1
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 PMCID: PMC12124708 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji’nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
2
|
Yang Q, Liang Y, Wang R, Zhang T, Chai R, Yan Y, Tie Y, Wang Y, Sun X, Cai Y, Zhao X. The transcription factor BMAL1 inhibits endothelial cell apoptosis by targeting STAT6 to repress its expression. Cell Signal 2025; 132:111812. [PMID: 40246133 DOI: 10.1016/j.cellsig.2025.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Corneal transparency is critical for optimal visual function, and corneal neovascularization represents the primary cause of visual impairment globally. Recent studies have identified the transcription factor BMAL1 as a significant regulator of angiogenesis. However, its specific role and underlying mechanisms in endothelial cell apoptosis remain inadequately understood. This study seeks to elucidate the role and underlying mechanisms of BMAL1 in endothelial cell apoptosis by employing genetic modification, alkali-burned mouse corneal neovascularization models, lentiviral transfection, proteomic analysis, and other complementary methodologies. Our results showed that BMAL1 expression is significantly elevated in corneal neovascularization induced by alkali burn and removal of Bmal1 in endothelial cells resulted in the suppression of corneal neovascularization in alkali burn mouse models. In vivo experiments have demonstrated that the knockout of Bmal1 in endothelial cells leads to an increase in endothelial cell apoptosis. Complementary in vitro studies revealed that overexpression of BMAL1 in endothelial cells inhibits apoptosis, while knockdown of BMAL1 promotes apoptosis. Proteomic analysis identified STAT6 as a downstream target of BMAL1 involved in the regulation of endothelial cell apoptosis. Further cell salvage experiments confirmed that BMAL1 modulates endothelial cell apoptosis through the regulation of STAT6 expression. Finally, the results of dual-luciferase reporter assay demonstrated that BMAL1 exerts transcriptional repressive effects on the promoter bound by STAT6. This study elucidates the novel role and mechanism of BMAL1 in the regulation of angiogenesis and endothelial cell apoptosis, thereby identifying a potential therapeutic target for the treatment of vascular diseases such as corneal neovascularization.
Collapse
Affiliation(s)
- Qi Yang
- Department of Ophthalmology, General Hospital of Xinjiang Military Command, Urumqi 830000, China; Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Graduate School, Xinjiang Medical University, Urumqi 830054, China
| | - Ya'nan Liang
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Wang
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tongmei Zhang
- Key Laboratory of Ministry of Education, Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruiqing Chai
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Northwest University School of Medicine, Xi'an 710069, China
| | - Yiquan Yan
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Internal Medicine, Hospital of Unit 96608, PLA, Hanzhong 723000, China
| | - Yateng Tie
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongchun Wang
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiqing Sun
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Cai
- Department of Ophthalmology, General Hospital of Xinjiang Military Command, Urumqi 830000, China.
| | - Xingcheng Zhao
- Key Laboratory of Ministry of Education, Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
He H, Huang C, Huang H, Lan N, Liu S, Luo Y, Zheng L, Liu G, Qin Z, Zhao J. Zn 2+-driven metformin conjugated with siRNA attenuates osteoarthritis progression by inhibiting NF-κB signaling and activating autophagy. Biomaterials 2025; 319:123210. [PMID: 40037209 DOI: 10.1016/j.biomaterials.2025.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Osteoarthritis (OA) is a type of joint disease that influences millions of individuals. Regrettably, effective treatment for OA is currently unavailable. The challenge lies in the deep location of chondrocytes within the dense cartilage matrix that hinders the delivery and efficiency of clinical OA drugs. To overcome this obstacle, the present study proposed a hybrid nanodrug by Zinc(II) metal-drug coordination-driven self-assembly as highly efficient delivery system. This nano-assembly formulations possessed the ability to deliver two types of drugs, namely metformin (Met) and therapeutic genes (p65 siRNA). Results showed that this nano-assembly not only exhibited positive charge-driven anchoring to the cartilage matrix and effective drug delivery capacity, but also synergistically inhibited NF-κB activity and activates autophagy of OA chondrocytes, thus safeguarding the cartilage. The successful achievement of this project not only contribute to the advancement of research on bio-nanomaterials for treating OA, but also establish a robust theoretical foundation for realizing promising and functional integration of nanomedicine targeting OA.
Collapse
Affiliation(s)
- Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Chanting Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Siyi Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Yan Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Gang Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
4
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Chao P, Zhang X, Zhang L, Han Z, Jie R, Duan P, Cao M, Yang A. Electroacupuncture as a promising therapeutic strategy for doxorubicin-induced heart failure: Insights into the PI3K/AKT/mTOR/ULK1 and AMPK /mTOR /ULK1 pathways. Colloids Surf B Biointerfaces 2025; 251:114590. [PMID: 40024111 DOI: 10.1016/j.colsurfb.2025.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Electroacupuncture (EA), a traditional Chinese medicine therapy, exhibits cardioprotective and therapeutic effects against cardiac injury. However, the precise mechanisms underlying these benefits remain unclear. PURPOSE The aim of this study is to examine the impact of EA on Doxorubicin-Induced heart failure and elucidate the mechanisms involved. METHODS C57BL/6 mice were randomly assigned to six experimental groups, including a control group, a DCM group, a DCM group receiving non-acupoint EA (NEA), and a DCM group receiving acupoint EA (EA). The cardiac function, levels of inflammatory factors, and markers of apoptosis were assessed both in vivo and in vitro. The presence of AMPK/mTOR/ULK1(Ser317) and PI3K/AKT/mTOR/ULK1(Ser757) was confirmed. RESULTS EA stimulation significantly improved cardiac function, as evidenced by increased left ventricular ejection fraction (LVEF), E/A ratio, and fractional shortening (FS%) compared to the DCM group (p < 0.05). After EA stimulation, the phosphorylation levels of PI3K/AKT increase, leading to elevated expression of mTOR/ULK1(Ser757), which ultimately inhibited the expression of apoptosis-related proteins and inflammatory factors. Simultaneously, EA stimulation could inhibit the phosphorylation levels of AMPK, reducing the expression of mTOR/ULK1(Ser317), and thereby also inhibiting the expression of apoptosis-related proteins and inflammatory factors. CONCLUSIONS This study showed that EA stimulation can counteract myocardial damage caused by apoptosis and inflammation, thereby significantly improving cardiac function and prognosis in HF mice. The mechanism may be that EA stimulation activates the PI3K/AKT/mTOR/ULK1(ser757) pathway and inhibits the AMPK/ULK1(ser317) pathway. EA stimulation exerts the same effect by regulating these two pathways in different directions, ultimately reducing myocardial cell apoptosis and cardiac inflammation.
Collapse
Affiliation(s)
- Peng Chao
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xueqin Zhang
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhengyang Han
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Runda Jie
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Pingxiu Duan
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Min Cao
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Aiping Yang
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
6
|
Zhang J, Wang X, Guo L, Xiao S, Meng D, Shang M, Sun X, Shi D, Zhao Y, Liu R, Huang S, Zeng X, Li J. Dual-responsive nanoscale ultrasound contrast agent as an oxidative stress amplifier for enhanced DNA damage in BRCA-proficient ovarian cancer. Mater Today Bio 2025; 32:101761. [PMID: 40270892 PMCID: PMC12017913 DOI: 10.1016/j.mtbio.2025.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
PARP inhibitor (PARPi)-based synthetic lethal therapies have displayed limited benefits in BRCA-proficient ovarian cancer. To potentiate the application of PARPi, an ultrasound contrast agent OLA-NDs for delivery of the PARPi olaparib (OLA) was established for enhancing DNA damage by blocking DNA repair. OLA-NDs were endowed with endogenous pH- and exogenous ultrasound (US)-responsiveness to target tumors, as well as contrast-enhanced US imaging for diagnostic and therapeutic integration. OLA-NDs could upregulate NOX4 to induce oxidative stress and sensitize BRCA wild-type A2780 cells to DNA oxidative damage through the utilization of ultrasound-targeted microbubble destruction (UTMD). In addition, the strategy further increased ROS production by interfering with mitochondrial function, thereby exacerbating DNA double-strand breaks (DSBs) and inducing mitochondria-mediated apoptosis. As a consequence, the combined application of UTMD and OLA-NDs demonstrated significant antitumor effects in vitro and in vivo. This combined strategy of amplifying oxidative damage improved lethality by promoting DNA DSBs and apoptosis with reduced adverse side effects, which would provide new insight for the clinical application of PARPi in BRCA-proficient ovarian cancer.
Collapse
Affiliation(s)
- Jialu Zhang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shuting Huang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinyu Zeng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, 266035, China
| |
Collapse
|
7
|
Sun Y, Xu J, Zou L, Tan Y, Li J, Xin H, Guo Y, Kong W, Tian D, Bao X, Wan X, Li X, Zhang Z, Yang X, Deng F. Ceria nanoparticles alleviate myocardial ischemia-reperfusion injury by inhibiting cardiomyocyte apoptosis via alleviating ROS mediated excessive mitochondrial fission. Mater Today Bio 2025; 32:101770. [PMID: 40290893 PMCID: PMC12033917 DOI: 10.1016/j.mtbio.2025.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Reperfusion through thrombolytic therapy or primary percutaneous coronary intervention is commonly used to deal with acute myocardial infarction. However, the reperfusion procedure is accompanied by myocardial ischemia-reperfusion injury (MIRI). Currently, there is no therapeutics that can effectively deal with MIRI in clinical practice. Herein, the potential of ceria nanoparticles (CNPs) coated by different ligands in the treatment of rat MIRI is evaluated. The results demonstrate that CNPs can effectively modulate the oxidative stress in the heart tissue through the elimination of reactive oxygen species (ROS) and stimulation of endogenous antioxidant system. The inhibition of oxidative stress results in the reduction of p-Drp1 (Ser 616) which is critical in driving the fission and fragmentation of mitochondria. The improved mitochondrial dynamics saves the cardiomyocytes from apoptosis and reduces the acute injury of left ventricular wall during the MIRI. The ejection function of the left ventricle for both the short-term and long-term MIRI rats is well preserved. We therefore believe based on these results that the administration of CNPs is beneficial in the attenuation of MIRI during the acute stage. These findings provide useful information for the future fabrication of inorganic antioxidant nanomedicine for the treatment of MIRI.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jiabao Xu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Weikai Kong
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dingyuan Tian
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xinyu Bao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoqin Wan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoxu Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| |
Collapse
|
8
|
Li F, Zhou J, Shi K, He Q, Diao W, Peng H, Liang G, Zhong C, Li W, Xu D. Ferroptosis and necroptosis may be involved in the formation and progression of hydrofluoric acid burn wounds: Results from an RNA-Seq analysis. Burns 2025; 51:107513. [PMID: 40327971 DOI: 10.1016/j.burns.2025.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/18/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Hydrofluoric acid (HF) burns have potentially serious consequences. The molecular mechanism of wound development is still unclear. This study aims to preliminarily explore the programmed cell death mode that may be involved in hydrofluoric acid burns by using transcriptome sequencing technology and to provide a theoretical basis for a new treatment approach for hydrofluoric acid burns. METHODS The rat model of hydrofluoric acid burn skin was constructed, and the differentially expressed genes after HF burn were screened by transcriptome sequencing technology. HE staining, TUNEL staining, immunohistochemistry, biochemical detection, and qRT-PCR were used to preliminarily verify the mode of cell death involved in hydrofluoric acid burn wounds. RESULTS The sequencing results suggest that the differential genes after HF burn were enriched in ferroptosis, apoptosis, and necroptosis pathways in cell growth and death aspects. HE staining confirmed HF burn wounds were progressively aggravated. The positive cells of TUNEL staining in the wound gradually increased. Compared with the normal group, the content of MDA in serum and skin tissue increased and the content of GSH decreased at 4, 8, 12, 24, and 48 hours after HF burn (P < 0.05). The level of serum Fe2 + in the HF burn group was higher than that in the normal group at 4 h, 8 h, and 12 h postburn (P < 0.05). The level of serum Fe2+ at 24 h and 48 h postburn was higher than that of the normal group, but the difference was not statistically significant. The content of Fe2+ in skin tissue increased and reached its peak at 12 h (P < 0.05). The serum calcium level decreased to its lowest level at 24 hours postburn (P < 0.05). Immunohistochemistry showed that the expressions of GPX4, FTH1, and Bcl-2 proteins in hydrofluoric acid burn wounds were down-regulated, while the expression of HO-1, Bax, RIPK1, and MLKL was increased (P < 0.05). RIPK3 expression was not significantly different. qRT-PCR showed that the expression of HO-1, FTH1, SLC39A14, SLC39A8, CYBB, ACSL4, Bax, RIPK1, MLKL, IL-1β, and IL-6 increased, while the expression of ACSL1, ACSL6, GPX4, and Bcl-2 decreased after hydrofluoric acid burn compared with the normal group (P < 0.05). The RIPK3 gene expression did not change significantly. CONCLUSIONS Ferroptosis and necroptosis are involved in the formation and progression of HF burn wounds. Early blocking of ferroptosis may be a potential therapeutic for blocking the progress of hydrofluoric acid burn wounds. Necroptosis involvment in the occurrence and development of hydrofluoric acid burn wounds may be a non-classical pathway.
