German Cancer Consortium (DKTK), 01307 Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, 1210 Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, 1210 Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367 Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Petr V Nazarov
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| |
Collapse
|
25
|
Schroyen G, Sleurs C, Ottenbourgs T, Leenaerts N, Nevelsteen I, Melis M, Smeets A, Deprez S, Sunaert S. Changes in leukoencephalopathy and serum neurofilament after (neo)adjuvant chemotherapy for breast cancer. Transl Oncol 2023; 37:101769. [PMID: 37651891 PMCID: PMC10480307 DOI: 10.1016/j.tranon.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Previous case studies have provided evidence for chemotherapy-induced leukoencephalopathy in patients with breast cancer. However, prospective research is lacking. Hence, we investigated leukoencephalopathy before and after chemotherapy and its association with a serum neuroaxonal damage marker. METHODS This prospective cohort study included 40 patients receiving chemotherapy for breast cancer, and two age- and education-matched control groups, recruited between 2018 and 2021 (31-64 years of age). The latter control groups consisted of 39 chemotherapy-naïve patients and 40 healthy women. Fluid-attenuated inversion-recovery magnetic resonance imaging was used for lesion volumetry (total, juxtacortical, periventricular, infratentorial, and deep white matter) and blood serum to measure neurofilament light chain (NfL) levels. Acquisition took place pre-chemotherapy and three months and one-year post-chemotherapy, or at corresponding intervals. Within/between group differences were compared using robust mixed-effects modeling, and associations between total lesion volume and serum-NfL with linear regression. RESULTS Stronger increases in deep white matter lesion volumes were observed shortly post-chemotherapy, compared with healthy women (ßstandardized=0.09, pFDR<0.001). Increases in total lesion volume could mainly be attributed to enlargement of existing lesions (mean±SD, 0.12±0.16 mL), rather than development of new lesions (0.02±0.02 mL). A stronger increase in serum-NfL concentration was observed shortly post-chemotherapy compared with both control groups (ß>0.70, p<0.004), neither of which showed any changes over time, whereas a decrease was observed compared with healthy women one-year post-chemotherapy (ß=-0.54, p = 0.002). Serum-NfL concentrations were associated with lesion volume one-year post-chemotherapy (or at matched timepoint; ß=0.36, p = 0.010), whereas baseline or short-term post-therapy levels or changes were not. CONCLUSION These results underscore the possibility of chemotherapy-induced leukoencephalopathy months post-treatment, as well as the added value of serum-NfL as a prognostic marker for peripheral/central neurotoxicity. TRANSLATIONAL RELEVANCE Previous case studies have provided evidence of chemotherapy-induced leukoencephalopathy in patients with breast cancer. However, prospective studies to estimate longitudinal changes are currently missing. In this study, we used longitudinal fluid-attenuated inversion-recovery magnetic resonance imaging to assess white matter lesion volumes in patients treated for non-metastatic breast cancer and healthy women. Our findings demonstrate that chemotherapy-treated patients exhibit stronger increases in lesion volumes compared with healthy women, specifically in deep white matter, at three months post-chemotherapy. Increases could mainly be attributed to enlargement of existing lesions, rather than development of new lesions. Last, serum concentrations of neurofilament light chain, a neuroaxonal damage marker, increased shortly after chemotherapy and long-term post-chemotherapy levels were associated with lesion volumes. These findings highlight the potential of this non-invasive serum marker as a prognostic marker for peripheral and/or central neurotoxicity. Implementation in clinical practice could aid in therapeutic decisions, assessing disease activity, or monitoring treatment response.
Collapse
Affiliation(s)
- Gwen Schroyen
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium
| | - Charlotte Sleurs
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Tilburg University, Department of Cognitive Neuropsychology, Tilburg, the Netherlands; KU Leuven, Department of Oncology, Leuven, Belgium
| | - Tine Ottenbourgs
- KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium
| | - Nicolas Leenaerts
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; KU Leuven, Department of Neurosciences, Mind-Body Research, Leuven, Belgium; KU Leuven, University Psychiatric Center, Leuven, Belgium; University Hospitals Leuven, Department of Psychiatry, Leuven, Belgium
| | - Ines Nevelsteen
- University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; KU Leuven, Department of Oncology, Leuven, Belgium; University Hospitals Leuven, Department of Oncology, Surgical Oncology, Leuven, Belgium
| | - Michelle Melis
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium
| | - Ann Smeets
- University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; KU Leuven, Department of Oncology, Leuven, Belgium; University Hospitals Leuven, Department of Oncology, Surgical Oncology, Leuven, Belgium
| | - Sabine Deprez
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Leuven Brain Institute, Leuven, Belgium; KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium; University Hospitals Leuven, Department of Radiology, Leuven, Belgium
| |
Collapse
|
26
|
Raafat RS, Habib MZ, AbdElfattah AA, Olama NK, Abdelraouf SM, Hendawy N, Kamal KA, Nawishy SA, Aboul-Fotouh S. Amisulpride attenuates 5-fluorouracil-induced cognitive deficits via modulating hippocampal Wnt/GSK-3β/β-catenin signaling in Wistar rats. Int Immunopharmacol 2023; 124:110945. [PMID: 37716161 DOI: 10.1016/j.intimp.2023.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a general term describing cognitive dysfunction during/after treatment with chemotherapeutic agents. CICI represents a significant medical problem due to its increasing prevalence with the lack of robust therapeutic approaches. This study aimed at investigating the effects of chronic treatment with amisulpride (5 mg/kg/day) in the management of 5-fluorouracil (5-FU)-induced cognitive deficits in Wistar rats. Rats received 5 intraperitoneal injections of 5-FU (25 mg/kg every 3 days). 5-FU treatment induced impairments in spatial learning (reduction in object location discrimination ratio) and non-spatial learning (reduction in novel object recognition discrimination ratio). Moreover, 5-FU induced a decrease in the activity of the Wnt/GSK-3β/β-catenin pathway with a decrease in brain-derived neurotrophic factor (BDNF) level in the hippocampus. These changes were associated with an increase in the expression of the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in hippocampal tissue sections accompanied by a decrease in the number of Ki-67 positive cells (indicating a decrease in proliferative capacity), a decrease in the Nissl's granules optical density (denoting neurodegeneration), a decrease in the number of viable intact neurons with an increase in the expression of β-amyloid and caspase-3. Amisulpride enhanced Wnt/GSK-3β/β-catenin signaling, increased BDNF levels, and abrogated 5-FU-induced neuroinflammation, apoptosis, β-amyloid accumulation, and neurodegenerative changes with an improvement of cognitive performance. This study draws attention to the pro-cognitive effects of amisulpride in 5-FU-exposed rats that could be attributed to enhancing hippocampal Wnt/GSK-3β/β-catenin signaling pathway, and this could offer a promising therapeutic option for subjects with CICI.
