1
|
Mayilswami S, Raval NP, Sharma S, Megharaj M, Mukherjee S. Exploring the terrestrial ecosystem hazards of perfluorooctanoic acid: a comparative acute and chronic study of Eisenia fetida responses in different soil types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4813-4824. [PMID: 39891808 DOI: 10.1007/s11356-025-36024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Human activities predominantly release perfluorooctanoic acid (PFOA) and other fluorinated chemicals, which are highly persistent, leading to long-term accumulation in organisms and posing significant health risks. Therefore, it is essential to study the long-term impacts of PFOA on terrestrial ecosystems using sentinel organisms such as earthworms. This research investigated the toxicity of PFOA on earthworms (Eisenia fetida) across three different soil types. An acute toxicity assay was conducted to assess the effects of PFOA on survival, growth, cellulase activity, lysosomal membrane stability, and avoidance behaviour. Concurrently, a chronic toxicity assay examined the impact on reproduction, specifically focusing on cocoon production and juvenile emergence. For the 14-day acute toxicity study, LC50 values were found to be 823.9 mg/kg, 894.9 mg/kg, and 672.2 mg/kg in alkaline, neutral, and OECD soils, respectively. Although PFOA showed lower toxicity in neutral soils, it still caused significant sublethal effects in all soil types. Chronic exposure to a concentration of 100 mg/kg significantly affected reproduction in all soils tested. Overall, the findings suggested that earthworms were effective sentinel organisms for evaluating the toxic potential of PFOA, with reproductive effects serving as particularly sensitive indicators of PFOA contamination.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Building X, Adelaide, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, University of Newcastle, Callaghan Newcastle, NSW, 2308, Australia
| | - Nirav Praduman Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, Solan, 173229, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan Newcastle, NSW, 2308, Australia
| | - Santanu Mukherjee
- School of Agriculture Sciences, Distt. Solan, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Ojemaye CY, Abegunde A, Green L, Petrik L. The efficacy of wastewater treatment plant on removal of perfluoroalkyl substances and their impacts on the coastal environment of False Bay, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64772-64795. [PMID: 39556229 PMCID: PMC11624228 DOI: 10.1007/s11356-024-35509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), which have their origins in both industrial processes and consumer products, can be detected at all treatment stages in wastewater treatment plants (WWTPs). Quantifying the emissions of PFAS from WWTPs into the marine environment is crucial because of their potential impacts on receiving aquatic ecosystems. In this study, the levels of five PFAS were measured in both influent and effluent sewage water samples obtained from a municipal WWTP, the discharges of which flow into False Bay, on the Indian Ocean coast of Cape Town, South Africa. Additionally, seawater, sediment, and biota samples from eight sites along the False Bay coast were also analysed. Results showed high prevalence of PFAS in the different environmental matrices. Perfluorononanoic acid was most dominant in all these matrices with maximum concentration in wastewater, 10.50 ng/L; seawater, 18.76 ng/L; marine sediment, 239.65 ng/g dry weight (dw); invertebrates, 0.72-2.45 µg/g dw; seaweed, 0.36-2.01 µg/g dw. The study used the chemical fingerprint of five PFASs detected in WWTP effluents to track their dispersion across a large, previously pristine marine environment and examined how each chemical accumulated in different marine organisms. The study also demonstrates that primary and secondary wastewater treatment processes cannot fully remove such compounds. There is thus a need to improve effluent quality before its release into the environment and promote continuous monitoring focusing on the sources of PFAS, including their potential transformation products, their environmental fate and ecological risks, particularly in areas receiving effluents from WWTP.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa.
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Adeola Abegunde
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
3
|
Forthun IH, Roelants M, Knutsen HK, Haug LS, Iszatt N, Schell LM, Jugessur A, Bjerknes R, Oehme NB, Madsen A, Bruserud IS, Juliusson PB. Exposure to Per- and Polyfluoroalkyl Substances and Timing of Puberty in Norwegian Boys: Data from the Bergen Growth Study 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16336-16346. [PMID: 39226441 PMCID: PMC11411722 DOI: 10.1021/acs.est.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants with endocrine-disruptive properties. Their impact on puberty in boys is unclear. In this cross-sectional study, we investigated the association between PFAS exposure and pubertal timing in 300 Norwegian boys (9-16 years), enrolled in the Bergen Growth Study 2 during 2016. We measured 19 PFAS in serum samples and used objective pubertal markers, including ultrasound-measured testicular volume (USTV), Tanner staging of pubic hair development, and serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. In addition to logistic regression of single pollutants and the sum of PFAS, Bayesian and elastic net regression were used to estimate the contribution of the individual PFAS. Higher levels of the sum of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS) were associated with later pubertal onset according to USTV (age-adjusted odds ratio (AOR): 2.20, 95% confidence interval (CI): 1.29, 3.93) and testosterone level (AOR: 2.35, 95% CI: 1.34, 4.36). Bayesian modeling showed that higher levels of PFNA and PFHxS were associated with later pubertal onset by USTV, while higher levels of PFNA and perfluoroundecanoic acid (PFUnDA) were associated with later pubertal onset by testosterone level. Our findings indicate that certain PFAS were associated with delay in male pubertal onset.
Collapse
Affiliation(s)
- Ingvild Halsør Forthun
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Mathieu Roelants
- Department of Public Health and Primary Care, Centre for Environment and Health KU Leuven, 3000 Leuven, Belgium
| | - Helle Katrine Knutsen
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Nina Iszatt
- Department of Food Safety, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Center for Sustainable Diets, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Lawrence M Schell
- Department of Epidemiology and Biostatistics, University at Albany, Albany, New York 12144, United States
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway
| | - Robert Bjerknes
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ninnie B Oehme
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andre Madsen
- Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Health Registry Research and Development, Norwegian Institute of Public Health, 5808 Bergen, Norway
| |
Collapse
|
4
|
Burdette T, Yakimavets V, Panuwet P, Ryan PB, Barr DB, Salamova A. Per- and polyfluoroalkyl substances (PFAS) in senior care facilities and older adult residents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172316. [PMID: 38593875 PMCID: PMC11075449 DOI: 10.1016/j.scitotenv.2024.172316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.
Collapse
Affiliation(s)
- Tret Burdette
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana B Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Burgoon LD, Clewell HJ, Cox T, Dekant W, Dell LD, Deyo JA, Dourson ML, Gadagbui BK, Goodrum P, Green LC, Vijayavel K, Kline TR, House-Knight T, Luster MI, Manning T, Nathanail P, Pagone F, Richardson K, Severo-Peixe T, Sharma A, Smith JS, Verma N, Wright J. Range of the perfluorooctanoate (PFOA) safe dose for human health: An international collaboration. Regul Toxicol Pharmacol 2023; 145:105502. [PMID: 38832926 DOI: 10.1016/j.yrtph.2023.105502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 06/06/2024]
Abstract
Many government agencies and expert groups have estimated a dose-rate of perfluorooctanoate (PFOA) that would protect human health. Most of these evaluations are based on the same studies (whether of humans, laboratory animals, or both), and all note various uncertainties in our existing knowledge. Nonetheless, the values of these various, estimated, safe-doses vary widely, with some being more than 100,000 fold different. This sort of discrepancy invites scrutiny and explanation. Otherwise what is the lay public to make of this disparity? The Steering Committee of the Alliance for Risk Assessment (2022) called for scientists interested in attempting to understand and narrow these disparities. An advisory committee of nine scientists from four countries was selected from nominations received, and a subsequent invitation to scientists internationally led to the formation of three technical teams (for a total of 24 scientists from 8 countries). The teams reviewed relevant information and independently developed ranges for estimated PFOA safe doses. All three teams determined that the available epidemiologic information could not form a reliable basis for a PFOA safe dose-assessment in the absence of mechanistic data that are relevant for humans at serum concentrations seen in the general population. Based instead on dose-response data from five studies of PFOA-exposed laboratory animals, we estimated that PFOA dose-rates 10-70 ng/kg-day are protective of human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anurag Sharma
- Nitte University Centre for Science Education and Research, India
| | | | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University Himachal Pradesh, India
| | | |
Collapse
|
6
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Bohannon ME, Narizzano AM, Guigni BA, East AG, Quinn MJ. Next-generation PFAS 6:2 fluorotelomer sulfonate reduces plaque formation in exposed white-footed mice. Toxicol Sci 2023; 192:97-105. [PMID: 36629485 DOI: 10.1093/toxsci/kfad006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
6:2 fluorotelomer sulfonate (6:2 FTS) has been used as a replacement for legacy per- and polyfluoroalkyl substances (PFAS). We assessed reproductive and developmental effects in a human-wildlife hybrid animal model based on the association of adverse effects linked to legacy PFAS with these sensitive life stages. In this study, white-footed mice were exposed orally to 0, 0.2, 1, 5, or 25 mg/kg-day 6:2 FTS for 112 days (4 weeks premating exposure plus at least 4 weeks mating exposure). Pregnancy and fertility indices were calculated, and litter production, total litter size, live litter size, stillbirths, litter loss, average pup weight, and pinna unfolding were assessed. Sex steroid and thyroid hormone serum levels were assessed. Body weight, histopathology, and immune function were also assessed in this study. Reproductive endpoints were not significantly altered in response to 6:2 FTS. Spleen weight increased in male mice dosed with 6:2 FTS. Immune function determined via a plaque-forming cell (PFC) assay was decreased in both male and female mice in the 2 highest doses. A low benchmark dose was calculated based on PFCs as the critical effect and was found to be 2.63 and 2.26 mg/kg-day 6:2 FTS in male and female mice, respectively. This study characterizes 6:2 FTS as being potentially immunotoxic with little evidence of effect on reproduction and development; furthermore, it models acceptable levels of exposure. These 2 pieces of information together will aid regulators in setting environmental exposure limits for this PFAS currently thought to be less toxic than other PFAS.