Collapse
Affiliation(s)
- Fuying Li
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China; Department of Plastic and Burns Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Quanyong He
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Wuliang Diao
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Peng
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Geao Liang
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Chi Zhong
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Wengjuan Li
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Xu
- Department of Burns and Plastic Surgery, the third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Wen J, Geng L, Wang R, Zhang X, Sui Y, Liu X, Han X. Carboxylesterase 1 regulates peroxisome proliferator-activated receptor gamma to inhibit the growth and metastasis of breast cancer cells. J Mol Histol 2025; 56:167. [PMID: 40418235 DOI: 10.1007/s10735-025-10446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Breast cancer is a common malignancy in women, and it has an absence of effective therapies. Carboxylesterase 1 (CES1), a member of the carboxylesterase family, has anti-tumor properties in several types of cancer. However, the function of CES1 in breast cancer remains unclear. Peroxisome proliferator-activated receptor gamma (PPARG) is a downstream regulator of CES1 and exhibits anti-breast cancer properties. Both CES1 and PPARG were downregulated in breast cancer tissues. Low CES1 and PPARG expression were linked to poorer breast cancer survival. We constructed CES1 knockdown and overexpression models of breast cancer cells by CES1 overexpressing plasmids and plasmids containing short hairpin RNA. High expression of CES1 inhibited breast cancer cell proliferation, evidenced by diminished cell viability, decreased DNA replication, and G1 phase arrest. CES1 overexpression decreased the protein levels of CDK2, CDK6 and cyclin B1 in breast cancer cells. CES1 inhibited the Bcl-2/Bax axis and increased Cleaved caspase-3 levels. Transwell assays showed that CES1 inhibited cell migration and invasion. CES1 increased E-cadherin protein expression and decreased Vimentin protein expression. CES1 knockdown facilitated the proliferation, migration, and invasion of breast cancer cells. CES1 was found to regulate PPARG expression in breast cancer cells positively. We transfected PPARG-interfering plasmids into breast cancer cells with CES1 overexpression. Inhibition of PPARG abrogated the anti-growth and anti-metastasis functions of CES1 in breast cancer cells. This study elucidates that CES1 inhibits the malignant progression of breast cancer by up-regulating the expression of PPARG.
Collapse
Affiliation(s)
- Jingli Wen
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Lei Geng
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Ruohan Wang
- Department of Pathology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Xiaolei Zhang
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Yanmin Sui
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Xiaofang Liu
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Xin Han
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China.
| |
Collapse
|
10
|
Long R, Lu S, Chen X, Ye W, Wang T, Wang X, Xu F, Li N. Human milk peptide MAMP-1 alleviates necrotizing enterocolitis via inhibition of the TLR4-mediated PI3K-AKT-NF-κB signaling pathway. Food Funct 2025; 16:3904-3917. [PMID: 39918424 DOI: 10.1039/d4fo05556j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Background: Necrotizing enterocolitis (NEC) is a disease with prevalent and serious intestinal inflammation that poses a significant threat to the lives of newborns. Human milk has been shown to prevent and treat the occurrence of NEC; however, the underlying mechanisms remain unclear. MAMP-1 is a significantly overexpressed endogenous peptide derived from β-casein extracted from the human milk of premature mothers, which is resistant to gastrointestinal conditions and exhibits favorable physicochemical properties. This study aims to investigate the mechanism by which the human milk-derived peptide MAMP-1 mitigates NEC in mice, offering new insights for clinical treatment. Methods: The C57BL/6 mice were categorized into three distinct groups randomly on the 7th day after birth, with 40 mice in each group. The NEC model was established using "artificial feeding + hypoxia + cold", and the MAMP-1 group received daily MAMP-1 gavage during NEC modeling. Ileum tissues and feces were collected. Pathological damage in the intestines was evaluated by H&E staining. ZO-1 expression was analyzed through immunofluorescence staining and western blot. Apoptosis in the intestine was assessed using western blot and TUNEL staining. The effects of signaling pathways were confirmed through western blot and RNA sequencing. The expression of inflammatory factors was assessed using RT-PCR. 16S high-throughput sequencing was used to determine the diversity and abundance of the gut microbiota. Results: MAMP-1 reduced the mortality rate of NEC mice, alleviated ileum injury, increased the ZO-1 expression of the intestinal barrier, reduced the apoptotic protein expression, lowered the TUNEL positive area, increased anti-apoptotic protein expression, and reduced the levels of TLR4, P-PI3K, P-AKT, and NF-κB, leading to a reduction in the release of inflammatory cytokines. Furthermore, MAMP-1 decreased the abundance of harmful bacteria and increased the abundance of beneficial bacteria at both the phylum and genus levels. Conclusion: MAMP-1 might inhibit the TLR4-PI3K-AKT-NF-κB signaling pathways, further reducing inflammation factor release, and might decrease intestinal cell apoptosis. Results indicated that MAMP-1 might alleviate intestinal damage in NEC mice. Meanwhile, MAMP-1 might positively modulate the composition of the microbiota of NEC mice and further achieve the preventive and therapeutic effect of MAMP-1 on NEC.
Collapse
Affiliation(s)
- Rui Long
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
- Key Laboratory of Newborn Critical Illness, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
| | - Shimei Lu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
- Key Laboratory of Newborn Critical Illness, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
| | - Xiuhui Chen
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Children's Hospital Affiliated to Guangdong Medical University, China
| | - Weijun Ye
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Children's Hospital Affiliated to Guangdong Medical University, China
| | - Tengfei Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengdan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
- Key Laboratory of Newborn Critical Illness, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Children's Hospital Affiliated to Guangdong Medical University, China
| | - Ning Li
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
- Key Laboratory of Newborn Critical Illness, Dongguan Children's Hospital Affiliated to Guangdong Medical University, No. 68, Xi Hu Third Road, Shilong Town, Dongguan, Guangdong, China.
| |
Collapse
|
11
|
Zhou Y, Wang F, Feng S, Li M, Zhu M. USP39 promote post-translational modifiers to stimulate the progress of cancer. Discov Oncol 2025; 16:749. [PMID: 40358671 PMCID: PMC12075731 DOI: 10.1007/s12672-025-02573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are a class of crucial peptidyl hydrolases within the ubiquitin system, playing a significant role in reversing and strictly regulating ubiquitination, which is essential for various biological processes such as protein stability and cellular signal transduction. Ubiquitin-specific protease 39 (USP39) is an important member of the DUBs family. Recent studies have revealed that USP39 is involved in the regulation of multiple cellular activities including cell proliferation, migration, invasion, apoptosis, and DNA damage repair. USP39 also plays a significant role in the development and progression of various cancers. It is believed that USP39 is a unique enzyme that controls the ubiquitin process and is closely associated with the occurrence and progression of many cancers, including hepatocellular, lung, gastric, breast, and ovarian cancer. This review summarizes the structural and functional aspects of USP39 and its research advancements in tumors, investigates the key molecular mechanisms related to USP39, and provides references for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yuli Zhou
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Fang Wang
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Siren Feng
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Mengsen Li
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570216, China.
| | - Mingyue Zhu
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Wo D, Wu C, Ma E, Peng J, Zhu W, Ren DN. Paclitaxel alleviates spinal cord injury via activation of the Wnt/β-catenin signaling pathway. Mol Med 2025; 31:172. [PMID: 40329167 PMCID: PMC12053863 DOI: 10.1186/s10020-025-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a disability that causes severe traumatic damage to the central nervous system, with increasing prevalence worldwide. Paclitaxel (PTX) is a naturally occurring plant metabolite that has been shown to exhibit various neuroprotective effects in the central nervous system, however, the specific mechanisms underlying its protective effects in SCI remain unclear. In this study, we aimed to explore the therapeutic effects of PTX in SCI, as well as elucidate the underlying molecular mechanisms associated with its neuroprotective potential. METHODS Murine models of spinal cord compression were performed followed by intrathecal administration of corresponding agents for 21 days. Mice were randomly divided into the following four groups: Sham, SCI + Saline, SCI + PTX, and SCI + PTX + XAV939. Recovery of lower limb function and strength, as well as muscular atrophy were examined via multiple scored tests. Degree of neuronal and axonal damage, as well as fibrosis were examined via immunohistochemical staining. RESULTS PTX administration significantly improved the recovery of lower limb function and strength, prevented muscular atrophy, as well as decreased the extent of neuronal and axonal death following SCI surgery. PTX also robustly activated the Wnt/β-catenin protein signaling pathway that played a key role in its therapeutic effects. Co-administration with a Wnt/β-catenin pathway inhibitor - XAV939, significantly abolished the beneficial effects of PTX after SCI. CONCLUSION This study provides important new mechanistic insight on the beneficial effects of PTX in protecting against spinal cord injury, as well as the experimental basis for its potential therapeutic use.