Collapse
Affiliation(s)
- Radwa S Raafat
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, King Salman International University, El-Tor, South Sinai, Egypt.
| | - Amany A AbdElfattah
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt; Faculty of Medicine, King Salman International University, El-Tor, South Sinai, Egypt
| | - Nouran K Olama
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar M Abdelraouf
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nevien Hendawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| | - Khaled A Kamal
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Salwa A Nawishy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Haroon J, Aboody K, Flores L, McDonald M, Mahdavi K, Zielinski M, Jordan K, Rindner E, Surya J, Venkatraman V, Go-Stevens V, Ngai G, Lara J, Hyde C, Schafer S, Schafer M, Bystritsky A, Nardi I, Kuhn T, Ross D, Jordan S. Use of transcranial low-intensity focused ultrasound for targeted delivery of stem cell-derived exosomes to the brain. Sci Rep 2023; 13:17707. [PMID: 37853206 PMCID: PMC10584845 DOI: 10.1038/s41598-023-44785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
The blood-brain barrier (BBB) presents a significant challenge for targeted drug delivery. A proposed method to improve drug delivery across the BBB is focused ultrasound (fUS), which delivers ultrasound waves to a targeted location in the brain and is hypothesized to open the BBB. Furthermore, stem cell-derived exosomes have been suggested as a possible anti-inflammatory molecule that may have neural benefits, if able to pass the BBB. In the present study, transcranial low-intensity focused ultrasound (LIFU), without the use of intravenous microbubbles, was assessed for both (1) its ability to influence the BBB, as well as (2) its ability to increase the localization of intravenously administered small molecules to a specific region in the brain. In vivo rat studies were conducted with a rodent-customized 2 MHz LIFU probe (peak pressure = 1.5 MPa), and injection of labeled stem cell-derived exosomes. The results suggested that LIFU (without microbubbles) did not appear to open the BBB after exposure times of 20, 40, or 60 min; instead, there appeared to be an increase in transcytosis of the dextran tracer. Furthermore, the imaging results of the exosome study showed an increase in exosome localization in the right hippocampus following 60 min of targeted LIFU.
Collapse
Affiliation(s)
- J Haroon
- The Regenesis Project, Santa Monica, CA, USA.
| | - K Aboody
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - L Flores
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - M McDonald
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - K Mahdavi
- The Regenesis Project, Santa Monica, CA, USA
| | - M Zielinski
- The Regenesis Project, Santa Monica, CA, USA
| | - K Jordan
- The Regenesis Project, Santa Monica, CA, USA
| | - E Rindner
- The Regenesis Project, Santa Monica, CA, USA
| | - J Surya
- The Regenesis Project, Santa Monica, CA, USA
| | | | - V Go-Stevens
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - G Ngai
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - J Lara
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - C Hyde
- Department of Stem Cell Biology & Regenerative Medicine, and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - S Schafer
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, USA
| | - M Schafer
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, USA
| | - A Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - I Nardi
- Kimera Labs Inc., Miramar, USA
| | - T Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - D Ross
- Kimera Labs Inc., Miramar, USA
| | - S Jordan
- The Regenesis Project, Santa Monica, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
29
|
Clark IA, Vissel B. Autocrine positive feedback of tumor necrosis factor from activated microglia proposed to be of widespread relevance in chronic neurological disease. Pharmacol Res Perspect 2023; 11:e01136. [PMID: 37750203 PMCID: PMC10520644 DOI: 10.1002/prp2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical ResearchSt Vincent's HospitalDarlinghurstAustralia
- UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and HealthSchool of Clinical Medicine, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
30
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Correa DD, Vachha BA, Baser RE, Koch A, Wong P, Gohel S, Giralt S, Root JC. Neuroimaging and Neurocognitive Outcomes in Older Patients with Multiple Myeloma Treated with Chemotherapy and Autologous Stem Cell Transplantation. Cancers (Basel) 2023; 15:4484. [PMID: 37760454 PMCID: PMC10526394 DOI: 10.3390/cancers15184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
There is a paucity of research on treatment-related neurotoxicity in older adults with multiple myeloma (MM) treated with high-dose chemotherapy (HDC) and autologous SCT (HDC/ASCT), despite the increasing use of this regimen. We examined resting state functional connectivity (RSFC), gray matter (GM) volume, neurocognitive function (NF), and proinflammatory cytokines (PCy) in older patients with MM pre- and post-HDC/ASCT. Eighteen patients underwent MRI, NF tests, and serum PCy measurements prior to HDC/ASCT, and fifteen patients completed a follow up five-months post-HDC/ASCT. There were significant decreases in RSFC post-HDC/ASCT in (1) the central executive network (CEN) involving the left dorsolateral prefrontal cortex and right posterior parietal cortex (p = 0.022) and (2) the CEN involving the right posterior parietal cortex and the salience network involving the right dorsal anterior cingulate cortex (p = 0.029). There were no significant changes in GM or NF, except for improvements in attention (Digit Span Backward, p = 0.03). There were significant increases in several PCy post-HDC/ASCT (p ≤ 0.05). In conclusion, RSFC decreased in frontal, parietal, and cingulate cortices post-HDC/ASCT, NF was relatively stable, and several PCy increased. These findings are congruent with other studies in cancer patients and provide supporting evidence for the vulnerability of frontoparietal regions to chemotherapy's adverse effects.