Collapse
Affiliation(s)
- Meredith E Bohannon
- Toxicology Directorate, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Allison M Narizzano
- Toxicology Directorate, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Blas A Guigni
- Toxicology Directorate, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Andrew G East
- Toxicology Directorate, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Michael J Quinn
- Toxicology Directorate, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| |
Collapse
|
8
|
East A, Dawson DE, Brady S, Vallero DA, Tornero-Velez R. A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models. TOXICS 2023; 11:163. [PMID: 36851038 PMCID: PMC9964825 DOI: 10.3390/toxics11020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across studies depending on the application and the state of the science. This scoping effort seeks to systematically map the current landscape of PFAS TK models by categorizing different trends and similarities across model type, PFAS, and use scenario. A literature review using Web of Science and SWIFT-Review was used to identify TK models used for PFAS. The assessment covered publications from 2005-2020. PFOA, the PFAS for which most models were designed, was included in 69 of the 92 papers, followed by PFOS with 60, PFHxS with 22, and PFNA with 15. Only 4 of the 92 papers did not include analysis of PFOA, PFOS, PFNA, or PFHxS. Within the corpus, 50 papers contained a one-compartment model, 17 two-compartment models were found, and 33 used physiologically based pharmacokinetic (PBTK) models. The scoping assessment suggests that scientific interest has centered around two chemicals-PFOA and PFOS-and most analyses use one-compartment models in human exposure scenarios.
Collapse
Affiliation(s)
- Alexander East
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA
- ToxStrategies LLC, 31B College Place, Asheville, NC 28801, USA
| | - Daniel E. Dawson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sydney Brady
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA
| | - Daniel A. Vallero
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Rogelio Tornero-Velez
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Dixon A, Hill D, McCord J, Strynar MJ, Ford J, Gray LE. Cumulative maternal and neonatal effects of combined exposure to a mixture of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) during pregnancy in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2022; 170:107631. [PMID: 36402036 PMCID: PMC9944680 DOI: 10.1016/j.envint.2022.107631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Carwile JL, Seshasayee SM, Aris IM, Rifas-Shiman SL, Claus Henn B, Calafat AM, Sagiv SK, Oken E, Fleisch AF. Prospective associations of mid-childhood plasma per- and polyfluoroalkyl substances and pubertal timing. ENVIRONMENT INTERNATIONAL 2021; 156:106729. [PMID: 34171588 PMCID: PMC8380705 DOI: 10.1016/j.envint.2021.106729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) may disrupt pubertal timing. Higher PFAS plasma concentrations have been associated with later pubertal timing in girls, but cross-sectional findings may be explained by reverse causation. OBJECTIVES To assess prospective associations between PFAS plasma concentrations in mid-childhood and markers of pubertal timing in male and female adolescents. METHODS We studied 640 children in Project Viva, a Boston-area prospective cohort. We examined associations of plasma concentrations of 6 PFAS measured at mean 7.9 (SD 0.8) years (2007-2010) with markers of pubertal timing. Parents reported a 5-item pubertal development score at early adolescence (mean 13.1 (SD 0.8) years) and reported age at menarche annually. We calculated age at peak height velocity using research and clinical measures of height. We used sex-specific linear and Cox proportional hazards regression to estimate associations of single PFAS with outcomes, and we used Bayesian Kernel Machine Regression (BKMR) to estimate associations of the PFAS mixture with outcomes. RESULTS Plasma concentrations were highest for perfluorooctane sulfonate (PFOS) [median (IQR) 6.4(5.6) ng/mL], followed by perfluorooctanoate (PFOA) [4.4(3.0) ng/mL]. In early adolescence, girls were further along in puberty than boys [pubertal development score mean (SD) 2.9 (0.7) for girls and 2.2(0.7) for boys; age at peak height velocity mean (SD) 11.2y (1.0) for girls and 13.1y (1.0) for boys]. PFAS was associated with later markers of pubertal timing in girls only. For example, each doubling of PFOA was associated with lower pubertal development score (-0.18 units; 95% CI: -0.30, -0.06) and older age at peak height velocity (0.23 years; 95% CI: 0.06, 0.40)]. We observed similar associations for PFOS, perfluorodecanoate (PFDA), and the PFAS mixture. PFAS plasma concentrations were not associated with age at menarche or markers of pubertal timing in boys. DISCUSSION Higher PFAS plasma concentrations in mid-childhood were associated with later onset of puberty in girls.
Collapse
Affiliation(s)
- Jenny L Carwile
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA.
| | - Shravanthi M Seshasayee
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon K Sagiv
- Division of Epidemiology, University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| |
Collapse
|
12
|
Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, Wei W, Polunas M, Goedken M, Slitt AL. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 2021; 462:152921. [PMID: 34464680 DOI: 10.1016/j.tox.2021.152921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of chemicals that are ubiquitous in the environment. Some of these chemicals, such as perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA), are found in human sera and have been shown to cause liver steatosis and reduce postnatal survival and growth in rodents. The purpose of this work is to evaluate the impact of diet and PFAS exposure to mouse dam (mus musculus) on the risk to pup liver and metabolism endpoints later in life, as well as evaluate PFAS partitioning to pups. Timed-pregnant dams were fed a standard chow diet or 60 % kcal high fat diet (HFD). Dams were administered either vehicle, 1 mg/kg PFOA, 1 mg/kg PFOS, 1 mg/kg PFHxS, or a PFAS mixture (1 mg/kg of each PFOA, PFOS, and PFHxS) daily via oral gavage from gestation day 1 until postnatal day (PND) 20. At PND 21, livers of dams and 2 pups of each sex were evaluated for lipid changes while remaining pups were weaned to the same diet as the dam for an additional 10 weeks. Dam and pup serum at PND 21 and PND 90 were also evaluated for PFAS concentration, alanine aminotransferase (ALT), leptin and adiponectin, and glycosylated hemoglobin A1c. Perinatal exposure to a HFD, as expected, increased pup body weight, maternal liver weight, pup liver triglycerides, pup serum ALT, and pup serum leptin. PFOA and the PFAS mixture increased liver weights, and. treatment with all three compounds increased liver triglycerides. The maternal HFD increased dam and pup serum PFAS levels, however, was protective against PFOA-induced increase in serum ALT and observed increases in liver triglycerides. The PFAS mixture had very distinct effects when compared to single compound treatment, suggesting some cumulative effects, particularly when evaluating PFAS transfer from dam to pup. This data highlights the importance of diet and mixtures when evaluating liver effect of PFAS and PFAS partitioning.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Emily M Kaye
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Jitka Bečanová
- Graduate School of Oceanography, University of Rhode Island, 215 S Ferry Rd, Narragansett, RI 02882, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marianne Polunas
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA.
| |
Collapse
|
13
|
Abdullah Soheimi SS, Abdul Rahman A, Abd Latip N, Ibrahim E, Sheikh Abdul Kadir SH. Understanding the Impact of Perfluorinated Compounds on Cardiovascular Diseases and Their Risk Factors: A Meta-Analysis Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168345. [PMID: 34444092 PMCID: PMC8391474 DOI: 10.3390/ijerph18168345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023]
Abstract
Perfluorinated compounds (PFCs) are non-biodegradable synthetic chemical compounds that are widely used in manufacturing many household products. Many studies have reported the association between PFCs exposure with the risk of developing cardiovascular diseases (CVDs). However, those reports are still debatable, due to their findings. Thus, this review paper aimed to analyse the association of PFCs compound with CVDs and their risk factors in humans by systematic review and meta-analysis. Google Scholar, PubMed and ScienceDirect were searched for PFCs studies on CVDs and their risk from 2009 until present. The association of PFCs exposure with the prevalence of CVDs and their risk factors were assessed by calculating the quality criteria, odds ratios (ORs), and 95% confidence intervals (CIs). CVDs risk factors were divided into serum lipid profile (main risk factor) and other known risk factors. The meta-analysis was then used to derive a combined OR test for heterogeneity in findings between studies. Twenty-nine articles were included. Our meta-analysis indicated that PFCs exposure could be associated with CVDs (Test for overall effect: z = 2.2, p = 0.02; Test for heterogeneity: I2 = 91.6%, CI = 0.92–1.58, p < 0.0001) and their risk factors (Test for overall effect: z = 4.03, p < 0.0001; Test for heterogeneity: I2 = 85.8%, CI = 1.00–1.14, p < 0.0001). In serum lipids, total cholesterol levels are frequently reported associated with the exposure of PFCs. Among PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure increased the risk of CVDs than other types of PFCs. Although the risk of PFOA and PFOS were positively associated with CVDs and their risk factors, more observational studies shall be carried out to identify the long-term effects of these contaminants in premature CVDs development in patients.