Collapse
Affiliation(s)
- Zhifeng Chen
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Celiang Wu
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinhui Peng
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weidong Zhu
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Dan-Ni Ren
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Zhao Z, Wang R, Ge H, Hou L, Hatano T, Hattori N, Su H, Wang Q, Zhao J. ECHS1-NOX4 interaction suppresses rotenone-induced dopaminergic neurotoxicity through inhibition of mitochondrial ROS production. Free Radic Biol Med 2025; 232:56-71. [PMID: 40032032 DOI: 10.1016/j.freeradbiomed.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is the most common neurodegenerative movement disorder with uncleared mechanisms. Short-chain enoyl-CoA hydratase 1 (ECHS1) is a mitochondrial enzyme critical for the β-oxidation of fatty acids and ATP production. This study aims to explore the roles of ECHS1 in PD by using rotenone-induced experimental PD models. METHODS To evaluate the role of ECHS1 in rotenone-induced dopaminergic neurodegeneration, adeno-associated virus (AAV)-ECHS1 was stereotactically injected into the substantia nigra region of mice to overexpress ECHS1. Motor function of mice among groups was detected by rotarod test and gait analysis. Neurodegeneration, mitochondrial dysfunction and apoptosis were determined by immunohistochemistry, immunofluorescence staining, Western blot or kits, respectively. RESULTS The expression and activity of ECHS1 were decreased in PD mice and positive correlations between ECHS1 reduction and dopaminergic neurodegeneration were observed. Overexpression of ECHS1 by AAV delivery attenuated loss of dopaminergic neuron and motor deficits in PD mice. Mechanistically, ECHS1 attenuated rotenone-induced mitochondrial swelling and loss of cristae as well as decrease of ATP production, mitochondrial membrane potential, complex I/IV activities and oxygen consumption rate (OCR). Mitochondrial ROS (mtROS)-targeted antioxidant mito-TEMPO prevented ECHS1 silence-mediated mitochondrial dysfunction. Furthermore, we found that ECHS1 interacted with NADPH oxidase 4 (NOX4), resulting in decrease of NOX4 activation and subsequent reduction of mtROS production and mitochondrial dysfunction. Finally, inhibition of NOX4 by GLX351322 or mtROS production by mito-TEMPO greatly reduced ECHS1 silence-mediated apoptosis in rotenone-treated SH-SY5Y cells. CONCLUSIONS ECHS1 counteracted dopaminergic neurodegeneration through inhibition of mtROS and restoration of mitochondrial function via interaction with NOX4. Given the central role of mitochondrial dysfunction in PD pathogenesis, elucidating the role of ECHS1 holds great promise for uncovering novel therapeutic targets.
Collapse
Affiliation(s)
- Zirui Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, 116044, China; School of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Ruonan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, 116044, China; School of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Haitao Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine. 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Hong Su
- School of Health-Preservation and Wellness, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, 116044, China; School of Public Health, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, 116044, China; School of Integrated Chinese and Western Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
14
|
Liu H, Zhang X, Ge X, Hsu C, Wang Y, Chen S, Yan X, Xu R, Ma J, Guo S. Optineurin Cooperates With NRF2 to Regulate Tooth Root Morphogenesis by Controlling Mitochondrial Dynamics and Apoptosis. Cell Prolif 2025; 58:e13799. [PMID: 39762159 PMCID: PMC12099217 DOI: 10.1111/cpr.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 05/24/2025] Open
Abstract
Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.5 (E16.5), postnatal day 1 (P1), and P7 mouse teeth, as well as embryonic and adult human teeth, to show that OPTN is vital for odontoblastic differentiation. In Optn-/- mice, we observed short root deformities and defective dentin, with impaired apical papilla differentiation and increased apoptosis. In vitro OPTN downregulation in stem cells of the apical papilla (SCAPs) exacerbated apoptosis and hindered odontoblastic differentiation. RNA-seq analysis revealed significant differences in mitochondrial dynamics between control and OPTN knockout SCAPs. We discovered that OPTN influences mitochondrial dynamics primarily by promoting fission, leading to odontoblastic differentiation and mineralisation. Mechanistically, OPTN cooperates with NRF2 to regulate mitochondrial fission via DRP1 phosphorylation and affects the transcription of BCL2. Rescue experiments using an activator of NRF2 in ex vivo organ cultures and local gingival injection experiments confirmed these findings. Therefore, we concluded that OPTN, interacting with NRF2, acts as a key regulator of SCAPs mitochondrial dynamics, mineralisation and apoptosis during tooth development. These findings provide fresh insights into the mechanisms underlying tooth root development.
Collapse
Affiliation(s)
- Haojie Liu
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xinyu Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xiao Ge
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - ChingCho Hsu
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yan Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Simai Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xingzhi Yan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Rongyao Xu
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Junqing Ma
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Shuyu Guo
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| |
Collapse
|
15
|
Liu H, Zhang L, Hao L, Fan D. Resveratrol Inhibits Colorectal Cancer Cell Tumor Property by Activating the miR-769-5p/MSI1 Pathway. Mol Biotechnol 2025; 67:1893-1907. [PMID: 38771419 DOI: 10.1007/s12033-024-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol exhibits inhibitory effects on the progression of various cancers including colorectal cancer (CRC), however, the underlying mechanism in regulating CRC development remains elusive. The present study aims to uncover the role and molecular mechanism of resveratrol in modulating CRC cell tumor properties. NCM460 cells, LoVo cells, SW480 cells, and BALB/c nude mice were utilized in this study. RNA levels of miR-769-5p and musashi RNA-binding protein 1 (MSI1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was assessed by western blotting or immunohistochemistry assay. Cell viability was analyzed by CCK-8 assay, while cell proliferation and apoptosis were evaluated by 5-Ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Cell migration was investigated by transwell and wound-healing assays. The association between miR-769-5p and MSI1 was identified by a dual-luciferase reporter assay. Tumor formation was analyzed using a xenograft mouse model assay. Compared to control groups, miR-769-5p expression was downregulated, while MSI1 expression was upregulated in CRC tissues and cells. Resveratrol treatment led to increased miR-769-5p expression and decreased MSI1 expression in CRC cells. Resveratrol treatment or miR-769-5p upregulation inhibited CRC cell proliferation and migration, and induced apoptosis. These effects were enhanced after combined treatment with resveratrol and miR-769-5p mimics. MSI1 was identified as a target of miR-769-5p, and its overexpression attenuated the effects of miR-769-5p mimics on cell proliferation, migration, and apoptosis. Moreover, miR-769-5p overexpression enhanced the inhibitory effects of resveratrol on tumor growth in vivo. Resveratrol inhibited colorectal cancer cell tumor properties by activating the miR-769-5p/MSI1 pathway.
Collapse
Affiliation(s)
- Hongchang Liu
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Zhang
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Hao
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Dingwen Fan
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
16
|
Hadjadj I, Fabova Z, García ML, Agea I, Loncová B, Morovic M, Makovicky P, Argente MJ, Sirotkin AV. Food Restriction Induces Changes in Ovarian Folliculogenesis, Cell Proliferation, Apoptosis, and Production of Regulatory Peptides in Rabbits. Animals (Basel) 2025; 15:1282. [PMID: 40362096 PMCID: PMC12071153 DOI: 10.3390/ani15091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/28/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The aim of this study is to examine the influence of food restriction on rabbit ovarian functions. A total of eight females were fed ad libitum (NF), while eight females were subjected to 50% food restriction (RF). One month later, all females were euthanized. Weights and lengths of ovaries and uterine horns were measured. Representative parts of the ovaries were subjected to histomorphometry analysis of folliculogenesis. Granulosa cells were isolated and cell viability, proliferation (accumulation of PCNA, cyclin B1, and BrdU-positive cells), apoptosis (accumulation of bax, caspase 3, and DNA fragmentation) were evaluated. Granulosa cells were subjected to proteomic analysis by using the nano HPLC-Chip-MS/MS method. Estradiol and progesterone release by ovarian and granulosa cells was assessed by ELISA. Ovarian and uterine horn weights were lower in RF than NF. The diameter of follicles and oocytes and the thickness of the theca and granulosa cells were higher in RF than NF. RF showed a lower percentage of cells containing bax and caspase 3, occurrence of DNA fragmented cells, and estradiol and progesterone. RF had higher incorporation of BrdU, a higher proportion of cells containing PCNA and cyclin B1, and a lower percentage of viable cells. RF produced more specific proteins than NF, including peptides involved in cell differentiation, proliferation/division, mitotic cell cycle, and GTP-ase activity. In conclusion, food restriction can activate reproduction by (1) selection of the growing primordial follicles, (2) better transformation of secondary to preovulatory follicles, (3) increasing growth of oocytes, (4) increasing proliferation and decreasing apoptosis in granulosa cells, (5) changes in ovarian secretory activity, and (6) changes in the number of peptides.
Collapse
Affiliation(s)
- Imane Hadjadj
- Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312 Orihuela, Spain; (I.H.); (I.A.); (M.-J.A.)
| | - Zuzana Fabova
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A 14 Hlinku 1, 949 74 Nitra, Slovakia (M.M.); (A.V.S.)
| | - María-Luz García
- Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312 Orihuela, Spain; (I.H.); (I.A.); (M.-J.A.)
| | - Iván Agea
- Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312 Orihuela, Spain; (I.H.); (I.A.); (M.-J.A.)
| | - Barbora Loncová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A 14 Hlinku 1, 949 74 Nitra, Slovakia (M.M.); (A.V.S.)
| | - Martin Morovic
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A 14 Hlinku 1, 949 74 Nitra, Slovakia (M.M.); (A.V.S.)
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Dvořákova 138/7, 701 03 Ostrava, Czech Republic;
- Research Institute, Biomedical Research Centre of the Slovak Academy of Sciences, Dúbravská cesta 9, 814 39 Bratislava, Slovakia
| | - María-José Argente
- Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, Ctra de Beniel Km 3.2, 03312 Orihuela, Spain; (I.H.); (I.A.); (M.-J.A.)
| | - Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A 14 Hlinku 1, 949 74 Nitra, Slovakia (M.M.); (A.V.S.)
| |
Collapse
|
17
|
Tu S, Jing X, Bu X, Zhang Q, Liao S, Zhu X, Guo Y, Sha W. Identification of pyroptosis-associated gene to predict fibrosis and reveal immune characterization in non-alcoholic fatty liver disease. Sci Rep 2025; 15:14944. [PMID: 40301412 PMCID: PMC12041580 DOI: 10.1038/s41598-025-96158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
Despite advances in research, studies on predictive models for Non-Alcoholic Fatty Liver Disease (NAFLD)-related fibrosis remain limited. Identifying new biomarkers to distinguish Non-Alcoholic Steatohepatitis (NASH) from NAFLD would aid in the treatment of NASH. Gene expression and clinical profiles of NAFL and NASH patients were collected from databases. Differentially expressed genes with prognostic value were used to construct predictive model. Validation of fibrosis stage-related pyroptosis-related genes (PRGs) was performed using Sprague-Dawley rats liver fibrosis models induced by CCl4 or PS. Immune cell infiltration assessment demonstrated that stromal score, immune score, and ESTIMATE score were higher in patients with NASH compared to those with NAFL. BAX, BAK1, PYCARD, and NLRP3 were identified as hub genes that exhibit a strong correlation with fibrosis stage. Additionally, the expression of these genes was increased in fibrotic liver tissues induced by CCl4 and PS. The pyroptosis-associated gene signature effectively predicts the degree of liver fibrosis in NASH patients. Our study indicates that BAX, BAK1, PYCARD, and NLRP3 might serve as biomarkers for NASH-associated fibrosis.