Collapse
Affiliation(s)
- Denise D. Correa
- Department of Neurology, MSKCC—Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Behroze A. Vachha
- Department of Radiology, UMass Chan Medical School, Worcester, MA 01665, USA
| | - Raymond E. Baser
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrian Koch
- Department of Neurology, MSKCC—Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Phillip Wong
- Department of Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suril Gohel
- Department of Heath Informatics, Rutgers University School of Health Professions, Newark, NJ 08854, USA
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C. Root
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
32
|
Zhao J, Bang S, Furutani K, McGinnis A, Jiang C, Roberts A, Donnelly CR, He Q, James ML, Berger M, Ko MC, Wang H, Palmiter RD, Ji RR. PD-L1/PD-1 checkpoint pathway regulates hippocampal neuronal excitability and learning and memory behavior. Neuron 2023; 111:2709-2726.e9. [PMID: 37348508 PMCID: PMC10529885 DOI: 10.1016/j.neuron.2023.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexus Roberts
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael L James
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Miles Berger
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Saucier J, Comeau D, Robichaud GA, Chamard-Witkowski L. Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome. Front Neurol 2023; 14:1221266. [PMID: 37693763 PMCID: PMC10492094 DOI: 10.3389/fneur.2023.1221266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As the repercussions from the COVID-19 pandemic continue to unfold, an ever-expanding body of evidence suggests that infection also elicits pathophysiological manifestations within the central nervous system (CNS), known as neurological symptoms of post-acute sequelae of COVID infection (NeuroPASC). Although the neurological impairments and repercussions associated with NeuroPASC have been well described in the literature, its etiology remains to be fully characterized. Objectives This mini-review explores the current literature that elucidates various mechanisms underlining NeuroPASC, its players, and regulators, leading to persistent neuroinflammation of affected individuals. Specifically, we provide some insights into the various roles played by microglial and astroglial cell reactivity in NeuroPASC and how these cell subsets potentially contribute to neurological impairment in response to the direct or indirect mechanisms of CNS injury. Discussion A better understanding of the mechanisms and biomarkers associated with this maladaptive neuroimmune response will thus provide better diagnostic strategies for NeuroPASC and reveal new potential mechanisms for therapeutic intervention. Altogether, the elucidation of NeuroPASC pathogenesis will improve patient outcomes and mitigate the socioeconomic burden of this syndrome.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Comeau
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Vitality Health Network, Moncton, NB, Canada
| |
Collapse
|
34
|
Kim MM, Mehta MP, Smart DK, Steeg PS, Hong JA, Espey MG, Prasanna PG, Crandon L, Hodgdon C, Kozak N, Armstrong TS, Morikawa A, Willmarth N, Tanner K, Boire A, Gephart MH, Margolin KA, Hattangadi-Gluth J, Tawbi H, Trifiletti DM, Chung C, Basu-Roy U, Burns R, Oliva ICG, Aizer AA, Anders CK, Davis J, Ahluwalia MS, Chiang V, Li J, Kotecha R, Formenti SC, Ellingson BM, Gondi V, Sperduto PW, Barnholtz-Sloan JS, Rodon J, Lee EQ, Khasraw M, Yeboa DN, Brastianos PK, Galanis E, Coleman CN, Ahmed MM. National Cancer Institute Collaborative Workshop on Shaping the Landscape of Brain Metastases Research: challenges and recommended priorities. Lancet Oncol 2023; 24:e344-e354. [PMID: 37541280 PMCID: PMC10681121 DOI: 10.1016/s1470-2045(23)00297-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023]
Abstract
Brain metastases are an increasing global public health concern, even as survival rates improve for patients with metastatic disease. Both metastases and the sequelae of their treatment are key determinants of the inter-related priorities of patient survival, function, and quality of life, mandating a multidimensional approach to clinical care and research. At a virtual National Cancer Institute Workshop in September, 2022, key stakeholders convened to define research priorities to address the crucial areas of unmet need for patients with brain metastases to achieve meaningful advances in patient outcomes. This Policy Review outlines existing knowledge gaps, collaborative opportunities, and specific recommendations regarding consensus priorities and future directions in brain metastases research. Achieving major advances in research will require enhanced coordination between the ongoing efforts of individual organisations and consortia. Importantly, the continual and active engagement of patients and patient advocates will be necessary to ensure that the directionality of all efforts reflects what is most meaningful in the context of patient care.