Collapse
Affiliation(s)
- Siti Suhana Abdullah Soheimi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Abd Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRINS), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia;
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
14
|
Owumi S, Bello T, Oyelere AK. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103667. [PMID: 33933708 DOI: 10.1016/j.etap.2021.103667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 05/28/2023]
Abstract
Ingestion of perfluorooctanoic acid (PFOA) elicits toxicities in the hepatorenal system. We investigated the effect of PFOA and N-acetylcysteine (NAC) on the hepatorenal function of rats treated thus: control, PFOA (5 mg/kg), NAC (50 mg/kg), PFOA + NAC (5 and 25 mg/kg), and PFOA + NAC (5 and 50 mg/kg). We observed that NAC significantly (p < 0.05) reduced PFOA-induced increase in hepatic and renal function biomarkers of toxicities relative to PFOA alone and alleviated (p < 0.05) decreases in antioxidant status. Increases in oxidative stress and lipid peroxidation in PFOA-treated rats were reverted to normal by NAC and abated increased pro-inflammatory mediators, and decreased anti-inflammatory cytokine both in the hepatorenal system PFOA treated rats. Histology of the kidney and liver indicated that NAC, abated the severity of PFOA-induced damage significantly. Our findings affirm further that oxido-inflammatory mediators involved in PFOA-mediated toxicity can be effectively blocked by NAC through its antioxidant activity.
Collapse
Affiliation(s)
- Solomon Owumi
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Taofeek Bello
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
15
|
Menger RF, Funk E, Henry CS, Borch T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 417:129133. [PMID: 37539085 PMCID: PMC10398537 DOI: 10.1016/j.cej.2021.129133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental contaminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes them important to detect to ensure environmental and human health. Multiple instrument-based methods exist for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust, and portable methods to detect PFAS in the field. This would allow environmental laboratories and other agencies to perform more frequent testing to comply with regulations. In addition, the general public would benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor would provide almost real-time data on PFAS concentrations that can also provide actionable information for water quality managers and consumers around the planet. In this review, we discuss the sensors that have been developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that should be considered during sensor development. Future research needs and commercialization challenges are also highlighted.
Collapse
Affiliation(s)
- Ruth F Menger
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Emily Funk
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Wang P, Fei P, Zhou C, Hong P. Stearic acid esterified pectin: Preparation, characterization, and application in edible hydrophobic pectin/chitosan composite films. Int J Biol Macromol 2021; 186:528-534. [PMID: 34116093 DOI: 10.1016/j.ijbiomac.2021.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 11/19/2022]
Abstract
This work investigated the modification of low-methoxy pectin with stearic anhydride through microwave action with 4-dimethylaminopyridine as catalyst. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that stearic acid was grafted on the pectin through esterification reaction, with the maximum stearic acid grafting ratio (SGR) of 10.7% for the modified pectin. The introduction of stearic acid was shown to significantly improve the emulsifying activity and stability of pectin. Composite films were prepared by blending the modified pectins and chitosan, and compared with the contact angle of 65.3° for the film with native low-methoxy pectin (PC0), the films with modified pectins showed a significant angle increase, with the highest contact angle reaching 101.9°, indicating a hydrophobic surface. Moreover, an appropriate amount of aliphatic chains could improve the tensile strength and elongation at break of the composite films due to the "anchoring effect".
Collapse
Affiliation(s)
- Pengkai Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China.
| |
Collapse
|
17
|
Andersen ME, Mallick P, Clewell HJ, Yoon M, Olsen GW, Longnecker MP. Using quantitative modeling tools to assess pharmacokinetic bias in epidemiological studies showing associations between biomarkers and health outcomes at low exposures. ENVIRONMENTAL RESEARCH 2021; 197:111183. [PMID: 33887277 DOI: 10.1016/j.envres.2021.111183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Biomarkers of exposure can be measured at lower and lower levels due to advances in analytical chemistry. Using these sensitive methods, some epidemiology studies report associations between biomarkers and health outcomes at biomarker levels much below those associated with effects in animal studies. While some of these low exposure associations may arise from increased sensitivity of humans compared with animals or from species-specific responses, toxicology studies with drugs, commodity chemicals and consumer products have not generally indicated significantly greater sensitivity of humans compared with test animals for most health outcomes. In some cases, these associations may be indicative of pharmacokinetic (PK) bias, i.e., a situation where a confounding factor or the health outcome itself alters pharmacokinetic processes affecting biomarker levels. Quantitative assessment of PK bias combines PK modeling and statistical methods describing outcomes across large numbers of individuals in simulated populations. Here, we first provide background on the types of PK models that can be used for assessing biomarker levels in human population and then outline a process for considering PK bias in studies intended to assess associations between biomarkers and health outcomes at low levels of exposure. After providing this background, we work through published examples where these PK methods have been applied with several chemicals/chemical classes - polychlorinated biphenyls (PCBs), perfluoroalkyl substances (PFAS), polybrominated biphenyl ethers (PBDE) and phthalates - to assess the possibility of PK bias. Studies of the health effects of low levels of exposure will be improved by developing some confidence that PK bias did not play significant roles in the observed associations.
Collapse
|
18
|
Wang Z, Zhang T, Wu J, Wei X, Xu A, Wang S, Wang Z. Male reproductive toxicity of perfluorooctanoate (PFOA): Rodent studies. CHEMOSPHERE 2021; 270:128608. [PMID: 33081999 DOI: 10.1016/j.chemosphere.2020.128608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial organic substance widely used for decades, which seriously threatens human health. This study aimed to identify human-relevant correlates between PFOA exposure and the male rodent reproductive system. We performed a systematic literature review of the relevant literature of PubMed, Cochrane Library databases, Web of Science and Embase from the establishment to April 2020. Studies included the effects of PFOA on the reproductive system of male rodents. The meta-analysis was performed on the basis of the following points: level of testosterone and estradiol in serum, development of reproductive organs, pathological changes of reproduction organs and parameters of semen. A series of 16 studies was enrolled in this study. The standard mean difference (SMD) for PFOA-related reproductive toxicity was summarised as -0.39 (95% confidence interval [CI]: 0.71, -0.07). The lower serum testosterone levels, decreased absolute testicular and epididymal weights, higher serum estradiol levels, elevated relative testicular and seminal vesicle weights and increased incidence of Leydig cell adenoma and percentage of abnormal sperm were observed in the exposed group compared with the control group. However, no statistical difference was found in the day of preputial separation of pups and percentage of motile sperm. In conclusion, PFOA exposure heightens the reproductive system damage in male rodents. However, many studies included in the review did not identify mechanisms by which PFOA induces changes to the male reproductive system, which is an area for additional study.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Jiajin Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Xiyi Wei
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Aiming Xu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
19
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Liu H, Pan Y, Jin S, Sun X, Jiang Y, Wang Y, Ghassabian A, Li Y, Xia W, Cui Q, Zhang B, Zhou A, Dai J, Xu S. Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124378. [PMID: 33139105 DOI: 10.1016/j.jhazmat.2020.124378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Experimental studies suggested per- and polyfluoroalkyl substances (PFASs) may disrupt estrogens in animals, however, the epidemiological evidence on the associations of PFASs with estrogens is sparse. We investigated the associations of legacy PFASs and their alternatives, including F-53B, the perfluorooctane sulfonate (PFOS) replacement that is specifically and commonly used in China, with estrogen concentrations in newborns. We quantified six PFASs and three estrogens in the cord sera of 942 newborns from a birth cohort in Wuhan, China, between 2013 and 2014. After adjusting for confounders and correcting for multiple comparisons, we observed that both legacy PFASs and their alternatives were associated with higher serum levels of estradiol (E2). Some of the PFASs were associated with increasing levels of estrone (E1) and estriol (E3). Analysis of PFASs in mixture using weighted quantile sum regressions showed that F-53B contributed 20.1% and 48.5% to the associations between PFASs and E1 and E2, respectively. This study provided epidemiological data on the associations between common PFAS exposures and estrogens in newborns. Additional toxicology studies are needed to fully understand the effects of PFASs on estrogens and the mechanisms.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuna Jin
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York 10016, United States
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States; Department of Population Health, New York University Grossman School of Medicine, New York 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York 10016, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Qianqian Cui
- Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China.