Collapse
Affiliation(s)
- Sha Tu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Qingfang Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shanying Liao
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xiaobo Zhu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Ying Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
18
|
Gao L, Wang J, Liu X, Wu L, Ding R, Han X, Wang X, Ma H, Pan J, Zhang X, Wang H, Shang X. Rinsenoside Rg1 and its involvement in Hippo-YAP signaling pathway alleviating symptoms of depressive-like behavior. Sci Rep 2025; 15:14441. [PMID: 40281108 PMCID: PMC12032003 DOI: 10.1038/s41598-025-99587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Ginsenoside Rg1 (G-Rg1) has potential antidepressant effects, but the underlying mechanism remains unclear. Presently, sixty 6-8 week-old male C57BL/6 mice were selected and randomly allocated to control, chronic restraint stress (CRS), CRS and low G-Rg1 administration (CRS + L-Rg1), CRS and high G-Rg1 administration (CRS + H-Rg1), and CRS and fluoxetine administration (CRS + FLX) groups. The component of anxiety in psychic processes and neuropathological changes occurring in dentate gyrus (DG) neurons were evaluated, where PC12 cells were assessed for the expression of G-Rg1. Both cell viability and apoptosis were analyzed. G-Rg1 (5 and 10 mg/kg/day) alleviated the behavioral manifestations of neuropathological processes revealed in DG neurons of CRS-induced mice. Western blotting analysis demonstrated the negative correlation of G-Rg1 level and that of Hipp-YAP signaling pathway components including p-YAP/YAP, p-MST1/MST1, and p-LATS1/LATS1, which were triggered by CRS. Combined therapy with G-Rg1 (10 mM) proved to have an inhibitory effect on PC12 cell viability and apoptosis compared to sole cort treatment. In addition, chronic G-Rg1 also reduced the protein expression levels of Hippo-YAP signaling pathway activated by corticosterone (Cort) including p-YAP/YAP, p-MST1/MST1, and p-LATS1/LATS1. The above mentioned improvements could be implemented due to XMU-MP-1 hampering the processes in Hippo-YAP signaling pathway. Importantly, the changes in synaptic plasticity and apoptosis were thoroughly investigated to determine the role of chronic G-Rg1 in the forementioned processes. In conclusion, chronic G-Rg1 played an important neuroprotective role in either CRS mice or Cort-treated cells associated with the inhibition of Hippo-YAP signaling pathway, which was the core part of decreasing neuronal apoptosis and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Linyin Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Jiarong Wang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xiuchang Liu
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lei Wu
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Ran Ding
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xuemei Han
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xindi Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Hao Ma
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Jie Pan
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xiujun Zhang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| | - Haitao Wang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| | - Xueliang Shang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| |
Collapse
|
19
|
Liu S, Liu W, Liu Y, Luo D, Feng J, Hou L, Cui H, Liu Y, Chen X, Zhu X, Wei L, Lv Q, Zhang Z. Repair effect of adipose-derived mesenchymal stem cell-conditioned medium on cyclophosphamide-induced ovarian injury in mice. Reprod Toxicol 2025; 135:108923. [PMID: 40254105 DOI: 10.1016/j.reprotox.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
The chemotherapeutic drug cyclophosphamide (CTX) may damage the ovarian tissue of females and induce premature ovarian insufficiency (POI). This study aimed to investigate the therapeutic effect of adipose-derived mesenchymal stem cell-conditioned medium (ADSC-CM) on CTX-induced POI mice, and to provide new support for the clinical use of cell-free therapy for POI. Female mice were treated with CTX intraperitoneal injection for 2 weeks, followed by ADSCs or ADSC-CM by intravenous injection for 2 weeks. At the end of the experiment, various parameters were assessed, including ovarian interstitial fibrosis, cell proliferation, follicular count, the levels of follicle-stimulating hormone (FSH) and estradiol (E2), and the expression of gonadal hormone receptor. Additionally, we assessed the levels of oxidative stress, apoptosis, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling pathway-related proteins and genes in ovarian tissue. The results showed that ADSCs or ADSC-CM treatment reduced ovarian interstitial fibrosis, promoted the proliferation of cells in the follicles, and increased the number of follicles and ovarian function. In addition, ADSCs and ADSC-CM also reduced the levels of ovarian oxidative stress, decreased the apoptosis of granulosa cells (GCs), and inhibited the activation of ASK1/JNK signaling pathway. In conclusion, our study confirmed that ADSC-CM, like ADSCs, could exert therapeutic effects in POI diseases, and the underlying mechanism may be related to the inhibition of oxidative stress-mediated activation of ASK1/JNK signaling pathway. This study has important implications for the development of cell-free therapies for the clinical treatment of POI diseases.
Collapse
Affiliation(s)
- Shuangjuan Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Dongliu Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Jingwen Feng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Leyao Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Haotong Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Yao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
20
|
Yu H, Liu X, Liu J, Tang D. Bupivacaine Reduces the Viability of SH-SY5Y Cells and Promotes Apoptosis by the Inhibition of Akt Signaling Pathway. Neurochem Res 2025; 50:143. [PMID: 40220051 DOI: 10.1007/s11064-025-04386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Bupivacaine (BUP) is a commonly used local anesthetic, while SH-SY5Y cells are a human neuroblastoma cell line frequently employed in research on neurotoxicity and neuroprotective mechanisms. To assess the neurotoxic effects of BUP on SH-SY5Y cells and the role of threonine-serine protein kinase B (Akt) signaling in BUP-induced nerve injury. SH-SY5Y cells were divided into three groups: the control group (Control), BUP group, and BUP + SC79 group. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the level of reactive oxygen species (ROS) in cells was detected using the dihydroethidium fluorescence probe method, and changes in mitochondrial membrane potential were detected by flow cytometry, while BUP-induced apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The effects of BUP on Bax, Bcl-2, Caspase-3, Caspase-9, Akt and phosphorylated Akt (p-Akt) were analyzed by Western blot (WB). Compared with the control group, the BUP group and the BUP + SC79 group showed significantly reduced cell viability, significantly increased apoptosis, significantly elevated ROS levels, significantly decreased JC-1 polymer/monomer ratio, significantly increased protein levels of Bax, caspase-3, caspase-9, Akt, and p-Akt, and significantly decreased Bcl-2 protein levels (P < 0.05). However, compared with the BUP group, the BUP + SC79 group exhibited significantly increased cell viability (P = 0.022), significantly reduced apoptosis rate (P = 0.017), significantly decreased ROS levels (P = 0.015), significantly increased JC-1 polymer/monomer ratio (P = 0.024), significantly reduced protein levels of Bax, caspase-3, caspase-9, Akt, and p-Akt (P = 0.033, 0.028, 0.030, 0.035, and 0.005, respectively), and significantly increased Bcl-2 protein levels (P = 0.024). BUP can reduce the viability of SH-SY5Y cells and promote apoptosis, which may be related to its inhibitory effect on Akt protein activity.
Collapse
Affiliation(s)
- Heng Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Xiufeng Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Juan Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China.
| | - Dong Tang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China.
| |
Collapse
|
21
|
Zhao Y, Wei J, Cheng P, Ma J, Liu B, Xiong M, Gao T, Yao J, Sun T, Li Z. The involvement of TRPV1 in the apoptosis of spermatogenic cells in the testis of mice with cryptorchidism. Cell Death Discov 2025; 11:135. [PMID: 40180900 PMCID: PMC11968804 DOI: 10.1038/s41420-025-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Cryptorchidism is associated with an increased risk of male infertility and testicular cancer. Persistent exposure to high temperature in cryptorchidism can lead to the apoptosis of spermatogenic cells. Transient receptor potential vanilloid 1 (TRPV1), a thermosensitive cation channel, has been found to have differential effects on various apoptosis processes. However, whether TRPV1 is involved in spermatogenic cell apoptosis induced by cryptorchidism remains unclear. Herein, we first observed the expression pattern of TRPV1 in the testes of mice with experimental cryptorchidism, and then investigated the role and mechanism of TRPV1 in spermatogenic cell apoptosis by using Trpv1-/- mice. The results showed that TRPV1 was highly expressed on the membrane of spermatocytes in mouse testis, and the expression increased significantly in the testis of mice with experimental cryptorchidism. After the operation, Trpv1-/- mice exhibited less reproductive damage and fewer spermatogenic cell apoptosis compared to the wild-type (WT) mice. Transcriptome sequencing revealed that the expression of apoptosis-related genes (Capn1, Capn2, Bax, Aifm1, Caspase 3, Map3k5, Itpr1 and Fas) was down-regulated in spermatocytes of cryptorchid Trpv1-/- mice. Our results suggest that TRPV1 promotes the apoptosis of spermatocytes in cryptorchid mice by regulating the expression of apoptosis-related genes.
Collapse
Affiliation(s)
- Yanqiu Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jinhua Wei
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Junxian Ma
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
- The Air Force Hospital of Central Theater of PLA, Datong, China
| | - Mingxiang Xiong
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Ting Gao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jingqi Yao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Tianchen Sun
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China.
| |
Collapse
|
22
|
Shi Y, Lei C, Jiang H, Hong Y, Su W, Wu S, Yang X. BAX as a Biomarker for Predicting Immunotherapeutic Efficacy in Uveal Melanoma Patients: A Comprehensive Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01395-8. [PMID: 40180694 DOI: 10.1007/s12033-025-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/30/2025] [Indexed: 04/05/2025]
Abstract
Uveal melanoma (UVM) is the second most common type of malignant melanoma occurring in the eye, which arises from the interstitial melanocytes in the uveal tract. This study aims to identify a highly efficient biomarker for the immunotherapy against UVM. Initially, a comprehensive analysis was conducted using the transcriptional and clinical data from The Cancer Genome Atlas (TCGA) database through the immune and stromal scores to assess the composition of infiltrating immune cells in the tumor microenvironment. Further, the expression of BCL2-Associated X, Apoptosis Regulator (BAX), and its co-expression gene networks were analyzed using the weighted gene co-expression network analysis (WGCNA) to identify relevant gene modules and hub genes. The immunohistochemistry (IHC) analysis was carried out to confirm the influence of BAX on immune infiltration. In addition, the survival analysis on the hub genes, including BAX, was performed using an external dataset from the Gene Expression Omnibus (GEO) to corroborate the prognostic significance of these genes in an independent patient cohort. A nomogram integrating patients' clinical features was developed to predict the survival outcomes. Our investigations revealed that high BAX expression was associated with severe clinical characteristics and poor prognosis in UVM. Our analyses identified 12 hub genes at the intersection of differentially expressed genes categorized by BAX expression levels and a co-expression gene model. Further, the GEO database validated the prognostic significance of these hub genes. The IHC analysis established a significant correlation between BAX expression and immune infiltration. This nomogram model demonstrated robust predictive efficiency with a concordance index (C-index) of 0.909 (95% CI: 0.846-0.971), indicating excellent discriminative ability. The calibration curves for 1-year, 3-year, and 5-year overall survival (OS) rates confirmed the nomogram's accuracy, closely reflecting the actual patient outcomes. Finally, the Decision Curve Analysis (DCA) revealed that this nomogram could accurately predict OS for a majority of patients, covering a probability range of 25-95%. Our research may provide a new therapeutic regimen to benefit the UVM patients.
Collapse
Affiliation(s)
- Yao Shi
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Changjiang Lei
- Department of Oncology, The Fifth Hospital of Wuhan, Hubei, 430050, China
| | - Hong Jiang
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yan Hong
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wei Su
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shanxia Wu
- Department of Neonatology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaobo Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, WuhanHubei, 430022, China.
| |
Collapse
|
23
|
Tan J, Li F, Zhang X, Zhu H, Liu J, Wu T, Zhang Y, Zhang D, Geng Y, Shen Y. Extracts from petal of the Crocus sativus (saffron) possesses detoxification effects on acetaminophen induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling. Fitoterapia 2025; 182:106452. [PMID: 39993543 DOI: 10.1016/j.fitote.2025.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The purpose of this study was to investigate the detoxification effect of extracts from the petal of Crocus sativus L. (PCSE) on acetaminophen (APAP) induced liver injury in mice and its related mechanisms. LC-MS/MS analysis was used to identify the main components in PCSE, and an APAP-induced acute liver injury model in mice was constructed to evaluate the detoxification effect of PCSE. Liver tissue H&E staining, liver function indexes including ALT and AST, pro-inflammatory cytokine including TNF-α and IL-6, as well as hepatic tissue oxidative stress levels were examined. In addition, in vitro APAP induced cell was also prepared, apoptosis levels were detected by AO/EB staining, ROS fluorescence intensity was analyzed as well as the expression levels of apoptosis-related proteins and Nrf2/HO-1 pathway-related proteins were detected by western blot, to investigate the mechanism of PCSE's action in ameliorating liver injury. The results showed that PCSE can improve the survival rate of APAP induced mice, decrease ALT, AST, TNF-α and IL-6 levels, and ameliorate the liver injury induced by APAP. Furthermore, the mechanism research suggested PCSE attenuated oxidative stress and apoptosis in APAP-induced liver cells, as well as activated the Nrf2/HO-1 signaling. In summary, PCSE possesses potential detoxification effects on APAP induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling, which provides more possibilities for the drug selection for the treatment of liver injury in clinical practice.
