1
|
Dingová D, Kučera M, Hodbod T, Fischmeister R, Krejci E, Hrabovská A. Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function. Am J Physiol Heart Circ Physiol 2025; 328:H526-H542. [PMID: 39836467 DOI: 10.1152/ajpheart.00672.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Cholinesterase (ChE) inhibitors are under consideration for use in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions. A battery of biochemical, microscopic, and physiological experiments was used to analyze two known ChE, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), in hearts of mutant mice lacking different ChE molecular forms. Overall, AChE activity was exceeded by BChE, while it was localized mainly in the atria and the ventricular epicardium of the heart base. AChE was anchored by collagen Q (ColQ) in the basal lamina or by PRiMA at the plasma membrane and co-localized with the neuronal marker TUJ1. In the absence of anchored AChE, the heart rate was unresponsive to a ChE inhibitor. BChE, the major ChE in the heart, was detected predominantly in ventricles, presumably as a precursor (soluble monomers/dimers). Mice lacking BChE were more sensitive to a ChE inhibitor. Nevertheless, the overall impact on heart physiology was subtle, showing mainly a role in cholinergic antagonism to the positive inotropic effect of β-adrenergic stimulation. Our results help to unravel the mechanisms of ChE in cardiovascular pathologies and provide a foundation to facilitate the design of novel, more effective pharmacotherapies, which may reduce morbidity and mortality of patients with various heart diseases.NEW & NOTEWORTHY Inhibition of cholinesterases has therapeutic potential in cardiovascular pathologies. Both acetylcholinesterase and butyrylcholinesterase are present in the heart. Each cholinesterase has distinct localization patterns in the heart and functions in cardiac physiology. Selective inhibition of acetylcholinesterase or butyrylcholinesterase may be used to alter specific cardiac functions. Butyrylcholinesterase polymorphism may have an impact on the outcome of the cholinesterase inhibitor treatment.
Collapse
Affiliation(s)
- Dominika Dingová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Matej Kučera
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- UMR-S 1180, Inserm, Université Paris-Saclay, Orsay, France
| | - Tibor Hodbod
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | | | - Eric Krejci
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Anna Hrabovská
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Lan H, Yang X, Wang M, Wang M, Huang X, Wang X. Iron overload regulates cognitive function in rats with minimal hepatic encephalopathy by inducing an increase in frontal butyrylcholinesterase activity. Front Aging Neurosci 2024; 16:1447965. [PMID: 39399316 PMCID: PMC11466795 DOI: 10.3389/fnagi.2024.1447965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aims This study aimed to investigate the effect of iron overload on acetylcholinesterase activity in the frontal lobe tissue of rats with minimal hepatic encephalopathy (MHE) and its relation to cognitive ability. By elucidating the potential mechanisms of cognitive impairment, this study may offer insights into novel therapeutic targets for MHE. Materials and methods Twelve Sprague-Dawley rats were purchased and randomly assigned to either the experimental or control group with six rats in each group. Following the induction of MHE, the Morris Water Maze (MWM) was utilized to assess spatial orientation and memory capacity. Subsequently, Magnetic Resonance Imaging (MRI) scans were performed to capture Quantitative Susceptibility Mapping (QSM) images of all rats' heads. Results Compared to the control group rats, the MHE model rats showed significantly reduced learning and memory capabilities as well as spatial orientation abilities (P < 0.05). Furthermore, the susceptibility values in the frontal lobe tissue of MHE model rats was significantly higher than that of the control group rats (P < 0.05), and the corresponding BuChE activity in the frontal lobe extract of model rats was significantly increased while BuChE activity in the peripheral blood serum was significantly decreased compared to the control group rats (P < 0.05). Meanwhile, our findings indicate a significant positive correlation between latency period and BuChE activity with susceptibility values in the MHE group. Conclusion The changes in BuChE activity in frontal lobe extract may be related to changes in spatial orientation and behavioral changes in MHE, and iron overload in the frontal lobe tissue may regulate changes in BuChE activity, BuChE levels appear to be iron-dependent.