Collapse
Affiliation(s)
- Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Michael G Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | | | | | | | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aki Morikawa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Kirk Tanner
- National Brain Tumor Society, Newton, MA, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jona Hattangadi-Gluth
- Department of Radiation Oncology, University of California San Diego Health, La Jolla, CA, USA
| | - Hussein Tawbi
- Department of Melanoma Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Caroline Chung
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Robyn Burns
- Melanoma Research Foundation, Washington, DC, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carey K Anders
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Manmeet S Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Veronica Chiang
- Department of Neurosurgery and Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, IL, USA
| | - Paul W Sperduto
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science Program, Center for Biomedical Informatics and Information Technology, Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Debra Nana Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priscilla K Brastianos
- Division of Hematology/Oncology and Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evanthia Galanis
- Department of Oncology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
35
|
Yao Z, Dong H, Zhu J, Du L, Luo Y, Liu Q, Liu S, Lin Y, Wang L, Wang S, Wei W, Zhang K, Huang Q, Yu X, Zhao W, Xu H, Qiu X, Pan Y, Huang X, Jim Yeung SC, Zhang D, Zhang H. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment. JCI Insight 2023; 8:e166306. [PMID: 37485875 PMCID: PMC10443805 DOI: 10.1172/jci.insight.166306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI) or "chemo brain" is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.
Collapse
Affiliation(s)
- Zhimeng Yao
- Department of Urology Surgery, and
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Liang Du
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qing Liu
- Department of Pathology, The First People‘s Hospital of Foshan, Foshan, Guangdong, China
| | - Shixin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shuhong Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Keke Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | - Xiaojun Yu
- National Key Disciplines, Department of Forensic and Pathology, and
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiyun Xu
- Shantou University Mental Health Center
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine and Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Khan IM, Khan SU, Sala HSS, Khan MU, Ud Din MA, Khan S, Hassan SSU, Khan NM, Liu Y. TME-targeted approaches of brain metastases and its clinical therapeutic evidence. Front Immunol 2023; 14:1131874. [PMID: 37228619 PMCID: PMC10204080 DOI: 10.3389/fimmu.2023.1131874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
The tumor microenvironment (TME), which includes both cellular and non-cellular elements, is now recognized as one of the major regulators of the development of primary tumors, the metastasis of which occurs to specific organs, and the response to therapy. Development of immunotherapy and targeted therapies have increased knowledge of cancer-related inflammation Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) limit immune cells from entering from the periphery, it has long been considered an immunological refuge. Thus, tumor cells that make their way "to the brain were believed to be protected from the body's normal mechanisms of monitoring and eliminating them. In this process, the microenvironment and tumor cells at different stages interact and depend on each other to form the basis of the evolution of tumor brain metastases. This paper focuses on the pathogenesis, microenvironmental changes, and new treatment methods of different types of brain metastases. Through the systematic review and summary from macro to micro, the occurrence and development rules and key driving factors of the disease are revealed, and the clinical precision medicine of brain metastases is comprehensively promoted. Recent research has shed light on the potential of TME-targeted and potential treatments for treating Brain metastases, and we'll use that knowledge to discuss the advantages and disadvantages of these approaches.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hari Siva Sai Sala
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | | | - Samiullah Khan
- Institute of Entomology, Guizhou University, Scientific Observing and Experimental Station of Crop Pests, Guiyang, Ministry of Agricultural and Affairs, Guiyang, China
| | - Syed Shams ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
37
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Correa DD, Vachha BA, Baser RE, Koch A, Wong P, Gohel S, Giralt S, Root JC. Neuroimaging and Neurocognitive Outcomes in Older Patients with Multiple Myeloma Treated with Chemotherapy and Autologous Stem Cell Transplantation. RESEARCH SQUARE 2023:rs.3.rs-2733807. [PMID: 37066224 PMCID: PMC10104268 DOI: 10.21203/rs.3.rs-2733807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Many patients with hematological malignancies treated with stem cell transplantation (SCT) experience cognitive dysfunction. However, few studies have investigated treatment-related neurotoxicity in older adults with multiple myeloma (MM) treated with high dose chemotherapy (HDC) and autologous SCT (HDC/ASCT). In this study, we examined gray matter (GM) volume, resting state functional connectivity (RSFC), neurocognitive function (NF), and proinflammatory cytokines (PCy) in older patients with MM pre- and post-HDC/ASCT. Methods Eighteen MM patients underwent magnetic resonance imaging, neurocognitive tests, and serum PCy measurement prior to HDC/ASCT, and fifteen patients completed follow ups an average of five months post-HDC/ASCT. Results There were significant decreases in RSFC from pre- to post-HDC/ASCT in (1) the central executive network (CEN) involving the left dorsolateral prefrontal cortex and right posterior parietal cortex (p = 0.022), and (2) the CEN involving the right posterior parietal cortex and the salience network involving the right dorsal anterior cingulate cortex (p = 0.029); these comparisons were no longer significant after multiple comparisons correction. There were no significant changes in GM volumes or NF, except for improvement in attention (Digit Span Backward, p = 0.03). There were significant increases in several PCy post-HDC/ASCT (p ≤ 0.05). Conclusions This pilot study showed decreased RSFC involving the left frontal, right posterior parietal and right anterior cingulate cortices in MM patients post-HDC/ASCT, relatively stable NF, and increases in PCy. These findings are congruent with studies in patients with hematological malignancies and other cancers and provide supporting evidence for the vulnerability of frontoparietal regions to chemotherapy adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Suril Gohel