Collapse
Affiliation(s)
- Jin Tan
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangqiong Li
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Xin Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Hongrui Zhu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Jin Liu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Taoqing Wu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Yang Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuefei Geng
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2025; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
25
|
Tian P, Xia H, Li X, Wang Y, Hu B, Yang Y, Sun G, Sui J. Identification and Assessment of lncRNAs and mRNAs in PM2.5-Induced Hepatic Steatosis. Int J Mol Sci 2025; 26:2808. [PMID: 40141450 PMCID: PMC11943408 DOI: 10.3390/ijms26062808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Research indicates that fine particulate matter (PM2.5) exposure is associated with the onset of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disorder. However, the underlying pathogenesis mechanisms remain to be fully understood. Our study investigated the hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with hepatic steatosis caused by PM2.5 exposure and their pathological mechanisms. The analysis of gene profiles in the GSE186900 dataset from the Gene Expression Omnibus (GEO) enabled the identification of 38 differentially expressed lncRNAs and 1945 mRNAs. To explore further, a co-expression network was established utilizing weighted gene co-expression network analysis (WGCNA). Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were utilized for functional enrichment analysis. Our analysis identified specific modules, particularly the blue and turquoise modules, which showed a strong correlation with NAFLD. Through functional enrichment analysis, we identified several lncRNAs (including Gm15446, Tmem181b-ps, Adh6-ps1, Gm5848, Zfp141, Rmrp, and Rb1) which may be involved in modulating NAFLD, multiple metabolic pathways, inflammation, cell senescence, apoptosis, oxidative stress, and various signaling pathways. The hub lncRNAs identified in our study provide novel biomarkers and potential targets for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Peixuan Tian
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Xinbao Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Ying Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Bihuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Yu Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
26
|
Wang Z, Zhou Z, Zhao Z, Zhang J, Zhang S, Li L, Fan Y, Li Q. A network toxicology and machine learning approach to investigate the mechanism of kidney injury from melamine and cyanuric acid co-exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118029. [PMID: 40088607 DOI: 10.1016/j.ecoenv.2025.118029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Within the past two decades, high-profile cases of melamine (MA) exposure have raised significant toxicological concerns, particularly regarding food adulteration. While widely used as a fundamental organic chemical intermediate in various household products, MA's potential for unexpected toxicological synergy with its homolog, cyanuric acid (CA), remains a concern. This study aimed to investigate the nephrotoxicity of combined melamine and cyanuric acid (MC) exposure and its underlying mechanisms in rats through an integrative approach, combining network toxicology (NT), bioinformatics, and experimental validation. MATERIALS AND METHODS Rats were exposed to MC at doses of 0/0 mg/kg/day (Control) and 63/63 mg/kg/day (MC) for four weeks. Kidney pathology, injury markers, and RNA sequencing (RNA-seq) data were analyzed to identify differentially expressed genes between the two groups. Bioinformatics analysis, including pathway enrichment and immune microenvironment analysis, was conducted to elucidate the underlying mechanisms of MC-induced kidney injury. Potential target proteins were identified using ChEMBL, STITCH, and GeneCards databases, and hub genes were screened using three machine learning algorithms: LASSO regression, Random Forest, and Molecular Complex Detection. Molecular docking simulations were performed to assess the interactions between MC and the identified hub genes. RESULTS MC exposure resulted in severe kidney morphological and histological changes, as well as elevated levels of kidney injury and fibrosis markers. RNA-seq analysis revealed significant enrichment of immuno-inflammatory and apoptosis-related pathways in the MC group. Immune microenvironment analysis confirmed the infiltration of pro-inflammatory immune cells. Network toxicology analysis identified 20 potential targets associated with MC-induced kidney injury. Two hub genes, Ren and Casp3, were identified as key regulators of the renin-angiotensin-aldosterone system (RAAS) activation and apoptosis, respectively. Further experimental validation, including Western blotting and immunofluorescence, confirmed the upregulation of these proteins. Molecular docking simulations demonstrated strong binding affinities between MC and the two hub proteins. CONCLUSION MC exposure induces significant kidney injury and fibrosis. The activation of the RAAS pathway and apoptosis plays a crucial role in MC-mediated nephrotoxicity. However, additional vivo experimental validation is lacking. Future studies should focus on further exploration for the mechanism of MC-induced nephrotoxicity and more rigorous experimental validation.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zihao Zhao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shengli Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luping Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingzhong Fan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
27
|
You L, Zhao W, Li X, Yang C, Guo P. Tyrosol protects RPE cells from H 2O 2-induced oxidative damage in vitro and in vivo through activation of the Nrf2/HO-1 pathway. Eur J Pharmacol 2025; 991:177316. [PMID: 39890008 DOI: 10.1016/j.ejphar.2025.177316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is a critical factor in the pathogenesis of age-related macular degeneration (AMD). Tyrosol is a phenolic compound with antioxidant properties, but its protective effect against oxidative stress-induced AMD and its underlying mechanisms are unknown. The aim of this study was to investigate the protective effects of tyrosol on hydrogen peroxide (H2O2)-induced retinal damage and demonstrate its underlying mechanisms in ARPE-19 cells and C57BL/6J mice retinas. We found that tyrosol significantly enhanced the survival of ARPE-19 cells under H2O2-induced oxidative stress in a concentration-dependent manner. It effectively attenuated the production of reactive oxygen species (ROS) and lipid peroxides, while also counteracting the associated reduction in glutathione (GSH) concentration and superoxide dismutase (SOD) activity. Furthermore, pretreatment with tyrosol ameliorated apoptosis-related damage in ARPE-19 cells induced by H2O2 and normalized the levels of apoptosis-related proteins. Notably, tyrosol significantly upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant enzymes heme oxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Interestingly, in vivo study demonstrated that tyrosol administration effectively improved retinal function and morphology in H2O2-exposed mice, restored the thickness of the outer nuclear layer and inner core layer, and normalized the expression of proteins Bax, cleaved caspase-3, and Nrf2, which was consistent with the results of in vitro experiments. Overall, our findings suggest that tyrosol can protect RPE cells from oxidative stress damage by activating the Nrf2/HO-1 pathway, which may be a promising new strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Longtai You
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Wenwen Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiao Li
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Chunjing Yang
- Dept. of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Peng Guo
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
28
|
Valdivia-Padilla AV, Sharma A, Zegbe JA, Morales-Domínguez JF. Metabolomic Characterization and Bioinformatic Studies of Bioactive Compounds in Two Varieties of Psidium guajava L. Leaf by GC-MS Analysis. Int J Mol Sci 2025; 26:2530. [PMID: 40141181 PMCID: PMC11942350 DOI: 10.3390/ijms26062530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The guava tree (Psidium guajava L.) is a tropical plant from the Myrtaceae family. Leaf extracts from this plant have been used in traditional medicine to treat gastrointestinal disorders and exhibit several functional activities that benefit human health. Different varieties of guava trees produce fruits in colors ranging from white to red and present a characteristic metabolic profile in both their leaves and fruits. This study presents a metabolomic characterization of the leaves from two guava varieties: the Caxcana cultivar with yellow fruits and the S-56 accession with pink fruits. Metabolite profiling was conducted using Gas Chromatography-Mass Spectrometry (GC-MS) on methanol extracts, followed by multivariate statistical analysis, including Principal Component Analysis (PCA), and a heat map visualization of compound concentrations in the two varieties. The results identified β-caryophyllene as the major secondary metabolite present in both varieties, with a relative abundance of 16.46% in the Caxcana variety and 23.06% in the S-56 cultivar. Furthermore, in silico analyses, such as network pharmacology and molecular docking, revealed key interactions with proteins such as CB2, PPARα, BAX, BCL2, and AKT1, suggesting potential therapeutic relevance. These findings highlight the pharmacological potential of guava leaf metabolites in natural product chemistry and drug discovery.
Collapse
Affiliation(s)
- Ana Victoria Valdivia-Padilla
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico;
| | - Ashutosh Sharma
- Centre of Bioengineering, NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Querétaro 76130, Mexico;
| | - Jorge A. Zegbe
- Campo Experimental Pabellón, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 32.5 Carretera Aguascalientes-Zacatecas, Pabellón de Arteaga, Aguascalientes 20668, Mexico;
| | | |
Collapse
|
29
|
Rana N, Lisk C, Cendali F, Lucero MJ, Grier A, Setua S, Thangaraju K, Khan A, Reisz JA, Dzieciatkowska M, Pak DI, Swindle D, Danaher MX, Khan S, Westover N, Carter M, Hassell K, Nuss R, George G, Buehler PW, D’Alessandro A, Irwin DC. Metabolic and Proteomic Divergence is Present in Spleens and Livers from Berkeley Sickle Cell Anemia and β-Thalassemia Mice. J Proteome Res 2025; 24:1306-1316. [PMID: 39947632 PMCID: PMC11895773 DOI: 10.1021/acs.jproteome.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/29/2025] [Indexed: 03/08/2025]
Abstract
Sickle cell disease and β-Thalassemia are two of the most prevalent hemoglobinopathies worldwide. Both occur due to genetic mutations within the HBB gene and are characterized by red blood cell dysfunction, anemia, and end-organ injury. The spleen and liver are the primary organs where erythrophagocytosis, engulfing the red blood cells, occurs in these diseases. Understanding metabolism and protein composition within these tissues can therefore inform the extent of hemolysis and disease progression. We utilized a multiomics approach to highlight metabolomic and proteomic differences in the spleen and liver. The Berkley sickle cell disease (Berk-SS), heterozygous B1/B2 globin gene deletion (HbbTh3/+) a known β-Thalassemia model, and wildtype (WT, C57/Bl6) murine models were evaluated in this report. This analysis showed Berk-SS and HbbTh3/+ shared distinct antioxidant and immunosuppressive splenic phenotypes compared to WT mice with divergence in purine metabolism, gluconeogenesis, and glycolysis. In contrast, Berk-SS mice have a distinct liver pro-inflammatory phenotype not shared by HbbTh3/+ or WT mice. Together, these data emphasize that metabolic and proteomic reprogramming of the spleen and livers in Berk-SS and HbbTh3/+mice may be relevant to the individual disease processes.