Collapse
Affiliation(s)
- Hua Lan
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuhong Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minxing Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minglei Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xueying Huang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaodong Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
4
|
Samarelli F, Purgatorio R, Lopopolo G, Deruvo C, Catto M, Andresini M, Carrieri A, Nicolotti O, De Palma A, Miniero DV, de Candia M, Altomare CD. Novel 6-alkyl-bridged 4-arylalkylpiperazin-1-yl derivatives of azepino[4,3-b]indol-1(2H)-one as potent BChE-selective inhibitors showing protective effects against neurodegenerative insults. Eur J Med Chem 2024; 270:116353. [PMID: 38579622 DOI: 10.1016/j.ejmech.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity. Two compounds, namely 14c (IC50 = 163 nM) and 14d (IC50 = 65 nM), bearing at the nitrogen atom in position 6 a n-pentyl- or n-heptyl-bridged 4-phenethylpiperazin-1-yl chains, respectively, proved to be highly potent mixed-type inhibitors of both equine and human BChE isoforms, showing more than two order magnitude of selectivity over AChE. The study of binding kinetics through surface plasmon resonance (SPR) highlighted differences in their BChE residence times (8 and 47 s for 14c and 14d, respectively). Moreover, 14c and 14d proved to hit other mechanisms known to trigger neurodegeneration underlying AD and other CNS disorders. Unlike 14c, compound 14d proved also capable of inhibiting by more than 60% the in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide at 100 μM concentration. On the other hand, 14c was slightly better than 14d in counteracting, at 1 and 10 μM concentration, glutamate excitotoxicity, due to over-excitation of NMDA receptors, and hydrogen peroxide-induced oxidative stress assessed in neuroblastoma cell line SH-SY5Y. This paper is dedicated to Prof. Marcello Ferappi, former dean of the Faculty of Pharmacy of the University of Bari, in the occasion of his 90th birthday.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gianfranco Lopopolo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Caterina Deruvo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Michael Andresini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
5
|
Khudina OG, Grishchenko MV, Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Borisevich SS, Burgart YV, Saloutin VI, Charushin VN. Conjugates of amiridine and thiouracil derivatives as effective inhibitors of butyrylcholinesterase with the potential to block β-amyloid aggregation. Arch Pharm (Weinheim) 2024; 357:e2300447. [PMID: 38072670 DOI: 10.1002/ardp.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 02/04/2024]
Abstract
New amiridine-thiouracil conjugates with different substituents in the pyrimidine fragment (R = CH3 , CF2 Н, CF3 , (CF2 )2 H) and different spacer lengths (n = 1-3) were synthesized. The conjugates rather weakly inhibit acetylcholinesterase (AChE) and exhibit high inhibitory activity (IC50 up to 0.752 ± 0.021 µM) and selectivity to butyrylcholinesterase (BChE), which increases with spacer elongation; the lead compounds are 11c, 12c, and 13c. The conjugates are mixed-type reversible inhibitors of both cholinesterases and practically do not inhibit the structurally related off-target enzyme carboxylesterase. The results of molecular docking to AChE and BChE are consistent with the experiment on enzyme inhibition and explain the structure-activity relationships, including the rather low anti-AChE activity and the high anti-BChE activity of long-chain conjugates. The lead compounds displace propidium from the AChE peripheral anion site (PAS) at the level of the reference compound donepezil, which agrees with the mixed-type mechanism of AChE inhibition and the main mode of binding of conjugates in the active site of AChE due to the interaction of the pyrimidine moiety with the PAS. This indicates the ability of the studied conjugates to block AChE-induced aggregation of β-amyloid, thereby exerting a disease-modifying effect. According to computer calculations, all synthesized conjugates have an ADME profile acceptable for drugs.
Collapse
Affiliation(s)
- Olga G Khudina
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Sophia S Borisevich
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
6
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
7
|
Osman KA, Shaaban MMI, Ahmed NS. Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5662-5676. [PMID: 35980528 DOI: 10.1007/s11356-022-22580-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The in vivo effect of the oral sublethal doses of 3.014 mg kg-1 of IMI (1/25 LD50) for 1, 7, 14, and 28 days every other day on Japanese quail was investigated. The results revealed that certain biomarkers in the selected tissues of the quail such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), aminotransaminases (alanine aminotransferase, ALT, and aspartate aminotransaminase, AST), phosphatases (acid phosphatase, ACP, and alkaline phosphatase, ALP), lactate dehydrogenase (LDH), adenosine-triphosphatase (ATPase), glutathione-S-transferase (GST), lipid peroxidation (LPO), and blood glucose showed significant inductions, while significant reductions in the levels of glutathione-reduced (GSH), deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) were noticed. In this study, the molecular mechanisms of the toxic effects of imidacloprid on quails were elucidated regarding neurotoxicity, hepatotoxicity, oxidative stress, lipid peroxidation, antioxidant activity, and genotoxicity. Because IMI induced alterations in the levels of these biomarkers in Japanese quail; therefore, Japanese quail as a wild avian can be used as a suite bioindicator to detect imidacloprid toxicity.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt.