| |
Collapse
|
21
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Bil W, Zeilmaker M, Fragki S, Lijzen J, Verbruggen E, Bokkers B. Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:859-870. [PMID: 32729940 DOI: 10.1002/etc.4835] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 07/27/2020] [Indexed: 05/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) often occur together as contamination in exposure media such as drinking water or food. The relative potency factor (RPF) methodology facilitates the risk assessment of mixture exposure. A database of liver endpoints was established for 16 PFAS, using data with the same species (rat), sex (male), and exposure route (oral) and comparable exposure duration (42-90 d). Dose-response analysis was applied to derive the relative potencies of 3 perfluoroalkyl sulfonic acids (perfluorobutane sulfonic acid, perfluorohexane sulfonic acid, perfluorooctane sulfonic acid), 8 perfluoroalkyl carboxylic acids (perfluorobutanoic acid, perfluorohexanoic acid, perfluorononanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, perfluorotetradecanoic acid, perfluorohexadecanoic acid, perfluorooctadecanoic acid), 2 perfluoroalkyl ether carboxylic acids (tetrafluoro-2-[heptafluoropropoxy]propanoic acid, 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid]), and 2 fluorotelomer alcohols (6:2 FTOH, 8:2 FTOH) compared to perfluorooctanoic acid (PFOA), based on liver effects. In addition, the RPFs of 7 other perfluoroalkyl acids were estimated based on read-across. This resulted in the relative potencies of 22 PFAS compared to the potency of index compound PFOA. The obtained RPFs can be applied to measured PFAS quantities, resulting in the sum of PFOA equivalents in a mixture. This sum can be compared with an established PFOA concentration limit (e.g., in drinking water or food) or an external health-based guidance value (e.g., tolerable daily intake, acceptable daily intake, or reference dose) to estimate the risk resulting from direct oral exposure to mixtures. Assessing mixture exposure is particularly relevant for PFAS, with omnipresent exposure in our daily lives. Environ Toxicol Chem 2021;40:859-870. © 2020 SETAC.
Collapse
Affiliation(s)
- Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marco Zeilmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Styliani Fragki
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Lijzen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Eric Verbruggen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bas Bokkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
23
|
Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. TOXICS 2021; 9:45. [PMID: 33652875 PMCID: PMC7996760 DOI: 10.3390/toxics9030045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
The biological impacts of per- and polyfluorinated alkyl substances (PFAS) are linked to their protein interactions. Existing research has largely focused on serum albumin and liver fatty acid binding protein, and binding affinities determined with a variety of methods show high variability. Moreover, few data exist for short-chain PFAS, though their prevalence in the environment is increasing. We used molecular dynamics (MD) to screen PFAS binding to liver and intestinal fatty acid binding proteins (L- and I-FABPs) and peroxisome proliferator activated nuclear receptors (PPAR-α, -δ and -γ) with six perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs). Equilibrium dissociation constants, KDs, were experimentally determined via equilibrium dialysis (EqD) with liquid chromatography tandem mass spectrometry for protein-PFAS pairs. A comparison was made between KDs derived from EqD, both here and in literature, and other in vitro approaches (e.g., fluorescence) from literature. EqD indicated strong binding between PPAR-δ and perfluorobutanoate (0.044 ± 0.013 µM) and perfluorohexane sulfonate (0.035 ± 0.0020 µM), and between PPAR-α and perfluorohexanoate (0.097 ± 0.070 µM). Unlike binding affinities for L-FABP, which increase with chain length, KDs for PPARs showed little chain length dependence by either MD simulation or EqD. Compared with other in vitro approaches, EqD-based KDs consistently indicated higher affinity across different proteins. This is the first study to report PPARs binding with short-chain PFAS with KDs in the sub-micromolar range.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Emerson Christie
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Weixiao Cheng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Mandy Michalsen
- U.S. Army Engineer Research Development Center—Environmental Lab, Vicksburg, MS 39180, USA;
| | - Jennifer Field
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
- Secondary Appointment, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Conley JM, Lambright CS, Evans N, McCord J, Strynar MJ, Hill D, Medlock-Kakaley E, Wilson VS, Gray LE. Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2021; 146:106204. [PMID: 33126064 PMCID: PMC7775906 DOI: 10.1016/j.envint.2020.106204] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 05/05/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX) is an industrial replacement for the straight-chain perfluoroalkyl substance (PFAS), perfluorooctanoic acid (PFOA). Previously we reported maternal, fetal, and postnatal effects from gestation day (GD) 14-18 oral dosing in Sprague-Dawley rats. Here, we further evaluated the perinatal toxicity of HFPO-DA by orally dosing rat dams with 1-125 mg/kg/d (n = 4 litters per dose) from GD16-20 and with 10-250 mg/kg/d (n = 5) from GD8 - postnatal day (PND) 2. Effects of GD16-20 dosing were similar to those previously reported for GD14-18 dosing and included increased maternal liver weight, altered maternal serum lipid and thyroid hormone concentrations, and altered expression of peroxisome proliferator-activated receptor (PPAR) pathway genes in maternal and fetal livers. Dosing from GD8-PND2 produced similar effects as well as dose-responsive decreased pup birth weight (≥30 mg/kg), increased neonatal mortality (≥62.5 mg/kg), and increased pup liver weight (≥10 mg/kg). Histopathological evaluation of newborn pup livers indicated a marked reduction in glycogen stores and pups were hypoglycemic at birth. Quantitative gene expression analyses of F1 livers revealed significant alterations in genes related to glucose metabolism at birth and on GD20. Maternal serum and liver HFPO-DA concentrations were similar between dosing intervals, indicating rapid clearance, however dams dosed GD8 - PND2 had greater liver weight and gestational weight gain effects at lower doses than GD16-20 dosing, indicating the importance of exposure duration. Comparison of neonatal mortality dose-response curves between HFPO-DA and previously published perfluorooctane sulfonate (PFOS) data indicated that, based on serum concentration, the potency of these two PFAS are similar in the rat. Overall, HFPO-DA is a developmental toxicant in the rat and the spectrum of adverse effects is consistent with prior PFAS toxicity evaluations, such as PFOS and PFOA.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
25
|
Wang J, Pan Y, Wei X, Dai J. Temporal Trends in Prenatal Exposure (1998-2018) to Emerging and Legacy Per- and Polyfluoroalkyl Substances (PFASs) in Cord Plasma from the Beijing Cord Blood Bank, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12850-12859. [PMID: 32915549 DOI: 10.1021/acs.est.0c01877] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to developmental toxicity, prenatal exposure to per- and polyfluoroalkyl substances (PFASs) in animals may result in adverse effects on the fetus. However, little information is available on PFASs presence in the human cord plasma. Here, we measured the levels of 37 emerging and legacy PFASs in 650 cord plasma samples collected every 5 years spanning 1998 to 2018 by the Beijing Cord Blood Bank and evaluated changes in PFASs concentrations using generalized additive models. We observed an increase in the concentrations of 24 PFASs (Σ24PFASs) from 1998 to 2003 followed by a decrease every 5 years from 2003 to 2018. For legacy PFASs, similar trends were observed for PFOS, whereas PFOA levels did not decline until 2013. For emerging chemicals, 6:2 Cl-PFESA showed a similar trend as PFOS, and prenatal exposure to 6:2 Cl-PFESA could be traced back to 1998, with a median concentration of 0.411 ng/mL in plasma. Our data showed that prenatal exposure to legacy PFASs has gradually decreased in cord plasma from the Beijing Cord Blood Bank in recent years, and the discovery of the presence of emerging chemicals in 1998 suggested that further evaluation is needed to assess possible health risks to pregnant women and fetuses.
Collapse
Affiliation(s)
- Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofei Wei
- Beijing Cord Blood Bank, Beijing 100176, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Kim K, Bennett DH, Calafat AM, Hertz-Picciotto I, Shin HM. Temporal trends and determinants of serum concentrations of per- and polyfluoroalkyl substances among Northern California mothers with a young child, 2009-2016. ENVIRONMENTAL RESEARCH 2020; 186:109491. [PMID: 32361076 PMCID: PMC7363519 DOI: 10.1016/j.envres.2020.109491] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND/OBJECTIVE Human exposure to per- and polyfluoroalkyl substances (PFAS) has changed since the early 2000s, in part, because of the phase-out and replacement of some long-chain PFAS. Studies of PFAS exposure and its temporal changes have been limited to date mostly to adults and pregnant women. We examined temporal trends and determinants of PFAS serum concentrations among mothers with a young child who participated in the CHARGE (CHildhood Autism Risk from Genetics and Environment) case-control study. METHODS We quantified nine PFAS in serum samples collected from 2009 to 2016 in 450 Northern California mothers when their child was 2-5 years old. With five compounds that were detected in more than 50% of the samples, we performed multiple regression to estimate least square geometric means (LSGMs) of PFAS concentrations with adjustment for sampling year and other characteristics that may affect maternal concentrations (e.g., breastfeeding duration). We also used time-related regression coefficients to calculate percent changes over the study period. RESULTS LSGM concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonate (PFHxS) decreased over the study period [percent change (95% confidence interval): -10.7% (-12.7%, -8.7%); -10.8% (-12.9%, -8.5%); -8.0% (-10.5%, -5.5%), respectively]. On the other hand, perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) showed mixed time trends. Among the selected covariates, longer breastfeeding duration was associated with decreased maternal serum concentrations of PFOA, PFOS, PFHxS, PFNA and PFDA. CONCLUSIONS Our study demonstrated that body burden of some common long-chain PFAS among California mothers with a young child decreased over the study period and that breastfeeding appears to contribute to the elimination of PFAS in lactating mothers.