Collapse
Affiliation(s)
- Nishant
K. Rana
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Christina Lisk
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Francesca Cendali
- Department
of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States
| | - Melissa J. Lucero
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Abby Grier
- Department
of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States
| | - Saini Setua
- The
Center for Blood Oxygen Transport, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21204, United States
| | - Kiruphararan Thangaraju
- The
Center for Blood Oxygen Transport, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21204, United States
| | - Alamzeb Khan
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The
Center for Blood Oxygen Transport, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21204, United States
| | - Julie A. Reisz
- Department
of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department
of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States
| | - David I. Pak
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Delaney Swindle
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mae X. Danaher
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Saqib Khan
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Westover
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Matthieu Carter
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kathryn Hassell
- Division
of Hematology Colorado Sickle Cell Treatment and Research Center,
School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, Colorado 80045, United States
| | - Rachelle Nuss
- Division
of Hematology Colorado Sickle Cell Treatment and Research Center,
School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, Colorado 80045, United States
| | - Gemlyn George
- Division
of Hematology Colorado Sickle Cell Treatment and Research Center,
School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, Colorado 80045, United States
| | - Paul W. Buehler
- The
Center for Blood Oxygen Transport, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21204, United States
- Department
of Pathology, University of Maryland School
of Medicine, Baltimore, Maryland 21201, United States
| | - Angelo D’Alessandro
- Department
of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States
| | - David C. Irwin
- Cardiovascular
and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
30
|
Li K, Yap YQ, Moujalled DM, Sumardy F, Khakham Y, Georgiou A, Jahja M, Lew TE, De Silva M, Luo MX, Gong JN, Yuan Z, Birkinshaw RW, Czabotar PE, Lowes K, Huang DCS, Kile BT, Wei AH, Dewson G, van Delft MF, Lessene G. Differential regulation of BAX and BAK apoptotic activity revealed by small molecules. SCIENCE ADVANCES 2025; 11:eadr8146. [PMID: 40043112 PMCID: PMC11881913 DOI: 10.1126/sciadv.adr8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Defective apoptosis mediated by B cell lymphoma 2 antagonist/killer (BAK) or B cell lymphoma 2-associated X protein (BAX) underlies various pathologies including autoimmune and degenerative conditions. On mitochondria, voltage-dependent anion channel 2 (VDAC2) interacts with BAK and BAX through a common interface to inhibit BAK or to facilitate BAX apoptotic activity. We identified a small molecule (WEHI-3773) that inhibits interaction between VDAC2 and BAK or BAX revealing contrasting effects on their apoptotic activity. WEHI-3773 inhibits apoptosis mediated by BAX by blocking VDAC2-mediated BAX recruitment to mitochondria. Conversely, WEHI-3773 promotes BAK-mediated apoptosis by limiting inhibitory sequestration by VDAC2. In cells expressing both pro-apoptotic proteins, apoptosis promotion by WEHI-3773 dominates, because activated BAK activates BAX through a feed-forward mechanism. Loss of BAX drives resistance to the BCL-2 inhibitor venetoclax in some leukemias. WEHI-3773 overcomes this resistance by promoting BAK-mediated killing. This work highlights the coordination of BAX and BAK apoptotic activity through interaction with VDAC2 that may be targeted therapeutically.
Collapse
Affiliation(s)
- Kaiming Li
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Q. Yap
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Donia M. Moujalled
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Fransisca Sumardy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yelena Khakham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Angela Georgiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Jahja
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas E. Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Melanie De Silva
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-nan Gong
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Yuan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard W. Birkinshaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kym Lowes
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin T. Kile
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew H. Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark F. van Delft
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Salama M, Elamin A, Youssif M, Mattar NA. Induction of DNA damage and growth arrest by citalopram in breast cancer cells mediated via activation of Gadd45a and apoptotic genes. Ultrastruct Pathol 2025; 49:158-169. [PMID: 39825580 DOI: 10.1080/01913123.2025.2454691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated. This study examined the cytotoxic effects of citalopram on triple-negative (MDA-MB231) and ER-positive (MCF-7) breast cancer cells. Results showed a significant decrease in cell viability in both cell lines following citalopram treatment. Interestingly, flow cytometry analysis revealed increased apoptotic cells and induction of cell cycle arrest upon treatment of the cells with citalopram. MCF-7 cells were arrested in the sub-G0-G1 phase, while MDA-MB231 cells accumulated in the S phase. Gene expression analysis demonstrated increased Bax expression and decreased Bcl2 levels. Moreover, cytochrome c and NF-κB were upregulated upon treatment with citalopram. Furthermore, transmission electron microscopy (TEM) analysis of treated cells showed apoptotic morphological changes including shrunken nuclei, membrane blebbing, and chromatin condensation with prominent appearance of autophagosomes and autolysosomes. Additionally, GADD45a and p21, involved in growth arrest and DNA damage, were significantly upregulated. In conclusion, citalopram's ability to induce apoptosis and alter cell cycle suggests its potential in breast cancer treatment.
Collapse
Affiliation(s)
- Mohammed Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Elamin
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Magda Youssif
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noura A Mattar
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Zhang J, Xin S, Mao J, Liu X, Wang T, Liu J, Song X, Song W. The role of programmed cell death in diabetes mellitus-induced erectile dysfunction: from mechanisms to targeted therapy. Reprod Biol Endocrinol 2025; 23:32. [PMID: 40033391 PMCID: PMC11874627 DOI: 10.1186/s12958-025-01368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that often leads to vascular endothelial injury and peripheral neuropathy. Erectile dysfunction (ED), a common condition in andrology, is frequently associated with DM. The incidence of diabetes mellitus-induced ED (DMED) is second only to the cardiovascular complications of diabetes. Compared to other types of ED, DMED presents with more severe symptoms, rapid progression, and notable resistance to phosphodiesterase type 5 inhibitors (PDE5is). Various forms of programmed cell death (PCD)-including apoptosis, autophagy, pyroptosis, and ferroptosis-play pivotal roles in the pathogenesis of DMED. An exacerbation of DMED is linked to critical irritants like advanced glycation end-products (AGEs) and reactive oxygen species (ROS) in the corpus cavernosum tissue. These irritants can spark anomalous activations of diverse PCDs, which damage primary corpus cavernosum cells like cavernous nerve cells, endothelial cells, and myocytes, leading to ED. Hence, we reviewed current knowledge on the mechanisms and therapeutic potential of targeting PCDs in DMED, aiming to advance strategies for enhancing erectile function.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaquan Mao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaodong Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Wu L, Yu M, Liang H, Lin L, Li H, Chen G, Muhetaer H, Li J, Wu B, Jia X, Dang Y, Zheng G, Li C. SJB2-043, a USP1 Inhibitor, Suppresses A549 Cell Proliferation, Migration, and EMT via Modulation of PI3K/AKT/mTOR, MAPK, and Wnt Signaling Pathways. Curr Issues Mol Biol 2025; 47:155. [PMID: 40136409 PMCID: PMC11941171 DOI: 10.3390/cimb47030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) remains one of the most significant contributors to cancer-related mortality. This investigation explores the influence and underlying mechanisms of the USP1 inhibitor SJB2-043 on A549 cells, with the aim of advancing the development of anti-NSCLC therapeutics. METHODS Publicly available databases were utilized to assess USP1 expression and its association with the progression of NSCLC. Gene expression variations were ascertained through RNA sequencing, followed by the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway enrichment evaluations. Various doses of SJB2-043 were administered to A549 cells to evaluate its impact on cell multiplication, motility, apoptosis, and the cell cycle using CCK-8 assays, colony formation, wound healing, flow cytometry, and Western blotting (WB). RESULTS USP1 was found to be overexpressed in NSCLC specimens and linked to adverse prognosis. Treatment with SJB2-043 markedly inhibited A549 cell proliferation and migration, diminished clonogenic potential, and triggered apoptosis in a dose-dependent manner. Modifications in the cell cycle were observed, showing an elevated percentage of cells in the G2 phase while exhibiting a parallel decline in the G1 phase. WB examination demonstrated diminished protein levels of N-cadherin, CyclinB1, CDK1, C-myc, Bcl-2, p-ERK/ERK, p-p38/p38, p-JNK/JNK, p-AKT/AKT, and p-mTOR/mTOR, alongside an upregulation of E-cadherin, ZO-1, occludin, p53, Bax, p-β-catenin/β-catenin, and GSK3β. CONCLUSIONS SJB2-043 exerts a suppressive effect on A549 cell proliferation, migration, and epithelial-mesenchymal transition while enhancing apoptosis. These cellular effects appear to be mediated through the inhibition of the MAPK, Wnt/β-catenin, and PI3K/AKT/mTOR signaling cascades, in addition to modulation of the cell cycle.
Collapse
Affiliation(s)
- Lipeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Meng Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huosheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Long Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huajian Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guangyang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Halimulati Muhetaer
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bo Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| |
Collapse
|
34
|
Zhao R, Ma L, Li J, Liu S, Yang D, Liu G, Yang S. Adipose Tissue-Derived Exosome Maintains Metabolic Balance of Extracellular Matrix in Rat Nucleus Pulposus Cells. Int J Nanomedicine 2025; 20:2411-2425. [PMID: 40027872 PMCID: PMC11869899 DOI: 10.2147/ijn.s504649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose This study aimed to investigate the protective effect of adipose tissue-derived exosomes (AT-Exo) on rat nucleus pulposus cells (NPCs). Methods Ultracentrifugation was used to extract exosomes from rat adipose tissue. Transmission electron microscopy (TEM), Western blot, and nanoparticle tracking analysis (NTA) were used to characterize the exosomes. Tert-butyl hydrogen peroxide (TBHP) was used to induce apoptosis of rat NPCs. Cell viability was determined by CCK-8 assay. AT-Exo was administered to investigate its effect on rat NPCs using Western blot and immunofluorescence staining. Results AT-Exo was successfully extracted and characterized by NTA, TEM, and Western blots. Uptake assay showed that AT-Exo can be taken up by the NPCs. TBHP (60 μM) resulted in decreased cell viability and increased apoptosis of NPCs. Interestingly, AT-Exo protected NPCs against TBHP, indicated by increased cell viability, decreased apoptosis, upregulated Aggrecan and type II collagen deposition, and downregulated matrix metalloproteinase 3/13. Conclusion In summary, rat adipose tissue-derived exosomes can increase the levels of Aggrecan, type II collagen, and Bcl2, and decrease the levels of matrix metalloproteinase 3/13, cleaved caspase3, and Bax. Therefore, rat adipose tissue-derived exosomes can maintain metabolic balance of extracellular matrix and protect against apoptosis in rat nucleus pulposus cells.
Collapse
Affiliation(s)
- Ruoyu Zhao
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Ma
- Department of Spine Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Joan Li
- Medical School, Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
| | - Sen Liu
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Dalong Yang
- Department of Spine Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Guobin Liu
- Department of Orthopedic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Sidong Yang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
35
|
Deng YY, Ma XY, He PF, Luo Z, Tian N, Dong SN, Zhang S, Pan J, Miao PW, Liu XJ, Chen C, Zhu PY, Pang B, Wang J, Zheng LY, Zhang XK, Zhang MY, Zhang MZ. Integrated UPLC-ESI-MS/MS, network pharmacology, and transcriptomics to reveal the material basis and mechanism of Schisandra chinensis Fruit Mixture against diabetic nephropathy. Front Immunol 2025; 15:1526465. [PMID: 40046619 PMCID: PMC11879837 DOI: 10.3389/fimmu.2024.1526465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 05/13/2025] Open
Abstract
Backgrounds It has been regarded as an essential treatment option for diabetic nephropathy (DN) in Traditional Chinese medicine. Previous studies have demonstrated the anti-DN efficacy of Schisandra chinensis Fruit Mixture (SM); however, a comprehensive chemical fingerprint is still uncertain, and its mechanism of action, especially the potential therapeutic targets of anti-DN, needs to be further elucidated. Objective Potential mechanisms of SM action on DN were explored through network pharmacology and experimental validation. Methods The chemical composition of SM was analyzed using UPLC-ESI-MS/MS technology. Active bioactive components and potential targets of SM were identified using TCMSP, SwissDrugDesign, and SymMap platforms. Differentially expressed genes were determined using microarray gene data from the GSE30528 dataset. Related genes for DN were obtained from online databases, which include GeneCards, OMIM and DisGeNET. PPI networks and compound-target-pathway networks were constructed using Cytoscape. Functional annotation was performed using R software for GO enrichment and KEGG pathway analysis. The DN model was built for experimental validation using a high-sugar and high-fat diet combined with STZ induction. Hub targets and critical signaling pathways were detected using qPCR, Western blotting and immunofluorescence. Results Utilizing the UPLC-ESI-MS/MS coupling technique, a comprehensive analysis identified 1281 chemical components of SM's ethanol extract, with 349 of these components recognized as potential bioactive compounds through network pharmacology. Through this analysis, 126 shared targets and 15 HUB targets were pinpointed. Of these, JAK2 is regarded as the most critical gene. Enrichment analysis revealed that SM primarily operates within the PI3K/AKT signaling pathway. In vivo experiments confirmed that SM improved pathological injury and renal function in rats with DN while improving mitochondrial morphology and function and modulating the expression of proteins linked to apoptosis (cleaved-caspase-3, Bax, and Bcl-2) and pro-inflammatory factors (IL-6 and TNF-α). Mechanistically, SM alleviates DN primarily by suppressing the PI3K/AKT/mTOR and JAK2/STAT3 signaling pathways to fulfill the energy needs of renal tissues. Furthermore, molecular docking analysis provided direct validation of these findings. Conclusion The findings of this study offer initial indications of the active component and robust anti-inflammatory and anti-apoptotic characteristics of SM in the mitigation of DN, along with its capacity to safeguard the integrity and functionality of mitochondria. This research unequivocally validates the favorable anti-DN effects of SM, indicating its potential as a viable pharmaceutical agent for the management of DN.