| | - Mahmoud M I Shaaban
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
8
|
Žnidaršič N, Štrbenc M, Grgurevič N, Snoj T. Potential revival of cholinesterase inhibitors as drugs in veterinary medicine. Front Vet Sci 2023; 10:1125618. [PMID: 36937006 PMCID: PMC10019356 DOI: 10.3389/fvets.2023.1125618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The cholinergic system is involved in the regulation of all organ systems and has acetylcholine (ACh) as almost its only neurotransmitter. Any substance is called cholinergic if it can alter the action of acetylcholine. Cholinesterases (ChEs) are enzymes that enable the hydrolysis of acetylcholine and in this way ensure homeostasis in cholinergic synapses. Cholinesterase inhibitors (ChEi) are a group of indirect-acting cholinergic agonists that influence the activity of the cholinergic system. Several compounds that can inhibit cholinesterases are of importance to veterinary medicine from pharmacological and toxicological perspective. The frequency of their use in veterinary medicine has fluctuated over the years and is now reduced to a minimum. They are mainly used in agriculture as pesticides, and some are rarely used as parasiticides for companion animals and livestock. In recent years, interest in the use of new cholinesterase inhibitors has increased since canine cognitive dysfunction (CCD) became a recognized and extensively studied disease. Similar to Alzheimer's disease (AD) in humans, CCD can be treated with cholinesterase inhibitors that cross the blood-brain barrier. In this review, the mammalian cholinergic system and the drugs that interact with cholinesterases are introduced. Cholinesterase inhibitors that can be used for the treatment of CCD are described in detail.
Collapse
|
9
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Youdim MBH. Site-activated multi target iron chelators with acetylcholinesterase (AChE) and monoamine oxidase (MAO) inhibitory activities for Alzheimer's disease therapy. J Neural Transm (Vienna) 2022; 129:715-721. [PMID: 35190910 DOI: 10.1007/s00702-022-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
The first class of site-activated chelators with dual inhibition of acetyl-cholinesterase (AChE) and monoamine oxidase (MAO), rationally designed for simultaneously targeting the multiple pathogenic processes in Alzheimer's disease (AD) without significantly disrupting healthy metal metabolism in the body are discussed. It is demonstrated that the novel prochelator 2 was a selective and potent MAO-A inhibitor in vitro (IC50: 0.0077 ± 0.0007 μM) with moderate inhibition of MAO-B (IC50: 7.90 ± 1.34 μM). In vitro prochelator 2 also selectively inhibited AChE in a time-dependent manner and reach maximum inhibition of AChE after 2 h preincubation (IC50: 0.52 ± 0.07 μM for AChE, versus 44.90 ± 6.10 μM for BuChE). Prochelator 2 showed little affinity for metal (Fe, Cu, and Zn) ions until it bound to and was activated by AChE that is located predominately in the brain, releasing an active iron chelator M30. M30 is an efficient chelator for metal (Fe, Cu, and Zn) ions with the capabilities to suppress oxidative stress, to selectively inhibit MAO-A and B in the brain, and to regulate cerebral biometals dyshomeostasis in vivo; M30 is also a neuroprotective-neurorestorative chelator with a broad spectrum of activities against β-amyloid (Aβ) generation, amyloid plaques and neurofibrillary tangles (NFT) formation, and Aβ aggregation induced by metal (Cu and Zn) ions. Both M30 and prochelator 2 were not toxic to Human SH-SY5Y neuroblastoma cells at low concentrations, but prochelator 2 shows limited cytotoxicity, at high concentrations. Together, these data suggest that prochelator 2 is a promise lead for simultaneously modulating multiple targets in AD.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Youdim Pharmaceutical, New Northern Industrial Park, 1 Ha- Tsmika St. Stern Building, Fl-3, P.O. Box 72, 2069207, Yokneam, Israel.