Collapse
Affiliation(s)
- Kyunghoon Kim
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| |
Collapse
|
27
|
Toxicology and carcinogenesis studies of perfluorooctanoic acid administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORT SERIES 2020:NTP-TR-598. [PMID: 33556048 PMCID: PMC8039881 DOI: 10.22427/ntp-tr-598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated alkyl substance (PFAS) with widespread exposure in the environment and human population. Lifetime exposure to this chemical is likely, which includes in utero and postnatal development. Previously conducted chronic carcinogenicity studies of PFOA began exposure after these critical periods of development, so it is unknown whether the carcinogenic response is altered if exposure during gestation and lactation is included. The current PFOA chronic studies were designed to assess the contribution of combined gestational and lactational exposure (herein referred to as perinatal exposure) to the chronic toxicity and carcinogenicity of PFOA. The hypothesis tested was that including exposure during gestation and lactation (perinatal exposure) with postweaning exposure would change the PFOA carcinogenic response quantitatively (more neoplasms) or qualitatively (different neoplasm types) compared to postweaning exposure alone. (Abstract Abridged).
Collapse
|
28
|
Dourson ML, Gadagbui B, Onyema C, McGinnis PM, York RG. Data derived Extrapolation Factors for developmental toxicity: A preliminary research case study with perfluorooctanoate (PFOA). Regul Toxicol Pharmacol 2019; 108:104446. [PMID: 31425727 DOI: 10.1016/j.yrtph.2019.104446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022]
Abstract
Guidelines of the United States Environmental Protection Agency (EPA, 1991) and the International Programme on Chemical Safety (IPCS, 2005) suggest two different default positions for dosimetric extrapolation from experimental animals to humans when the dosimetry of the critical effect is not known. The default position of EPA (1991) for developmental toxicity is to use peak concentration (or Cmax) for this dosimetric extrapolation. In contrast, IPCS (2005, page 39) states its default position for dosimetric choice in the absence of data is to use the area under the curve (or AUC). The choice of the appropriate dose metric is important in the development of either a Chemical Specific Adjustment Factor (CSAF) of IPCS (2005) or a Data Derived Extrapolation Factor (DDEF) of EPA (2014). This research shows the derivation of a DDEF for developmental toxicity for perfluorooctanoate (PFOA), a chemical of current interest. Here, identification of the appropriate dosimetric adjustment from a review of developmental effects identified by EPA (2016) is attempted. Although some of these effects appear to be related to Cmax, most appear to be related to the average concentration or its AUC, but only during the critical period of development for a particular effect. A comparison was made of kinetic data from PFOA exposure in mice with newly available and carefully monitored kinetic data in humans after up to 36 weeks of PFOA exposure in a phase 1 clinical trial by Elcombe et al. (2013). Using the average concentration during the various exposure windows of concern, the DDEF for PFOA was determined to be 1.3 or 14. These values are significantly different than comparable extrapolations by several other authorities based on differences in PFOA half-life among species. Although current population exposures to PFOA are generally much lower than both the experimental animal data and the clinical human study, the development of these DDEFs is consistent with current guidelines of both EPA (2014) and IPCS (2005).
Collapse
Affiliation(s)
| | - Bernard Gadagbui
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio, USA
| | - Chijioke Onyema
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
29
|
Breastfeeding as a Predictor of Serum Concentrations of Per- and Polyfluorinated Alkyl Substances in Reproductive-Aged Women and Young Children: A Rapid Systematic Review. Curr Environ Health Rep 2019; 5:213-224. [PMID: 29737463 DOI: 10.1007/s40572-018-0194-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Per- and polyfluorinated alkyl substances (PFASs) are synthetic chemicals widely detected in human serum, and at low levels in breast milk. We conducted a rapid systematic review on breastfeeding practices and serum concentrations of PFASs-specifically PFOS and PFOA-among reproductive-aged women and young children using the Navigation Guide systematic review methodology. RECENT FINDINGS We included 14 studies examining associations between breastfeeding and PFASs in infants/toddlers or pregnant/postnatal women. Breastfeeding was significantly associated with lower PFASs exposure among women and higher PFASs exposure among children. We concluded there was "sufficient" evidence supporting an association between breastfeeding and serum PFASs concentrations among women, and "limited" evidence of an association among children due to issues with sample size, confounding, and exposure assessment. These findings reinforce that lactation is an important excretion route of PFASs for women, and that breast milk may be an important exposure pathway for young children.
Collapse
|
30
|
Perfluorohexanoic acid toxicity, part I: Development of a chronic human health toxicity value for use in risk assessment. Regul Toxicol Pharmacol 2019; 103:41-55. [PMID: 30639337 DOI: 10.1016/j.yrtph.2019.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023]
Abstract
Perfluorohexanoic acid (PFHxA) is a short-chain, six-carbon perfluoroalkyl acid (PFAA) and is a primary impurity, degradant, and metabolite associated with the short-chain fluorotelomer-based chemistry used globally today. The transition to short-chain fluorotelomer-based products as a cornerstone in replacement fluorochemistry has raised questions regarding potential human health risks associated with exposure to fluorotelomer-based substances and therefore, PFHxA. Here, we present a critical review of data relevant to such a risk assessment, including epidemiological studies and in vivo and in vitro toxicity studies that examined PFHxA acute, subchronic, and chronic toxicity. Key findings from toxicokinetic and mode-of-action studies are also evaluated. Sufficient data exist to conclude that PFHxA is not carcinogenic, is not a selective reproductive or developmental toxicant, and does not disrupt endocrine activity. Collectively, effects caused by PFHxA exposure are largely limited to potential kidney effects, are mild and/or reversible, and occur at much higher doses than observed for perfluorooctanoic acid (PFOA). A chronic human-health-based oral reference dose (RfD) for PFHxA of 0.25 mg/kg-day was calculated using benchmark dose modeling of renal papillary necrosis from a chronic rat bioassay. This RfD is four orders of magnitude greater than the chronic oral RfD calculated by the U.S. Environmental Protection Agency for PFOA. The PFHxA RfD can be used to inform public health decisions related to PFHxA and fluorotelomer precursors for which PFHxA is a terminal degradant. These findings clearly demonstrate that PFHxA is less hazardous to human health than PFOA. The analyses presented support site-specific risk assessments as well as product stewardship initiatives for current and future short-chain fluorotelomer-based products.
Collapse
|
31
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
32
|
Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware LE. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review. Clin J Am Soc Nephrol 2018; 13:1479-1492. [PMID: 30213782 PMCID: PMC6218824 DOI: 10.2215/cjn.04670418] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Per- and polyfluoroalkyl substances (PFASs) are a large group of manufactured nonbiodegradable compounds. Despite increasing awareness as global pollutants, the impact of PFAS exposure on human health is not well understood, and there are growing concerns for adverse effects on kidney function. Therefore, we conducted a scoping review to summarize and identify gaps in the understanding between PFAS exposure and kidney health. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We systematically searched PubMed, EMBASE, EBSCO Global Health, World Health Organization Global Index, and Web of Science for studies published from 1990 to 2018. We included studies on the epidemiology, pharmacokinetics, or toxicology of PFAS exposure and kidney-related health, including clinical, histologic, molecular, and metabolic outcomes related to kidney disease, or outcomes related to the pharmacokinetic role of the kidneys. RESULTS We identified 74 studies, including 21 epidemiologic, 13 pharmacokinetic, and 40 toxicological studies. Three population-based epidemiologic studies demonstrated associations between PFAS exposure and lower kidney function. Along with toxicology studies (n=10) showing tubular histologic and cellular changes from PFAS exposure, pharmacokinetic studies (n=5) demonstrated the kidneys were major routes of elimination, with active proximal tubule transport. In several studies (n=17), PFAS exposure altered several pathways linked to kidney disease, including oxidative stress pathways, peroxisome proliferators-activated receptor pathways, NF-E2-related factor 2 pathways, partial epithelial mesenchymal transition, and enhanced endothelial permeability through actin filament modeling. CONCLUSIONS A growing body of evidence portends PFASs are emerging environmental threats to kidney health; yet several important gaps in our understanding still exist.