Collapse
Affiliation(s)
- Yuan-Yuan Deng
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Peng-Fei He
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Luo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Tian
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Shao-Ning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Sai Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jian Pan
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Miao
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Xiang-Jun Liu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Cui Chen
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Yu Zhu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Yang Zheng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Kun Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | | | - Mian-Zhi Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
36
|
Wang D, Wang YS, Zhao HM, Lu P, Li M, Li W, Cui HT, Zhang ZY, Lv SQ. Plantamajoside improves type 2 diabetes mellitus pancreatic β-cell damage by inhibiting endoplasmic reticulum stress through Dnajc1 up-regulation. World J Diabetes 2025; 16:99053. [PMID: 39959264 PMCID: PMC11718491 DOI: 10.4239/wjd.v16.i2.99053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Plantamajoside (PMS) has shown potential in mitigating cell damage caused by high glucose (HG) levels. Despite this, the precise therapeutic effects of PMS on type 2 diabetes mellitus (T2DM) and the underlying regulatory mechanisms require further exploration. AIM To investigate PMS therapeutic effects on T2DM in mice and elucidate its mechanisms of action through in vivo and in vitro experiments. METHODS An in vitro damage model of MIN6 cells was established using HG and palmitic acid (PA). PMS's protective effect on cell damage was assessed. Next, transcriptomics was employed to examine how PMS treatment affects gene expression of MIN6 cells. Furthermore, the effect of PMS on protein processing in endoplasmic reticulum and apoptosis pathways was validated. A T2DM mouse model was used to validate the therapeutic effects and mechanisms of PMS in vivo. RESULTS PMS intervention ameliorated cell injury in HG + PA-induced MIN6 cell damage. Transcriptomic analysis revealed that protein processing in the endoplasmic reticulum and apoptosis pathways were enriched in cells treated with PMS, with significant downregulation of the gene Dnajc1. Further validation indicated that PMS significantly inhibited the expression of apoptosis-related factors (Bax, CytC) and endoplasmic reticulum stress (ERS)-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1. Additionally, the inhibitory effects of PMS on ERS and apoptosis were abolished upon Dnajc1 silencing. Furthermore, in vivo experiments demonstrated that PMS intervention effectively improved pancreatic damage, suppressed the expression of apoptosis-related factors (Bax, CytC), and ERS-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1 in a T2DM model mice. CONCLUSION PMS intervention could alleviate pancreatic tissue damage effectively. The mechanism of action involves Dnajc1 activation, which subsequently inhibits apoptosis and ERS, ameliorating damage to pancreatic β-cells.
Collapse
Affiliation(s)
- Duo Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Yuan-Song Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Hong-Min Zhao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Peng Lu
- Department of Endocrinology, Xianxian Hospital of Traditional Chinese Medicine of Hebei, Cangzhou 062250, Hebei Province, China
| | - Meng Li
- Graduate School, Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wei Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050299, Hebei Province, China
| | - Huan-Tian Cui
- The First School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 065000, Yunnan Province, China
| | - Zhong-Yong Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
- Zhong-Yong Zhang and Shu-Quan Lv
| | - Shu-Quan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
- Zhong-Yong Zhang and Shu-Quan Lv
| |
Collapse
|
37
|
He Z, Deng S, Wu Z, Cui Z, Mei H, Wang J, Wang K, Zhang Y. Angelica sinensis polysaccharide could alleviate the gastrointestinal damage in alcoholic fatty liver disease mice: Regulation of alcohol metabolism and enhancement of short-chain fatty acids utilization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119117. [PMID: 39551279 DOI: 10.1016/j.jep.2024.119117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dysfunction of the intestinal barrier was an important trigger for alcoholic liver damage and alcohol had brought about intestinal damage before causing liver damage. The root of Angelica sinensis (Oliv.) Diels, crucial traditional medicinal material, was widely utilized for its blood-invigorating, intestinal-lubricating and gynecological benefits. Angelica sinensis polysaccharide (ASP) was an essential natural active ingredient of Angelica sinensis and exhibited considerable potential for gastrointestinal protection. Nevertheless, the systematic research of ASP on the gastrointestinal tract remained insufficient. AIM OF THIS STUDY To systematically explore the protective effect and underlying mechanisms of ASP against alcohol-induced gastrointestinal injury, including the stomach, ileum and colon. MATERIALS AND METHODS The AFLD mice model was established via the intragastric administration of alcohol twice a day for one week. The protective effect of ASP on the representative segments of the gastrointestinal tract (stomach, ileum and colon) was subsequently studied after confirming its hepatoprotective activity. The impact of ASP on gastrointestinal alcohol metabolism was examined to explain its antioxidant and antiapoptotic activities. Furthermore, the effect of ASP on short-chain fatty acids (SCFA) in the colon and colonic contents was investigated to further enhance the understanding of the underlying mechanisms. RESULTS ASP could reduce oxidative stress and apoptosis in the gastrointestinal tract via regulating CYP2E1-mediated alcohol metabolism. Additionally, ASP could significantly increase the levels of FFAR2, FFAR3 and HCAR2 in colon, thereby promoting the utilization of SCFA. CONCLUSION ASP was proven for the first time to improve gastrointestinal damage caused by alcohol, indicating its enormous potential as a candidate medicine for the treatment of alcohol related gastrointestinal injury.
Collapse
Affiliation(s)
- Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Siyuan Deng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| |
Collapse
|
38
|
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J, Guo M, Wang J, Zhang F, Jiang Y, Liu X, Yang Z, Jiang X. Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders. J Neuroinflammation 2025; 22:34. [PMID: 39920753 PMCID: PMC11806845 DOI: 10.1186/s12974-025-03363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Fayan Zhang
- Heart Disease Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yifang Jiang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
39
|
Pan X, Liang T, Feng H, Liu W, Mou Q, Yan X. Toxicological landscape of Fuzi: a comprehensive study on the spatial distribution of toxicants and regional neurotoxicity variability in zebrafish. Front Pharmacol 2025; 15:1500527. [PMID: 39975580 PMCID: PMC11835858 DOI: 10.3389/fphar.2024.1500527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025] Open
Abstract
Fuzi, a Chinese herb widely used in clinical settings, exhibits varying levels of toxicity depending on its geographical origin. Diester-type alkaloids are the primary contributors to the toxicity of Fuzi. This study aims to investigate regional differences and underlying mechanisms of Fuzi-induced neurotoxicity across China. Matrix-assisted laser desorption/Ionization mass spectrometry imaging (MALDI-MSI) method was employed to map the spatial distribution of six key diester-type alkaloids from Fuzi samples originating from five major regions. The results showed that the diester-type alkaloids were primarily distributed in the cuticle of Anguo- and Ludian-Fuzi, in the cuticle, cork, and pith of Butuo-Fuzi, in the phloem and pith tissues of Chenggu-Fuzi, and in the cuticle, cork, inner phloem, and pith of Jiangyou-Fuzi. When zebrafish were exposed to a Fuzi decoction for 24 h, it was observed that Jiangyou-Fuzi induced the most significant neurobehavioral abnormalities, lipid peroxidation damage, and aberrant neurotransmitters release. RNA sequencing analysis further indicated that the amino acid metabolism, ErbB, cGMP-PKG, and p53 signaling pathways-regulated by changes in the expression of Glub, Mao, GAB1, PRKG1B, PSEN2, and BAXα genes were disrupted to varying extents by Fuzi from different origins. In summary, the regional variability in the neurotoxicity of Fuzi can be attributed to differences in the distribution of its active compounds and underlying mechanisms. Among the samples tested, Jiangyou-Fuzi exhibited the highest neurotoxicity, followed by Anguo-, Chenggu-, Ludian-, and Butuo-Fuzi.
Collapse
Affiliation(s)
- Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiying Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoxin Mou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Sui J, Zhang Y, Zhang L, Xia H. Identification and Evaluation of Hub Long Non-Coding RNAs and mRNAs in PM2.5-Induced Lung Cell Injury. Int J Mol Sci 2025; 26:911. [PMID: 39940682 PMCID: PMC11816485 DOI: 10.3390/ijms26030911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Exposure to air pollution, especially fine particulate matter (PM2.5), is closely linked to various adverse health effects, particularly in the respiratory system. The present study was designed to investigate the lncRNA-mRNA interactions in PM2.5-induced lung cell injury using weighted gene co-expression network analysis (WGCNA). We downloaded the gene expression data of GSE138870 from the Gene Expression Omnibus (GEO) database and screened for differentially expressed lncRNAs and mRNAs. We constructed co-expression modules with WGCNA. Furthermore, functional enrichment analysis was also performed. We also constructed lncRNA-mRNA co-expression networks and lncRNA-mRNA-pathway networks to identify key regulatory relationships. The results revealed several modules significantly correlated with PM2.5-induced lung injury, such as the turquoise and blue modules. Genes within these modules were enriched in pathways related to signal transduction, metabolism, and cancer. Hub lncRNAs in the turquoise module, including LOC100129034 and CROCCP2, were found to be co-expressed with mRNAs involved in apoptosis and proliferation regulation. In the blue module, lnc-CLVS2-2 and GARS1-DT were connected to genes related to cell migration, invasion, and lung injury. These findings contribute novel perspectives to the molecular mechanisms involved in PM2.5-induced lung injury and suggest that WGCNA could be a valuable tool for predicting and understanding this disease process.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (Y.Z.); (L.Z.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yanni Zhang
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (Y.Z.); (L.Z.)