| |
Collapse
|
11
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
12
|
Polichnowski AJ, Williamson GA, Blair TE, Hoover DB. Autonomic and cholinergic mechanisms mediating cardiovascular and temperature effects of donepezil in conscious mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R871-R884. [PMID: 33851543 DOI: 10.1152/ajpregu.00360.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Donepezil is a centrally acting acetylcholinesterase (AChE) inhibitor with therapeutic potential in inflammatory diseases; however, the underlying autonomic and cholinergic mechanisms remain unclear. Here, we assessed effects of donepezil on mean arterial pressure (MAP), heart rate (HR), HR variability, and body temperature in conscious adult male C57BL/6 mice to investigate the autonomic pathways involved. Central versus peripheral cholinergic effects of donepezil were assessed using pharmacological approaches including comparison with the peripherally acting AChE inhibitor, neostigmine. Drug treatments included donepezil (2.5 or 5 mg/kg sc), neostigmine methyl sulfate (80 or 240 μg/kg ip), atropine sulfate (5 mg/kg ip), atropine methyl bromide (5 mg/kg ip), or saline. Donepezil, at 2.5 and 5 mg/kg, decreased HR by 36 ± 4% and 44 ± 3% compared with saline (n = 10, P < 0.001). Donepezil, at 2.5 and 5 mg/kg, decreased temperature by 13 ± 2% and 22 ± 2% compared with saline (n = 6, P < 0.001). Modest (P < 0.001) increases in MAP were observed with donepezil after peak bradycardia occurred. Atropine sulfate and atropine methyl bromide blocked bradycardic responses to donepezil, but only atropine sulfate attenuated hypothermia. The pressor response to donepezil was similar in mice coadministered atropine sulfate; however, coadministration of atropine methyl bromide potentiated the increase in MAP. Neostigmine did not alter HR or temperature, but did result in early increases in MAP. Despite the marked bradycardia, donepezil did not increase normalized high-frequency HR variability. We conclude that donepezil causes marked bradycardia and hypothermia in conscious mice via the activation of muscarinic receptors while concurrently increasing MAP via autonomic and cholinergic pathways that remain to be elucidated.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Tesha E Blair
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
13
|
Monoclonal antibodies to fetal bovine serum acetylcholinesterase distinguish between acetylcholinesterases from ruminant and non-ruminant species. Chem Biol Interact 2020; 330:109225. [PMID: 32795450 DOI: 10.1016/j.cbi.2020.109225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Two types of cholinesterases (ChEs) are present in mammalian blood and tissues: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE regulates neurotransmission by hydrolyzing acetylcholine at the postsynaptic membranes and neuromuscular junctions, BChE in plasma has been suggested to be involved in detoxifying toxic compounds. This study was undertaken to establish the identity of circulating ChE activity in plasmas from domestic animals (bovine, ovine, caprine, porcine and equine) by assessing sensitivity to AChE-specific inhibitors (BW284c51 and edrophonium) and BChE-specific inhibitors (dibucaine, ethopropazine and Iso-OMPA) as well as binding to anti-FBS AChE monoclonal antibodies (MAbs). Based on the inhibition of ChE activity by ChE-specific inhibitors, it was determined that bovine, ovine and caprine plasma predominantly contain AChE, while porcine and equine plasma contain BChE. Three of the anti-FBS AChE MAbs, 4E5, 5E8 and 6H9, inhibited 85-98% of enzyme activity in bovine, ovine and caprine plasma, confirming that the esterase in these plasmas was AChE. These MAbs did not bind to purified recombinant human or mouse AChE, demonstrating that these MAbs were specific for AChEs from ruminant species. These MAbs did not inhibit the activity of purified human BChE, or ChE activity in porcine and equine plasma, confirming that the ChE in these plasmas was BChE. Taken together, these results demonstrate that anti-FBS AChE MAbs can serve as useful tools for distinguishing between AChEs from ruminant and non-ruminant species and BChEs.