- Rutgers University School of Health Professions
| | | | | |
Collapse
|
39
|
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Soliman AS, Senousy MA. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol Neurobiol 2023; 60:3770-3787. [PMID: 36943623 DOI: 10.1007/s12035-023-03299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Microglial activation underpins the methotrexate (MTX)-induced neurotoxicity; however, the precise mechanism remains unclear. This study appraised the potential impact of apigenin (Api), a neuroprotective flavonoid, in MTX-induced neurotoxicity in rats in terms of microglial activation through targeting the miR-15a/Rho-associated protein kinase-1 (ROCK-1)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Male Sprague Dawley rats were randomly divided into 4 groups: Normal control (saline i.p. daily and i.v. on days 8 and 15); Api control (20 mg/kg, p.o.) daily for 30 days; MTX-alone (75 mg/kg, i.v.) on days 8 and 15, then four i.p. injections of leucovorin (LCV): 6 mg/kg after 18 h, then three doses (3 mg/kg) every 8 h post-MTX; and Api co-treated (20 mg/kg/day, p.o.) throughout the model for 30 days, with administration of MTX and LCV as in group 3. MTX administration elevated hippocampal ionized calcium-binding adaptor protein-1 (Iba-1) immunostaining, indicating microglial activation. This was accompanied by neuroinflammation, oxidative stress, and enhanced apoptosis manifested by elevated hippocampal interleukin-1β, malondialdehyde, and caspase-3, and decreased reduced glutathione levels. Concurrently, abated miR-15a expression, overexpression of its target ROCK-1, diminished downstream ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation, and decreased hippocampal brain-derived neurotrophic factor (BDNF) levels were observed. Api mitigated the MTX-induced neurotoxicity by reversing the biochemical, histopathological, and behavioral derangements tested by novel object recognition and Morris water maze tests. Conclusively, Api lessens MTX-induced neuroinflammation, oxidative stress, and apoptosis and boosts cognitive function through inhibiting microglial activation via modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Graphical abstract showing the effects of methotrexate and apigenin co-treatment in MTX-induced neurotoxicity model. On the left, methotrexate (MTX) administration to rats resulted in hippocampal miR-15a downregulation, which triggered an enhanced expression of its target ROCK-1, consequently inhibiting the downstream ERK1/2/CREB/BDNF pathway, instigating a state of microglial activation, neuroinflammation, oxidative stress, and apoptosis. On the other hand, apigenin (Api) co-treatment restored miR-15a, inhibited ROCK-1 expression, and activated the ERK1/2/CREB/BDNF pathway, leading to diminished hippocampal microglial activation, neuroinflammation, and apoptosis, and restoration of the redox balance, along with improvement in memory and cognitive function of the MTX-treated rats.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt.
| | - Omar Mohsen Eldemerdash
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Ismail Mohamed Elshaffei
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Einas Mohamed Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ayman S Soliman
- Medical Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud Ahmed Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
40
|
Grant CV, Sullivan KA, Wentworth KM, Otto LD, Strehle LD, Otero JJ, Pyter LM. Microglia are implicated in the development of paclitaxel chemotherapy-associated cognitive impairment in female mice. Brain Behav Immun 2023; 108:221-232. [PMID: 36494047 PMCID: PMC9899068 DOI: 10.1016/j.bbi.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy remains a mainstay in the treatment of many types of cancer even though it is associated with debilitating behavioral side effects referred to as "chemobrain," including difficulty concentrating and memory impairment. The predominant hypothesis in the field is that systemic inflammation drives these cognitive impairments, although the brain mechanisms by which this occurs remain poorly understood. Here, we hypothesized that microglia are activated by chemotherapy and drive chemotherapy-associated cognitive impairments. To test this hypothesis, we treated female C57BL/6 mice with a clinically-relevant regimen of a common chemotherapeutic, paclitaxel (6 i.p. doses at 30 mg/kg), which impairs memory of an aversive stimulus as assessed via a contextual fear conditioning (CFC) paradigm. Paclitaxel increased the percent area of IBA1 staining in the dentate gyrus of the hippocampus. Moreover, using a machine learning random forest classifier we identified immunohistochemical features of reactive microglia in multiple hippocampal subregions that were distinct between vehicle- and paclitaxel-treated mice. Paclitaxel treatment also increased gene expression of inflammatory cytokines in a microglia-enriched population of cells from mice. Lastly, a selective inhibitor of colony stimulating factor 1 receptor, PLX5622, was employed to deplete microglia and then assess CFC performance following paclitaxel treatment. PLX5622 significantly reduced hippocampal gene expression of paclitaxel-induced proinflammatory cytokines and restored memory, suggesting that microglia play a critical role in the development of chemotherapy-associated neuroinflammation and cognitive impairments. This work provides critical evidence that microglia drive paclitaxel-associated cognitive impairments, a key mechanistic detail for determining preventative and intervention strategies for these burdensome side effects.