| | - Linjie Zhang
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China; (J.S.); (Y.Z.); (L.Z.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
41
|
Li X, Xu R, Zhang D, Cai J, Zhou H, Song T, Wang X, Kong Q, Li L, Liu Z, He Z, Tang Z, Tan J, Zhang J. Baicalin: a potential therapeutic agent for acute kidney injury and renal fibrosis. Front Pharmacol 2025; 16:1511083. [PMID: 39911847 PMCID: PMC11795133 DOI: 10.3389/fphar.2025.1511083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is linked to significant morbidity, recurrence, and mortality. It is characterized by a fast and prolonged loss in renal function arising from numerous etiologies and pathogenic pathways. Renal fibrosis, defined as the excessive accumulation of collagen and proliferation of fibroblasts within renal tissues, contributes to the structural damage and functional decline of the kidneys, playing a pivotal role in the advancement of Chronic Kidney Disease (CKD). Until now, while continuous renal replacement therapy (CRRT) has been utilized in the management of severe AKI, there remains a dearth of effective targeted therapies for AKI stemming from diverse etiologies. Similarly, the identification of specific biomarkers and pharmacological targets for the treatment of renal fibrosis remains a challenge. Baicalin, a naturally occurring compound classified within the flavonoid group and commonly found in the Chinese herb Scutellaria baicalensis, has shown a range of pharmacological characteristics, such as antioxidant, anti-inflammatory, antifibrotic, antitumor and antiviral effects, as evidenced by research studies. Research shows that Baicalin has potential in treating kidney diseases like AKI and renal fibrosis. This review aims to summarize Baicalin's progress in these areas, including its molecular mechanism, application in treatment, and absorption, distribution, metabolism, and excretion. Baicalin's therapeutic effects are achieved through various pathways, including antioxidant, anti-inflammatory, antifibrosis, and regulation of apoptosis and cell proliferation. Besides, we also hope this review may give some enlightenment for treating AKI and renal fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library Administrative Office, Zunyi, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Liujin Li
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Tu M, Cai G, Ma L, Yan L, Wang T, Shi Z, Wang C, Chen Z. Effects of Different Levels of Lycium barbarum Flavonoids on Growth Performance, Immunity, Intestinal Barrier and Antioxidant Capacity of Meat Ducks. Antioxidants (Basel) 2025; 14:67. [PMID: 39857401 PMCID: PMC11761579 DOI: 10.3390/antiox14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In vitro findings on the biological functions of Lycium barbarum flavonoids (LBFs) as feed additives are limited. This study aimed to explore the effects of different concentrations of LBFs on the growth performance, immune function, intestinal barrier, and antioxidant capacity of meat ducks. A total of 240 one-day-old male meat ducks were randomly allocated to four groups, each receiving a basal diet supplemented with 0 (control), 250, 500, or 1000 mg/kg of LBFs for 42 d. Results: The results showed that dietary supplementation with 500 mg/kg of LBFs resulted in a significant increase in average daily feed intake, body weight, average daily gain, and feed conversion ratio. Dietary supplementation with 500 or 1000 mg/kg of LBFs resulted in significant decreases in serum levels of D-lactic acid and lipopolysaccharide. Dietary supplementation with 500 mg/kg LBFs significantly decreased diamine oxidase activity and enhanced the activities of catalase, total antioxidant capacity, and glutathione peroxidase in the jejunal mucosa, as well as the activity of total superoxide dismutase and the content of glutathione in the ileal mucosa, while significantly lowering the content of malondialdehyde in the ileal mucosa. Dietary supplementation with 500 mg/kg LBFs significantly up-regulated the mRNA expression of genes associated with intestinal barrier function and antioxidant capacity in the jejunal and ileal mucosa, as well as the protein expression of these antioxidant genes, and led to a significant reduction in the mRNA expression of pro-apoptotic and inflammatory-related genes. Conclusions: The addition of LBFs to the diet improved the growth performance, intestinal barrier function, immune response, and antioxidant capacity of the ducks, which may be closely associated with the activation of the Nrf2 signaling pathway and the inhibition of the NF-κB signaling pathway. The optimal dietary inclusion level of LBFs in ducks was 500 mg/kg.
Collapse
Affiliation(s)
- Minhang Tu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Gentan Cai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Longfei Ma
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Leyan Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Chao Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhe Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
43
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
45
|
Sirotkin AV, Romero-Navarro P, Loncová B, Fabová Z, Bartušová M, Harrath AH, Alonso F. Counteractive Effects of Copper Nanoparticles and Betacellulin on Ovarian Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1965. [PMID: 39683353 DOI: 10.3390/nano14231965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Copper nanoparticles (CuNPs) are known to affect many ovarian cell functions. CuNPs, prepared using a chemical reduction method, were fully characterized by different means (TEM, DLS, XRD, Z potential, XPS, and AES). The resulting colloidal suspension contained needle-like CuNPs aggregates made of a core of metallic copper and an oxidized surface of Cu2O and CuO. The separate and coupled effects of CuNPs and the growth factor betacellulin (BTC) were analyzed on the control of some basic functions of ovarian cells. With this purpose, porcine ovarian granulosa cells, together with CuNPs, BTC, and both (CuNPs + BTC), were cultured. Viability and BrDU tests, quantitative immunocytochemistry, TUNEL, and ELISA were used to evaluate markers of the S-phase (PCNA) and G-phase (cyclin B1) of the cell cycle, cell proliferation (BrDU incorporation), cytoplasmic/mitochondrial apoptosis (bax) and extrinsic (nuclear DNA fragmentation) markers, and the release of estradiol and progesterone. CuNPs were accumulated within the cells and were found to reduce all the markers of proliferation, but promoted all the markers of apoptosis and the release of steroid hormones. When added alone, BTC raised the expression of all cell viability and proliferation markers, depleted the expression of all apoptosis markers, and stimulated the release of both estradiol and progesterone. Furthermore, BTC prevented and even reversed the effect of CuNPs on all the measured parameters, whereas CuNPs mitigated BTC's effect on all the analyzed cell functions. These results support a direct toxic effect of CuNPs and a stimulatory effect of BTC on ovarian cell functions, as well as the capability of BTC to protect against the adverse effects of CuNPs.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia
| | - Paula Romero-Navarro
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Barbora Loncová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia
| | - Zuzana Fabová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia
| | - Michaela Bartušová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Francisco Alonso
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
46
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
Affiliation(s)
- Chun-Yu Ma
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
47
|
Fang P, Cheng S, Lai Y, Ma X, Lu K, Lu J, Li G, Yang E, Yang N, Gao W, Jiang R. Pharmacodynamic insights into maresin 1: Enhancing flap viability via the keap1/Nrf2 axis to control ROS-driven apoptosis and ferroptosis. Eur J Pharm Sci 2024; 203:106923. [PMID: 39368783 DOI: 10.1016/j.ejps.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Random flaps are widely used in tissue reconstruction, but the high incidence of flap necrosis after operation remains a significant challenge. Maresin 1 (MaR1), a mediator derived from docosahexaenoic acid, has been shown to have significant effects in resolving inflammation and promoting tissue regeneration. This study investigated the role of MaR1 in the survival of random flaps. Histological analysis, laser Doppler blood flow imaging, Masson trichrome staining, and survival area analysis were used to assess the viability of the flaps. Apoptosis, ferroptosis, oxidative stress, angiogenesis, and the underlying mechanisms were explored by examining the expression of specific molecules using immunofluorescence, western blotting, and other immunological and molecular biology techniques. The findings demonstrated that MaR1 could improve flap lifespan by significantly reducing oxidative stress, apoptosis, and ferroptosis, as well as by enhancing angiogenesis. The Keap1-Nrf2 pathway was upregulated by MaR1, which inhibited ROS-mediated apoptosis and ferroptosis. The protective effect of MaR1 on flap survival was abolished by ML385. Our findings indicate that MaR1 could be a novel therapeutic agent for enhancing flap treatment outcomes.
Collapse
Affiliation(s)
- Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sheng Cheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingzhou Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guangyao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Enhui Yang
- Institute of Albert, Wenzhou Medical University, Wenzhou, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
48
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
49
|
Cai J, Zhang Z, Chen L, Wang X, Zhong Y, Xie D, Liao W. LncRNA 93358 Aggravates the Apoptosis of Myocardial Cells After Ischemia-Reperfusion by Mediating the PI3K/AKT/mTOR Pathway. J Biochem Mol Toxicol 2024; 38:e70085. [PMID: 39651612 PMCID: PMC11626694 DOI: 10.1002/jbt.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
To investigate the impact of LncRNA 93358 on ischemia-reperfusion induced myocardial cell apoptosis and the underlying mechanism. After being subjected to hypoxia for 4 h, three models of hypoxia-reoxygenation (H/R) with reoxygenation times of 8, 16, and 24 h were established. The expression of LncRNA 93358 was detected by qPCR, and the most suitable conditions were selected for subsequent experiments. The LncRNA 93358 knockout rat myocardial cells were established by transfecting with shRNA-93358 and identified by the RT-PCR assay, followed by constructing the in vitro H/R model. H/R myocardial cells were treated with blank medium (Model), shRNA-NC (LncRNA 93358 NC), shRNA-93358 (LncRNA 93358 knock), and shRNA-93358 + LY294002 (LncRNA 93358 knockout+LY294002), respectively. Normal myocardial cells treated with blank medium was taken as the control group. The cell cycle and apoptosis were analyzed by the flow cytometry. The level of cellular SOD and MDA was measured by the ELISA assay. The expression level of LncRNA 93358 was determined by the RT-PCR assay and Western blot assay was utilized to evaluate the expression level of AKT1, p-AKT1, mTOR, p-mTOR, bcl-2, and Bax. Compared to control, the expression of LncRNA 93358 in H9C2 cells was significantly increased under hypoxic conditions for 4 h followed by reoxygenation for 8 h/16 h. Moreover, the expression of LncRNA 93358 was relatively higher under hypoxic conditions for 4 h followed by reoxygenation for 16 h. Compared to control, significantly lower p-mTOR/mTOR and p-AKT1/AKT1 level was observed in the model group, accompanied by the elevated MDA level, declined SOD level, increased apoptotic rate, enhanced arrest at S phase, upregulated Bax, and downregulated Bcl-2. Compared to the model and LncRNA 93358 NC group, the expression level of p-mTOR/mTOR and p-AKT1/AKT1 was significantly promoted in the LncRNA 93358 knock group, accompanied by the declined MDA level, increased SOD level, reduced apoptotic rate, increased arrest at G0/G1 phase, downregulated Bax, and upregulated Bcl-2, which were dramatically reversed in the LncRNA 93358 knockout+LY294002 group. LncRNA 93358 aggravated the apoptosis of myocardial cells after ischemia-reperfusion by mediating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jiumei Cai
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Zhiwei Zhang
- Department of Pediatric CardiologyGuangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangzhouChina
| | - Lingling Chen
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Xiaoping Wang
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yiming Zhong
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Dongyang Xie
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Wei Liao
- Department of CardiologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| |
Collapse
|
50
|
Wang H, Xu Z, Guo J, Li L, Tian Y, Fu S. Programmed cell death-related ABI1 is a critical mediator of abdominal aortic aneurysm. Eur J Med Res 2024; 29:557. [PMID: 39568082 PMCID: PMC11580652 DOI: 10.1186/s40001-024-02128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition characterized by localized dilation of the abdominal aorta, posing a significant risk of rupture and fatal hemorrhage. While surgical and endovascular repair techniques have advanced, the underlying mechanisms driving AAA development remain unclear, hindering the development of effective preventive and therapeutic strategies. Using bioinformatics analysis of publicly available data sets, the study identified a strong correlation between cell death (CD) score and different types of programmed cell death scores in AAA samples. WGCNA analysis revealed a module enriched in genes related to proteasome-mediated protein degradation, nuclear envelope, and endocytosis, significantly correlated with CD score. Further analysis identified ABI1 as a dominant feature gene, highlighting its potential role in AAA pathogenesis. In vitro validation using an Angiotensin II-induced AAA model in human aortic smooth muscle cells demonstrated that siRNA-mediated knockdown of ABI1 significantly reduced cell apoptosis, migration, and the expression of pro-apoptotic proteins, confirming ABI1's crucial role in promoting CD and AAA progression. The findings suggest that ABI1 may represent a promising therapeutic target for the prevention and treatment of AAA. Further research is warranted to fully understand the role of ABI1 in AAA and to develop targeted therapies based on this promising target.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Humans
- Apoptosis/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Angiotensin II/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Han Wang
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhihai Xu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jing Guo
- Department of Emergency, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lei Li
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu Tian
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|