Collapse
|
14
|
Makhaeva GF, Rudakova EV, Kovaleva NV, Lushchekina SV, Boltneva NP, Proshin AN, Shchegolkov EV, Burgart YV, Saloutin VI. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2507-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Purgatorio R, de Candia M, Catto M, Carrieri A, Pisani L, De Palma A, Toma M, Ivanova OA, Voskressensky LG, Altomare CD. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. Eur J Med Chem 2019; 177:414-424. [PMID: 31158754 DOI: 10.1016/j.ejmech.2019.05.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the role of butyrylcholinesterase (BChE) in acetylcholine hydrolysis in the late stages of the Alzheimer's disease (AD), inhibitors of butyrylcholinesterase (BChE) have been recently envisaged, besides acetylcholinesterase (AChE) inhibitors, as candidates for treating mild-to-moderate AD. Herein, synthesis and AChE/BChE inhibition activity of some twenty derivatives of 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (HHAI) is reported. Most of the newly synthesized HHAI derivatives achieved the inhibition of both ChE isoforms with IC50s in the micromolar range, with a structure-dependent selectivity toward BChE. Apparently, molecular volume and lipophilicity do increase selectivity toward BChE, and indeed the N2-(4-phenylbutyl) HHAI derivative 15d, which behaves as a mixed-type inhibitor, resulted the most potent (IC50 0.17 μM) and selective (>100-fold) inhibitor toward either horse serum and human BChE. Moreover, 15d inhibited in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide and displayed neuroprotective effects in neuroblastoma SH-SY5Y cell line, significantly recovering (P < 0.001) cell viability when impaired by Aβ1-42 and hydrogen peroxide insults. Overall, this study highlighted HHAI as useful and versatile scaffold for developing new small molecules targeting some enzymes and biochemical pathways involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Catto
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Maddalena Toma
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St, 6, Moscow, 117198, Russian Federation
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
16
|
Sepčić K, Sabotič J, A. Ohm R, Drobne D, Jemec Kokalj A. First evidence of cholinesterase-like activity in Basidiomycota. PLoS One 2019; 14:e0216077. [PMID: 31039204 PMCID: PMC6490906 DOI: 10.1371/journal.pone.0216077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022] Open
Abstract
Cholinesterases (ChE), the enzymes whose primary function is the hydrolysis of choline esters, are widely expressed throughout the nature. Although they have already been found in plants and microorganisms, including ascomycete fungi, this study is the first report of ChE-like activity in fungi of the phylum Basidiomycota. This activity was detected in almost a quarter of the 45 tested aqueous fungal extracts. The ability of these extracts to hydrolyse acetylthiocholine was about ten times stronger than the hydrolytic activity towards butyrylthiocholine and propionylthiocholine. In-gel detection of ChE-like activity with acetylthiocholine indicated a great variability in the characteristics of these enzymes which are not characterized as vertebrate-like based on (i) differences in inhibition by excess substrate, (ii) susceptibility to different vertebrate acetylcholinesterase and butyrylcholinesterase inhibitors, and (iii) a lack of orthologs using phylogenetic analysis. Limited inhibition by single inhibitors and multiple activity bands using in-gel detection indicate the presence of several ChE-like enzymes in these aqueous extracts. We also observed inhibitory activity of the same aqueous mushroom extracts against insect acetylcholinesterase in 10 of the 45 samples tested; activity was independent of the presence of ChE-like activity in extracts. Both ChE-like activities with different substrates and the ability of extracts to inhibit insect acetylcholinesterase were not restricted to any fungal family but were rather present across all included Basidiomycota families. This study can serve as a platform for further research regarding ChE activity in mushrooms.
Collapse
Affiliation(s)
- Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robin A. Ohm
- Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht, The Netherlands
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
17
|
AlFadly ED, Elzahhar PA, Tramarin A, Elkazaz S, Shaltout H, Abu-Serie MM, Janockova J, Soukup O, Ghareeb DA, El-Yazbi AF, Rafeh RW, Bakkar NMZ, Kobeissy F, Iriepa I, Moraleda I, Saudi MN, Bartolini M, Belal AS. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167:161-186. [DOI: 10.1016/j.ejmech.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
|
18
|
Moodie LWK, Sepčić K, Turk T, FrangeŽ R, Svenson J. Natural cholinesterase inhibitors from marine organisms. Nat Prod Rep 2019; 36:1053-1092. [PMID: 30924818 DOI: 10.1039/c9np00010k] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Published between 1974 up to 2018Inhibition of cholinesterases is a common approach for the management of several disease states. Most notably, cholinesterase inhibitors are used to alleviate the symptoms of neurological disorders like dementia and Alzheimer's disease and treat myasthenia gravis and glaucoma. Historically, most drugs of natural origin have been isolated from terrestrial sources and inhibitors of cholinesterases are no exception. However, the last 50 years have seen a rise in the quantity of marine natural products with close to 25 000 reported in the scientific literature. A number of marine natural products with potent cholinesterase inhibitory properties have also been reported; isolated from a variety of marine sources from algae to ascidians. Representing a diverse range of structural classes, these compounds provide inspirational leads that could aid the development of therapeutics. The current paper aims to, for the first time, comprehensively summarize the literature pertaining to cholinesterase inhibitors derived from marine sources, including the first papers published in 1974 up to 2018. The review does not report bioactive extracts, only isolated compounds, and a specific focus lies on compounds with reported dose-response data. In vivo and mechanistic data is included for compounds where this is reported. In total 185 marine cholinesterase inhibitors and selected analogs have been identified and reported and some of the compounds display inhibitory activities comparable or superior to cholinesterase inhibitors in clinical use.