Collapse
Affiliation(s)
- Corena V Grant
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kyle A Sullivan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kylie M Wentworth
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lauren D Otto
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lindsay D Strehle
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jose J Otero
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Departments of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
de Paula JJ, Paiva RERP, Souza-Silva NG, Rosa DV, Duran FLDS, Coimbra RS, Costa DDS, Dutenhefner PR, Oliveira HSD, Camargos ST, Vasconcelos HMM, de Oliveira Carvalho N, da Silva JB, Silveira MB, Malamut C, Oliveira DM, Molinari LC, de Oliveira DB, Januário JN, Silva LC, De Marco LA, Queiroz DMDM, Meira W, Busatto G, Miranda DM, Romano-Silva MA. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Mol Psychiatry 2023; 28:553-563. [PMID: 35701598 PMCID: PMC9196149 DOI: 10.1038/s41380-022-01632-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Abstract
People recovered from COVID-19 may still present complications including respiratory and neurological sequelae. In other viral infections, cognitive impairment occurs due to brain damage or dysfunction caused by vascular lesions and inflammatory processes. Persistent cognitive impairment compromises daily activities and psychosocial adaptation. Some level of neurological and psychiatric consequences were expected and described in severe cases of COVID-19. However, it is debatable whether neuropsychiatric complications are related to COVID-19 or to unfoldings from a severe infection. Nevertheless, the majority of cases recorded worldwide were mild to moderate self-limited illness in non-hospitalized people. Thus, it is important to understand what are the implications of mild COVID-19, which is the largest and understudied pool of COVID-19 cases. We aimed to investigate adults at least four months after recovering from mild COVID-19, which were assessed by neuropsychological, ocular and neurological tests, immune markers assay, and by structural MRI and 18FDG-PET neuroimaging to shed light on putative brain changes and clinical correlations. In approximately one-quarter of mild-COVID-19 individuals, we detected a specific visuoconstructive deficit, which was associated with changes in molecular and structural brain imaging, and correlated with upregulation of peripheral immune markers. Our findings provide evidence of neuroinflammatory burden causing cognitive deficit, in an already large and growing fraction of the world population. While living with a multitude of mild COVID-19 cases, action is required for a more comprehensive assessment and follow-up of the cognitive impairment, allowing to better understand symptom persistence and the necessity of rehabilitation of the affected individuals.
Collapse
Affiliation(s)
- Jonas Jardim de Paula
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Rachel E R P Paiva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Nathália Gualberto Souza-Silva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Daniela Valadão Rosa
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | | | - Roney Santos Coimbra
- Neurogenômica / Imunopatologia. Instituto René Rachou, Fiocruz, Belo Horizonte-MG, Brazil
| | - Danielle de Souza Costa
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Pedro Robles Dutenhefner
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Computação Científica, ICEX, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Henrique Soares Dutra Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Sarah Teixeira Camargos
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Herika Martins Mendes Vasconcelos
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Nara de Oliveira Carvalho
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | | | - Carlos Malamut
- UPPR, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte-MG, Brazil
| | - Derick Matheus Oliveira
- Departamento de Computação Científica, ICEX, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Luiz Carlos Molinari
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Danilo Bretas de Oliveira
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - José Nélio Januário
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | - Luiz Armando De Marco
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Cirurgia, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | - Wagner Meira
- Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo-SP, Brazil
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Geraldo Busatto
- Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo-SP, Brazil
| | - Débora Marques Miranda
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
- Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Marco Aurélio Romano-Silva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil.
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil.
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil.
| |
Collapse
|
42
|
Demos-Davies K, Lawrence J, Rogich A, Lind E, Seelig D. Cancer treatment induces neuroinflammation and behavioral deficits in mice. Front Behav Neurosci 2023; 16:1067298. [PMID: 36699654 PMCID: PMC9868853 DOI: 10.3389/fnbeh.2022.1067298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Cancer survivors are increasingly diagnosed with a syndrome of neurocognitive dysfunction termed cancer-related cognitive impairment (CRCI). Chemotherapy and radiation therapy have been implicated in CRCI; however, its underlying pathogenesis remains unclear, hindering effective prevention or treatment. Methods: We used the hairless strain SKH1 (11-12-week-old) and treated the mice with radiation to the right hindlimb, doxorubicin (a chemotherapy agent), concurrent radiation, and doxorubicin, or no treatment (control). Neurocognition was evaluated via standardized behavioral testing following treatment. Mice were subsequently humanely euthanized, and plasma and brains were collected to identify inflammatory changes. Results: Mice treated with radiation, doxorubicin, or both radiation and doxorubicin demonstrated equivalent hippocampal dependent memory deficits and significant increases in activated microglia and astrocytes compared to control mice. Doxorubicin-treated mice had significantly increased plasma IL-6 and failed to gain weight compared to control mice over the study period. Discussion: This study demonstrates that non-brain directed radiation induces both gliosis and neurocognitive deficits. Moreover, this work presents the first characterization of SKH1 mice as a relevant and facile animal model of CRCI. This study provides a platform from which to build further studies to identify potential key targets that contribute to CRCI such that strategies can be developed to mitigate unintended neuropathologic consequences associated with anticancer treatment.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Allison Rogich