Collapse
Affiliation(s)
- John W. Stanifer
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; and
- Duke Global Health Institute
| | | | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; and
| | | | | | - L. Ebony Boulware
- Division of General Internal Medicine, Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
33
|
Fort DJ, Mathis MB, Guiney PD, Weeks JA. Evaluation of the developmental toxicity of perfluorooctanesulfonate in the Anuran, Silurana tropicalis. J Appl Toxicol 2018; 39:365-374. [DOI: 10.1002/jat.3727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 11/12/2022]
|
34
|
Lehmann GM, LaKind JS, Davis MH, Hines EP, Marchitti SA, Alcala C, Lorber M. Environmental Chemicals in Breast Milk and Formula: Exposure and Risk Assessment Implications. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:96001. [PMID: 30187772 PMCID: PMC6375394 DOI: 10.1289/ehp1953] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Human health risk assessment methods have advanced in recent years to more accurately estimate risks associated with exposure during childhood. However, predicting risks related to infant exposures to environmental chemicals in breast milk and formula remains challenging. OBJECTIVES Our goal was to compile available information on infant exposures to environmental chemicals in breast milk and formula, describe methods to characterize infant exposure and potential for health risk in the context of a risk assessment, and identify research needed to improve risk analyses based on this type of exposure and health risk information. METHODS We reviewed recent literature on levels of environmental chemicals in breast milk and formula, with a focus on data from the United States. We then selected three example publications that quantified infant exposure using breast milk or formula chemical concentrations and estimated breast milk or formula intake. The potential for health risk from these dietary exposures was then characterized by comparison with available health risk benchmarks. We identified areas of this approach in need of improvement to better characterize the potential for infant health risk from this critical exposure pathway. DISCUSSION Measurements of chemicals in breast milk and formula are integral to the evaluation of risk from early life dietary exposures to environmental chemicals. Risk assessments may also be informed by research investigating the impact of chemical exposure on developmental processes known to be active, and subject to disruption, during infancy, and by analysis of exposure-response data specific to the infant life stage. Critical data gaps exist in all of these areas. CONCLUSIONS Better-designed studies are needed to characterize infant exposures to environmental chemicals in breast milk and infant formula as well as to improve risk assessments of chemicals found in both foods. https://doi.org/10.1289/EHP1953.
Collapse
Affiliation(s)
- Geniece M Lehmann
- Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Judy S LaKind
- LaKind Associates, LLC, Catonsville, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew H Davis
- Office of Children's Health Protection, U.S. EPA, Washington, District of Columbia, USA
| | - Erin P Hines
- Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Satori A Marchitti
- Oak Ridge Institute for Science and Education (ORISE), ORD, U.S. EPA, Athens, Georgia, USA
| | - Cecilia Alcala
- Association of Schools and Programs of Public Health (ASPPH), ORD, U.S. EPA, Washington, District of Columbia, USA
| | | |
Collapse
|
35
|
Cao W, Liu X, Liu X, Zhou Y, Zhang X, Tian H, Wang J, Feng S, Wu Y, Bhatti P, Wen S, Sun X. Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a Chinese birth cohort. ENVIRONMENT INTERNATIONAL 2018; 116:197-205. [PMID: 29698896 DOI: 10.1016/j.envint.2018.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Although animal studies have found that perfluoroalkyl substances (PFASs) affect gestational and postnatal growth, the epidemiological findings are limited and not in agreement. We explored the associations of PFAS concentrations in umbilical cord blood with gestational and postnatal growth in China. Three hundred thirty-seven singleton newborns and their mothers were recruited from November 2013 to December 2015 in Zhoukou City, China. Umbilical cord blood was collected to measure eleven PFASs by liquid chromatography-mass spectrometry. The index of gestational and postnatal growth contained fetal weight, length, and head circumference. These were obtained at birth and at the follow-up investigation (mean 19 months). Exposed to higher perfluorooctanoic acid (PFOA) were connected with reduced length at birth (p for trend = 0.01) and decreased postnatal weight (β = -429.2 g; 95% CI: -858.4, -0.121 for 2nd VS. 1st). Exposed to perfluoroundecanoic acid (PFUdA) were positively associated with indications of gestational growth and postnatal growth (p for trend = 0.02 for birth length; p for trend = 0.04 for postnatal length). Exposed to higher perfluorododecanoic acid (PFDoA) were associated with lower birth weight (β = -122.9 g, 95% CI: -244.7 to -1.2 for 2nd VS. 1st), but higher postnatal length (p for trend = 0.03). Neonates in the highest exposure group of per-fluorohexanesulfonate (PFHxS) showed decreased birth length (β = -0.33 cm, 95% CI: -0.68 to -0.01, for 2nd VS. 1st), but increased postnatal head circumference (p for trend = 0.04). Increased PFOA concentrations was associated with shorter birth length only in girls (p for trend = 0.04), suggesting that the effect of PFASs on gestational growth were different between boys and girls. In utero exposure to PFASs may affect gestational and postnatal growth.
Collapse
Affiliation(s)
- Wencheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China
| | - Xiaofang Liu
- Analytical Chemistry, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Wuhan 430205, PR China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China
| | - Yan Zhou
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China
| | - Xiaotian Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China
| | - Haoyuan Tian
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, #27 Nan Wei Road, Beijing 100050, PR China
| | - Jin Wang
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, #27 Nan Wei Road, Beijing 100050, PR China
| | - Shixian Feng
- Institute of Chronic and Non-Communicable Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Nongye Donglu South, Zhengzhou 450016, PR China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment, #7 Panjiayuan Nanli, Beijing 100021, PR China
| | - Parveen Bhatti
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan 430079, PR China.
| | - Xin Sun
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, #27 Nan Wei Road, Beijing 100050, PR China.
| |
Collapse
|
36
|
Chang S, Butenhoff JL, Parker GA, Coder PS, Zitzow JD, Krisko RM, Bjork JA, Wallace KB, Seed JG. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod Toxicol 2018; 78:150-168. [PMID: 29694846 DOI: 10.1016/j.reprotox.2018.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
Potassium perfluorohexanesulfonate (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.
Collapse
Affiliation(s)
- Sue Chang
- 3M Company, Medical Department, St. Paul, MN 55144, United States.
| | | | - George A Parker
- Charles River Pathology Associates Inc, Durham NC 27703, United States
| | - Prägati S Coder
- Charles River Laboratories, Ashland, OH 44805, United States
| | | | - Ryan M Krisko
- 3M Company, Medical Department, St. Paul, MN 55144, United States
| | - James A Bjork
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Kendall B Wallace
- University of Minnesota Medical School, Duluth, MN 55812, United States
| | | |
Collapse
|
37
|
Zheng F, Sheng N, Zhang H, Yan S, Zhang J, Wang J. Perfluorooctanoic acid exposure disturbs glucose metabolism in mouse liver. Toxicol Appl Pharmacol 2017; 335:41-48. [DOI: 10.1016/j.taap.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
|
38
|
Worley RR, Moore SM, Tierney BC, Ye X, Calafat AM, Campbell S, Woudneh MB, Fisher J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. ENVIRONMENT INTERNATIONAL 2017; 106:135-143. [PMID: 28645013 PMCID: PMC5673082 DOI: 10.1016/j.envint.2017.06.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are considered chemicals of emerging concern, in part due to their environmental and biological persistence and the potential for widespread human exposure. In 2007, a PFAS manufacturer near Decatur, Alabama notified the United States Environmental Protection Agency (EPA) it had discharged PFAS into a wastewater treatment plant, resulting in environmental contamination and potential exposures to the local community. OBJECTIVES To characterize PFAS exposure over time, the Agency for Toxic Substances and Disease Registry (ATSDR) collected blood and urine samples from local residents. METHODS Eight PFAS were measured in serum in 2010 (n=153). Eleven PFAS were measured in serum, and five PFAS were measured in urine (n=45) from some of the same residents in 2016. Serum concentrations were compared to nationally representative data and change in serum concentration over time was evaluated. Biological half-lives were estimated for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS) using a one-compartment pharmacokinetic model. RESULTS In 2010 and 2016, geometric mean PFOA and PFOS serum concentrations were elevated in participants compared to the general U.S. POPULATION In 2016, the geometric mean PFHxS serum concentration was elevated compared to the general U.S. POPULATION Geometric mean serum concentrations of PFOA, PFOS, and perfluorononanoic acid (PFNA) were significantly (p≤0.0001) lower (49%, 53%, and 58%, respectively) in 2016 compared to 2010. Half-lives for PFOA, PFOS, and PFHxS were estimated to be 3.9, 3.3, and 15.5years, respectively. Concentrations of PFOA in serum and urine were highly correlated (r=0.75) in males. CONCLUSIONS Serum concentrations of some PFAS are decreasing in this residentially exposed community, but remain elevated compared to the U.S. general population.