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Erin Lind
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Taylor MR, Steineck A, Lahijani S, Hall AG, Jim HSL, Phelan R, Knight JM. Biobehavioral Implications of Chimeric Antigen Receptor T-cell Therapy: Current State and Future Directions. Transplant Cell Ther 2023; 29:19-26. [PMID: 36208728 DOI: 10.1016/j.jtct.2022.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable clinical responses in hematologic malignancies. Recent advances in CAR T-cell therapy have expanded its application into other populations including older patients and those with central nervous system and solid tumors. Although its clinical efficacy has been excellent for some malignancies, CAR T-cell therapy is associated with severe and even life-threatening immune-mediated toxicities, including cytokine release syndrome and neurotoxicity. There is a strong body of scientific evidence highlighting the connection between immune activation and neurocognitive and psychological phenomena. To date, there has been limited investigation into this relationship in the context of immunotherapy. In this review, we present a biobehavioral framework to inform current and future cellular therapy research and contribute to improving the multidimensional outcomes of patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Mallory R Taylor
- Division of Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, Washington; Palliative Care and Resilience Program, Seattle Children's Research Institute, Seattle, Washington
| | - Angela Steineck
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Sheila Lahijani
- Division of Medical Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Anurekha G Hall
- Division of Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida
| | - Rachel Phelan
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
44
|
Vega JN, Newhouse PA, Conley AC, Szymkowicz SM, Gong X, Cote S, Mayer I, Taylor WD, Morimoto SS. Use of focused computerized cognitive training (Neuroflex) to improve symptoms in women with persistent chemotherapy-related cognitive impairment. Digit Health 2023; 9:20552076231192754. [PMID: 37588161 PMCID: PMC10426301 DOI: 10.1177/20552076231192754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Purpose Chemotherapy-related cognitive impairment (CRCI) is a distressing and increasingly recognized long-term sequela reported by breast cancer patients following cancer treatment. There is an urgent but unmet clinical need for treatments that improve CRCI. In this context, we proposed the use of a novel cognitive enhancement strategy called Neuroflex to target CRCI experienced by breast cancer survivors. Methods The primary aim of this pilot study was to evaluate the feasibility and acceptability of Neuroflex, a novel digital cognitive enhancement strategy, in breast and gynecologic cancer survivors with CRCI. Secondary analyses focused on whether improvements in performance on Neuroflex were associated with improvement in subjective cognitive complaints and objective cognitive performance measures. Results Participants (N = 21) completed an average of 7.42 hours of Neuroflex training per week, an average of 44.5 (±1.01) hours total, and had a 100% completion rate. Participants exhibited significant improvement in self-reported cognitive function as well as significant improvement on tasks of verbal learning and memory and auditory working memory. Participants also exhibited improvement in mood, as well as improvement on a disability assessment. Conclusions Results demonstrate feasibility and that breast cancer survivors are capable of completing a lengthy and challenging cognitive training program. Secondly, Neuroflex may confer specific cognitive benefits to both self-reported and objective performance. Results strongly support further investigation of Neuroflex in a larger controlled trial to establish efficacy for CRCI symptoms. Further studies may also result in optimization of this digital intervention for women with CRCI.
Collapse
Affiliation(s)
- Jennifer N. Vega
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul A. Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Alexander C. Conley
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xuewen Gong
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Cote
- Department of Population Health Sciences, Division of Health Systems Innovation and Research, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ingrid Mayer
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt–Ingram Cancer Center, Nashville, TN, USA
| | - Warren D. Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Sarah Shizuko Morimoto
- Department of Population Health Sciences, Division of Health Systems Innovation and Research, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Sleurs C, Amidi A, Wu LM, Kiesl D, Zimmer P, Lange M, Rogiers A, Giffard B, Binarelli G, Borghgraef C, Deprez S, Duivon M, De Ruiter M, Schagen S, Ahmed-Lecheheb D, Castel H, Buskbjerg CR, Dos Santos M, Joly F, Perrier J. Cancer-related cognitive impairment in non-CNS cancer patients: Targeted review and future action plans in Europe. Crit Rev Oncol Hematol 2022; 180:103859. [DOI: 10.1016/j.critrevonc.2022.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
46
|
Abstract
Within the past decade, multiple lines of evidence have converged to identify a critical role for activity-regulated myelination in tuning the function of neural networks. In this Review, we provide an overview of accumulating evidence that activity-regulated myelination is required for brain adaptation and learning across multiple domains. We then discuss dysregulation of activity-dependent myelination in the context of neurological disease, a novel frontier with the potential to uncover new mechanisms of disease pathogenesis and to develop new therapeutic strategies. Alterations in myelination and neural network function can result from deficient myelin plasticity that impairs neurological function or from maladaptive myelination, in which intact activity-dependent myelination contributes to the disease process by promoting pathological patterns of neuronal activity. These emerging mechanisms suggest new avenues for therapeutic intervention that could more fully address the complex interactions between neurons and oligodendroglia.
Collapse
|
47
|
Basilico B, Ferrucci L, Khan A, Di Angelantonio S, Ragozzino D, Reverte I. What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Front Cell Neurosci 2022; 16:1022431. [PMID: 36406752 PMCID: PMC9673171 DOI: 10.3389/fncel.2022.1022431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are dynamic cells, constantly surveying their surroundings and interacting with neurons and synapses. Indeed, a wealth of knowledge has revealed a critical role of microglia in modulating synaptic transmission and plasticity in the developing brain. In the past decade, novel pharmacological and genetic strategies have allowed the acute removal of microglia, opening the possibility to explore and understand the role of microglia also in the adult brain. In this review, we summarized and discussed the contribution of microglia depletion strategies to the current understanding of the role of microglia on synaptic function, learning and memory, and behavior both in physiological and pathological conditions. We first described the available microglia depletion methods highlighting their main strengths and weaknesses. We then reviewed the impact of microglia depletion on structural and functional synaptic plasticity. Next, we focused our analysis on the effects of microglia depletion on behavior, including general locomotor activity, sensory perception, motor function, sociability, learning and memory both in healthy animals and animal models of disease. Finally, we integrated the findings from the reviewed studies and discussed the emerging roles of microglia on the maintenance of synaptic function, learning, memory strength and forgetfulness, and the implications of microglia depletion in models of brain disease.
Collapse
Affiliation(s)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Azka Khan
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Davide Ragozzino
- Laboratory Affiliated to Institute Pasteur Italia – Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- *Correspondence: Davide Ragozzino,
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Ingrid Reverte,
| |
Collapse
|
48
|
Jyonouchi H, Geng L, Rossignol DA, Frye RE. Long COVID Syndrome Presenting as Neuropsychiatric Exacerbations in Autism Spectrum Disorder: Insights for Treatment. J Pers Med 2022; 12:jpm12111815. [PMID: 36579544 PMCID: PMC9695881 DOI: 10.3390/jpm12111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
COVID-19 causes not only severe respiratory symptoms, but also long-term sequelae, even if the acute-phase symptoms are minor. Neurological and neuropsychiatric symptoms are emerging as major long-term sequalae. In patients with pre-existing behavioral symptoms, such as individuals with autism spectrum disorders (ASD), the emergence of neuropsychiatric symptoms due to long COVID can be difficult to diagnose and manage. Herein, we present three ASD cases who presented with markedly worsening neuropsychiatric symptoms following COVID-19 exposure and subsequent difficulty in managing the post-COVID neuropsychiatric symptoms. Case 1 contracted SARS-CoV-2 during the early stages of the pandemic and treatment targeting COVID-19-induced immune activation was delayed. Case 2 was asymptomatic in the acute stage of a confirmed COVID-19 exposure, but still developed significant neuropsychiatric symptoms. Case 3 demonstrated a difficult course, partly due to pre-existing immune dysregulation and prior use of multiple immunomodulating agents. In cases 1 and 3 for whom serial blood samples were obtained, notable changes in the production of inflammatory and counter-regulatory cytokines by peripheral blood monocytes were observed. The presented cases illustrate the profound effects of COVID-19 on neuropsychiatric symptoms in ASD subjects and the difficulty of managing long-COVID symptoms.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Saint Peter’s University Hospital (SPUH), New Brunswick, NJ 08901, USA
- Correspondence:
| | - Lee Geng
- Saint Peter’s University Hospital (SPUH), New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
49
|
Abstract
Persistent neurological and neuropsychiatric symptoms affect a substantial fraction of people after COVID-19 and represent a major component of the post-acute COVID-19 syndrome, also known as long COVID. Here, we review what is understood about the pathobiology of post-acute COVID-19 impact on the CNS and discuss possible neurobiological underpinnings of the cognitive symptoms affecting COVID-19 survivors. We propose the chief mechanisms that may contribute to this emerging neurological health crisis.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, USA.
| |
Collapse
|
50
|
McGovern KA, Durham WJ, Wright TJ, Dillon EL, Randolph KM, Danesi CP, Urban RJ, Sheffield-Moore M. Impact of Adjunct Testosterone on Cancer-Related Fatigue: An Ancillary Analysis from a Controlled Randomized Trial. Curr Oncol 2022; 29:8340-8356. [PMID: 36354718 PMCID: PMC9689748 DOI: 10.3390/curroncol29110658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Many cancer patients undergoing treatment experience cancer-related fatigue (CRF). Inflammatory markers are correlated with CRF but are not routinely targeted for treatment. We previously demonstrated in an NIH-funded placebo-controlled, double-blind, randomized clinical trial (NCT00878995, closed to follow-up) that seven weekly injections of 100 mg adjunct testosterone preserved lean body mass in cancer patients undergoing standard-of-care treatment in a hospital setting. Because testosterone therapy can reduce circulating proinflammatory cytokines, we conducted an ancillary analysis to determine if this testosterone treatment reduced inflammatory burden and improved CRF symptoms and health-related quality of life. Randomization was computer-generated and managed by the pharmacy, which dispensed testosterone and placebo in opaque syringes to the administering study personnel. A total of 24 patients were randomized (14 placebo, 10 testosterone), and 21 were included in the primary analysis (11 placebo, 10 testosterone). Testosterone therapy did not ameliorate CRF symptoms (placebo to testosterone difference in predicted mean multidimensional fatigue symptom inventory scores: -5.6, 95% CI: -24.6 to 13.3), improve inflammatory markers, or preserve health-related quality of life and functional measures of performance in late-stage cancer patients.
Collapse
Affiliation(s)
- Kristen A. McGovern
- Department of Internal Medicine, The University of Texas Medical Branch (UTMB), 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|