Collapse
Affiliation(s)
- Rachel Rogers Worley
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
| | - Susan McAfee Moore
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Bruce C Tierney
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Atlanta, GA, USA
| | | | | | - Jeffrey Fisher
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
39
|
Rajamani U, Gross AR, Ocampo C, Andres AM, Gottlieb RA, Sareen D. Endocrine disruptors induce perturbations in endoplasmic reticulum and mitochondria of human pluripotent stem cell derivatives. Nat Commun 2017; 8:219. [PMID: 28794470 PMCID: PMC5550485 DOI: 10.1038/s41467-017-00254-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We delineate the effects upon physiological low-dose exposure to ubiquitous endocrine disrupting chemicals including, perfluoro-octanoic acid, tributyltin, and butylhydroxytoluene, in endocrine-active human-induced pluripotent stem cell-derived foregut epithelial cells and hypothalamic neurons. Endocrine disrupting chemicals induce endoplasmic reticulum stress, perturb NF-κB, and p53 signaling, and diminish mitochondrial respiratory gene expression, spare respiratory capacity, and ATP levels. As a result, normal production and secretion of appetite control hormones, PYY, α-MSH, and CART, are hampered. Blocking NF-κB rescues endocrine disrupting chemical-induced aberrant mitochondrial phenotypes and endocrine dysregulation, but not ER-stress and p53-phosphorylation changes.Harmful chemicals that disrupt the endocrine system and hormone regulation have been associated with obesity. Here the authors apply a human pluripotent stem cell-based platform to study the effects of such compounds on developing gut endocrine and neuroendocrine systems.
Collapse
Affiliation(s)
- Uthra Rajamani
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Camille Ocampo
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA
| | - Allen M Andres
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta A Gottlieb
- Metabolism and Mitochondrial Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Medicine, University of California, Los Angeles, CA, 90048, USA.
- iPSC Core, The David Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
40
|
Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, Lamb D, Liu Y, Duan L, Naidu R. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. ENVIRONMENT INTERNATIONAL 2017; 105:86-94. [PMID: 28521193 DOI: 10.1016/j.envint.2017.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure.
Collapse
Affiliation(s)
- Zhaomin Dong
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Joytishna Jit
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia; Future Industries Institute (FII), University of South Australia, University Parade, Mawson Lakes, SA 5095, Australia
| | - Bruce Kennedy
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Brian Priestly
- Australian Centre for Human Health Risk Assessment, School of Public Health & Preventive Medicine, Monash University, VIC 3004, Australia
| | - Jack Ng
- The University of Queensland, National Research Centre for Environmental Toxicology-Entox, Brisbane, Australia
| | - Dane Lamb
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
41
|
Valsecchi S, Conti D, Crebelli R, Polesello S, Rusconi M, Mazzoni M, Preziosi E, Carere M, Lucentini L, Ferretti E, Balzamo S, Simeone MG, Aste F. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:84-98. [PMID: 27156398 DOI: 10.1016/j.jhazmat.2016.04.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 05/05/2023]
Abstract
The evidence that in Northern Italy significant sources of perfluoroalkylacids (PFAA) are present induced the Italian government to establish a Working Group on Environmental Quality Standard (EQS) for PFAA in order to include some of them in the list of national specific pollutants for surface water monitoring according to the Water Framework Directive (2000/60/EC). The list of substances included perfluorooctanoate (PFOA) and related short chain PFAA such as perfluorobutanoate (PFBA), perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA) and perfluorobutanesulfonate (PFBS), which is a substitute of perfluorooctanesulfonate. For each of them a dossier collects available data on regulation, physico-chemical properties, emission and sources, occurrence, acute and chronic toxicity on aquatic species and mammals, including humans. Quality standards (QS) were derived for the different protection objectives (pelagic and benthic communities, predators by secondary poisoning, human health via consumption of fishery products and water) according to the European guideline. The lowest QS is finally chosen as the relevant EQS. For PFOA a QS for biota was derived for protection from secondary poisoning and the corresponding QS for water was back-calculated, obtaining a freshwater EQS of 0.1μgL-1. For PFBA, PFPeA, PFHxA and PFBS threshold limits proposed for drinking waters were adopted as EQS.
Collapse
Affiliation(s)
- Sara Valsecchi
- IRSA-CNR, Water Research Institute, Via del Mulino 19, 20861 Brugherio, Italy.
| | - Daniela Conti
- ISPRA- Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | - Riccardo Crebelli
- ISS-National Health Institute, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Polesello
- IRSA-CNR, Water Research Institute, Via del Mulino 19, 20861 Brugherio, Italy
| | - Marianna Rusconi
- IRSA-CNR, Water Research Institute, Via del Mulino 19, 20861 Brugherio, Italy
| | - Michela Mazzoni
- IRSA-CNR, Water Research Institute, Via del Mulino 19, 20861 Brugherio, Italy
| | - Elisabetta Preziosi
- IRSA-CNR, Water Research Institute,Via Salaria Km 29,300, Monterotondo Scalo Rome, 00015, Italy
| | - Mario Carere
- ISS-National Health Institute, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luca Lucentini
- ISS-National Health Institute, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emanuele Ferretti
- ISS-National Health Institute, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefania Balzamo
- ISPRA- Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | | | - Fiorella Aste
- Ministry of the Environment, Land and Sea, Via Cristoforo Colombo 44, 00147 Rome, Italy
| |
Collapse
|
42
|
Zhang X, Lohmann R, Dassuncao C, Hu XC, Weber AK, Vecitis CD, Sunderland EM. Source attribution of poly- and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2016; 3:316-321. [PMID: 28217711 PMCID: PMC5310642 DOI: 10.1021/acs.estlett.6b00255] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to poly and perfluoroalkyl substances (PFASs) has been associated with adverse health effects in humans and wildlife. Understanding pollution sources is essential for environmental regulation but source attribution for PFASs has been confounded by limited information on industrial releases and rapid changes in chemical production. Here we use principal component analysis (PCA), hierarchical clustering, and geospatial analysis to understand source contributions to 14 PFASs measured across 37 sites in the Northeastern United States in 2014. PFASs are significantly elevated in urban areas compared to rural sites except for perfluorobutane sulfonate (PFBS), N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA), perfluoroundecanate (PFUnDA) and perfluorododecanate (PFDoDA). The highest PFAS concentrations across sites were for perfluorooctanate (PFOA, 56 ng L-1) and perfluorohexane sulfonate (PFOS, 43 ng L-1) and PFOS levels are lower than earlier measurements of U.S. surface waters. PCA and cluster analysis indicates three main statistical groupings of PFASs. Geospatial analysis of watersheds reveals the first component/cluster originates from a mixture of contemporary point sources such as airports and textile mills. Atmospheric sources from the waste sector are consistent with the second component, and the metal smelting industry plausibly explains the third component. We find this source-attribution technique is effective for better understanding PFAS sources in urban areas.
Collapse
Affiliation(s)
- Xianming Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
- Corresponding author: Xianming Zhang, ; Tel: 617-495-2893
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island
| | - Clifton Dassuncao
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
| | - Xindi C. Hu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
| | - Andrea K. Weber
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
| | - Chad D. Vecitis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge MA USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston MA USA 02115
| |
Collapse
|
43
|
Lind DV, Priskorn L, Lassen TH, Nielsen F, Kyhl HB, Kristensen DM, Christesen HT, Steener J, Grandjean P, Jensen TK. Prenatal exposure to perfluoroalkyl substances and anogenital distance at 3 months of age as marker of endocrine disruption. Reprod Toxicol 2016:S0890-6238(16)30265-9. [PMID: 27421581 DOI: 10.1016/j.reprotox.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/13/2016] [Accepted: 07/09/2016] [Indexed: 11/22/2022]
Abstract
In the Odense child cohort, serum concentrations of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were measured in 649 pregnant women at approximately 12 weeks of gestation. Birth weight, head and abdominal circumferences were measured, and gestational age determined. Anogenital distance (AGD), i.e., the distance from the anus to the genital organs, penile width and body weight were measured 3 months after the expected date of birth in 511 children. PFOS, PFHxS, PFNA and PFDA were associated with a decreased AGD in girls (p-trend<0.05) after adjusting for age and weight-for-age standard deviation score. Specifically, PFOS in the highest quartile was associated with a 2.8mm (95% confidence intervals -4.5;-1.1) reduction in AGD in girls. No such tendencies were seen in boys. However, a tendency toward increased birth weight in girls and reduced in boys suggests that sex-dimorphic effects may occur from endocrine disrupting effects of these substances.
Collapse
Affiliation(s)
- Dorte Vesterholm Lind
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lærke Priskorn
- Rigshospitalet, Copenhagen University Hospital, Department of Growth and Reproduction, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tina Harmer Lassen
- Rigshospitalet, Copenhagen University Hospital, Department of Growth and Reproduction, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Henriette Boye Kyhl
- Odense University Hospital, Hans Christian Andersen Children's Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Odense Patient data Exploratory Network (OPEN), University of Southern Denmark, Odense, Denmark
| | - David Møbjerg Kristensen
- Laboratory of Genomic and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Henrik Thybo Christesen
- Odense University Hospital, Hans Christian Andersen Children's Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Odense University Hospital, Institute for Clinical Research, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Jan Steener
- Odense University Hospital, Department of Obstetrics and Gynaecology, Sdr. Boulevard 29, 5000 Odense C, Denmark; Odense University Hospital, Institute for Clinical Research, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA 02215, USA
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Odense University Hospital, Hans Christian Andersen Children's Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Odense Patient data Exploratory Network (OPEN), University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
44
|
Bach CC, Vested A, Jørgensen KT, Bonde JPE, Henriksen TB, Toft G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: a systematic review. Crit Rev Toxicol 2016; 46:735-55. [DOI: 10.1080/10408444.2016.1182117] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cathrine Carlsen Bach
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Horsens Regional Hospital, Horsens, Denmark
| | - Anne Vested
- Danish Ramazzini Center, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Section for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Kristian Tore Jørgensen
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Denmark
| |
Collapse
|
45
|
Zheng T, Zhang J, Sommer K, Bassig BA, Zhang X, Braun J, Xu S, Boyle P, Zhang B, Shi K, Buka S, Liu S, Li Y, Qian Z, Dai M, Romano M, Zou A, Kelsey K. Effects of Environmental Exposures on Fetal and Childhood Growth Trajectories. Ann Glob Health 2016; 82:41-99. [PMID: 27325067 PMCID: PMC5967632 DOI: 10.1016/j.aogh.2016.01.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Delayed fetal growth and adverse birth outcomes are some of the greatest public health threats to this generation of children worldwide because these conditions are major determinants of mortality, morbidity, and disability in infancy and childhood and are also associated with diseases in adult life. A number of studies have investigated the impacts of a range of environmental conditions during pregnancy (including air pollution, endocrine disruptors, persistent organic pollutants, heavy metals) on fetal and child development. The results, while provocative, have been largely inconsistent. This review summarizes up to date epidemiologic studies linking major environmental pollutants to fetal and child development and suggested future directions for further investigation.
Collapse
Affiliation(s)
- Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Providence, RI.
| | - Jie Zhang
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | | | - Bryan A Bassig
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Occupational and Environmental Epidemiology Branch, Bethesda, MD
| | - Xichi Zhang
- George Washington University, Washington, DC
| | - Jospeh Braun
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | - Shuangqing Xu
- Tongji School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Peter Boyle
- International Prevention Research Institute, Lyon, France
| | - Bin Zhang
- Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei, P.R. China
| | - Kunchong Shi
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | - Stephen Buka
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | - Siming Liu
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | - Yuanyuan Li
- Department of Epidemiology, Brown School of Public Health, Providence, RI; Tongji School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zengmin Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO
| | - Min Dai
- China National Cancer Center, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Megan Romano
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| | - Aifen Zou
- Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei, P.R. China
| | - Karl Kelsey
- Department of Epidemiology, Brown School of Public Health, Providence, RI
| |
Collapse
|
46
|
Martín J, Rodríguez-Gómez R, Zafra-Gómez A, Alonso E, Vílchez JL, Navalón A. Validated method for the determination of perfluorinated compounds in placental tissue samples based on a simple extraction procedure followed by ultra-high performance liquid chromatography-tandem mass spectrometry analysis. Talanta 2015; 150:169-76. [PMID: 26838396 DOI: 10.1016/j.talanta.2015.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Xenobiotic exposure during pregnancy is inevitable. Determination of perfluorinated compounds (PFCs), chemicals described as environmental contaminants by Public Health Authorities due to their persistence, bioaccumulation and toxicity, is a challenge. In the present work, a method based on a simplified sample treatment involving freeze-drying, solvent extraction and dispersive clean-up of the extracts using C18 sorbents followed by an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis was developed and validated for the determination of five perfluorinated carboxylic acids (C4-C8) and perfluorooctane sulfonate (PFOS) in placental tissue samples. The most influential parameters affecting the extraction method and clean-up were optimized using Design of Experiments (DOE). The method was validated using matrix-matched calibration. Found limits of detection (LODs) ranged from 0.03 to 2 ng g(-1) and limits of quantification (LOQs) from 0.08 to 6 ng g(-1), while inter- and intra-day variability was under 14% in all cases. Recovery rates for spiked samples ranged from 94% to 113%. The method was satisfactorily applied for the determination of compounds in human placental tissue samples collected at delivery from 25 randomly selected women.
Collapse
Affiliation(s)
- J Martín
- Department of Analytical Chemistry, Superior Polytechnic School, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - R Rodríguez-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| | - A Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain.
| | - E Alonso
- Department of Analytical Chemistry, Superior Polytechnic School, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - J L Vílchez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| | - A Navalón
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| |
Collapse
|
47
|
Worley RR, Fisher J. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat. Toxicol Appl Pharmacol 2015; 289:428-41. [PMID: 26522833 DOI: 10.1016/j.taap.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance.
Collapse
Affiliation(s)
- Rachel Rogers Worley
- Agency for Toxic Substances and Disease Registry, Division of Community Health Investigations, 4770 Buford Highway, Atlanta, GA 30341, United States; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602, United States.
| | - Jeffrey Fisher
- Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602, United States; Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, United States
| |
Collapse
|
48
|
Cariou R, Veyrand B, Yamada A, Berrebi A, Zalko D, Durand S, Pollono C, Marchand P, Leblanc JC, Antignac JP, Le Bizec B. Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns. ENVIRONMENT INTERNATIONAL 2015; 84:71-81. [PMID: 26232143 DOI: 10.1016/j.envint.2015.07.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 05/17/2023]
Abstract
One major concern regarding perfluoroalkyl acids (PFAAs) is their potential role in onset of health troubles consecutive to early exposure during the perinatal period. In the present work, the internal exposure levels of 18 targeted PFAAs were determined in ca. 100 mother-newborn pairs recruited in France between 2010 and 2013. In serum, the cumulated concentrations of the 7 most frequently detected compounds were 5.70ng/mL and 2.83ng/mL (median values) in maternal and cord serum, respectively. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexylesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) contributed to around 90% of the total PFAAs contamination, with concentration levels and contamination profiles in accordance with other published work in Europe. Levels measured in breast milk were far lower (20 to 150 fold) than those determined in serum. Associations between the different monitored substances as well as between levels determined in the different investigated biological matrices mostly do not appear statistically significant. The estimated materno-foetal transfer would be thus substance-dependant, mainly driven by the physico-chemical properties of the different PFAAs (nature of polar group and length of alkylated side chain). We conclude that trans-placental passage and breastfeeding are both significant routes of human exposure to PFAAs.
Collapse
Affiliation(s)
- Ronan Cariou
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Bruno Veyrand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Ami Yamada
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France; Risk Assessment Department - French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Alain Berrebi
- Service de gynécologie-obstétrique, CHU Paule-de-Viguier, 330, avenue de Grande-Bretagne, 31059 Toulouse, France
| | - Daniel Zalko
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Sophie Durand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Charles Pollono
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Philippe Marchand
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| | - Jean-Charles Leblanc
- Risk Assessment Department - French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Philippe Antignac
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France; INRA, Nantes F-44307, France.
| | - Bruno Le Bizec
- LUNAM Université, ONIRIS, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes F-44307, France
| |
Collapse
|
49
|
Wu H, Yoon M, Verner MA, Xue J, Luo M, Andersen ME, Longnecker MP, Clewell HJ. Can the observed association between serum perfluoroalkyl substances and delayed menarche be explained on the basis of puberty-related changes in physiology and pharmacokinetics? ENVIRONMENT INTERNATIONAL 2015; 82:61-8. [PMID: 26043300 DOI: 10.1016/j.envint.2015.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND An association between serum levels of two perfluoroalkyl substances (PFAS) and delayed age at menarche was reported in a cross-sectional study of adolescents. Because perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have half-lives of years, growth dilution and the development of a new route of excretion (menstruation) could account for some or all of the reported association. OBJECTIVES To assess how much of the epidemiologic association between PFAS and delayed menarche can be explained by the correlation of growth and maturation with PFAS body burden. METHODS We developed a Monte Carlo (MC) physiologically-based pharmacokinetic (PBPK) model of PFAS to simulate plasma PFAS levels in a hypothetical female population aged 2 to 20years old. Realistic distributions of physiological parameters as well as timing of growth spurts and menarche were incorporated in the model. The association between PFAS level and delayed menarche in the simulated data was compared with the reported association. RESULTS The prevalence of menarche, distributions of age-dependent physiological parameters, and quartiles of serum PFAS concentrations in the simulated subjects were comparable to those reported in the epidemiologic study. The delay of menarche in days per natural log increase in PFAS concentrations in the simulated data were about one third as large as the observed values. CONCLUSION The reported relationship between PFAS and age at menarche appears to be at least partly explained by pharmacokinetics rather than a toxic effect of these substances.
Collapse
Affiliation(s)
- Huali Wu
- The Hamner Institutes for Health Sciences, RTP, NC, USA
| | - Miyoung Yoon
- The Hamner Institutes for Health Sciences, RTP, NC, USA
| | - Marc-André Verner
- Department of Environmental Health, Harvard School of Public Health, Boston, USA
| | - Jianping Xue
- US Environmental Protection Agency, RTP, NC, USA
| | - Man Luo
- The Hamner Institutes for Health Sciences, RTP, NC, USA
| | | | | | | |
Collapse
|
50
|
Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds-A Mini-Review. NANOMATERIALS 2015; 5:981-1003. [PMID: 28347047 PMCID: PMC5312915 DOI: 10.3390/nano5020981] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022]
Abstract
Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties.
Collapse
|