Collapse
Affiliation(s)
- Lindon W K Moodie
- Department of Chemistry, University of Umeå, Umeå, SE-901 87, Sweden
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert FrangeŽ
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Box 857, SE-501 15 Borås, Sweden.
| |
Collapse
|
19
|
Braid LR, Wood CA, Ford BN. Human umbilical cord perivascular cells: A novel source of the organophosphate antidote butyrylcholinesterase. Chem Biol Interact 2019; 305:66-78. [PMID: 30926319 DOI: 10.1016/j.cbi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada.
| | - Catherine A Wood
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada
| | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Box 4000 Station Main, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
20
|
The value of pretreatment serum butyrylcholinesterase level as a novel prognostic biomarker in patients with cervical cancer treated with primary (chemo-)radiation therapy. Strahlenther Onkol 2019; 195:430-440. [PMID: 30737542 PMCID: PMC6488555 DOI: 10.1007/s00066-019-01430-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022]
Abstract
Background Deficiency in butyrylcholinesterase (BChE), a condition commonly noticed in liver damage, inflammation, and malnutrition, has previously been associated with impaired prognosis in different malignancies. The aim of the present study was to investigate the value of pretreatment serum BChE levels as a prognostic biomarker in patients with cervical cancer treated with primary (chemotherapy-[chemo-])radiation therapy. Methods We retrospectively evaluated data of a consecutive series of patients with cervical cancer treated with primary (chemo-)radiation therapy between 1998 and 2015. Pretreatment serum BChE levels were correlated with clinico-pathological parameters and response to treatment. Uni- and multivariate survival analyses were performed to assess the association between decreased serum BChE levels and progression-free (PFS), cancer-specific (CSS), and overall survival (OS). Results A total of 356 patients were eligible for inclusion into the present study. The median (IQR) pretreatment serum BChE level was 6180 (4990–7710) IU/l. Lower serum BChE levels were associated with lower BMI (p < 0.001), advanced tumor stage (p = 0.04), poor treatment response (p = 0.002), the occurrence of disease recurrence (p = 0.003), and the risk of death (p < 0.001). In uni- and multivariate analyses, low pretreatment serum BChE levels were independently associated with shorter PFS (HR 1.8 [1.2–2.6]; p = 0.002), CSS (HR 2.2 [1.4–3.5], p < 0.001), and OS (HR 2.0 [1.4–2.9]; p < 0.001). Conclusions Low pretreatment serum BChE levels are associated with advanced tumor stage and poor response to treatment, and serve as an independent prognostic biomarker for shorter PFS, CSS, and OS in patients with cervical cancer treated with primary (chemo-)radiation therapy.
Collapse
|
21
|
Characterization of butyrylcholinesterase from porcine milk. Arch Biochem Biophys 2018; 652:38-49. [PMID: 29908755 DOI: 10.1016/j.abb.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Human butyrylcholinesterase (HuBChE) is under development for use as a pretreatment antidote against nerve agent toxicity. Animals are used to evaluate the efficacy of HuBChE for protection against organophosphorus nerve agents. Pharmacokinetic studies of HuBChE in minipigs showed a mean residence time of 267 h, similar to the half-life of HuBChE in humans, suggesting a high degree of similarity between BChE from 2 sources. Our aim was to compare the biochemical properties of PoBChE purified from porcine milk to HuBChE purified from human plasma. PoBChE hydrolyzed acetylthiocholine slightly faster than butyrylthiocholine, but was sensitive to BChE-specific inhibitors. PoBChE was 50-fold less sensitive to inhibition by DFP than HuBChE and 5-fold slower to reactivate in the presence of 2-PAM. The amino acid sequence of PoBChE determined by liquid chromatography tandem mass spectrometry was 91% identical to HuBChE. Monoclonal antibodies 11D8, mAb2, and 3E8 (HAH 002) recognized both PoBChE and HuBChE. Assembly of 4 identical subunits into tetramers occurred by noncovalent interaction with polyproline-rich peptides in PoBChE as well as in HuBChE, though the set of polyproline-rich peptides in milk-derived PoBChE was different from the set in plasma-derived HuBChE tetramers. It was concluded that the esterase isolated from porcine milk is PoBChE.
Collapse
|
22
|
Ahmad H, Ahmad S, Ali M, Latif A, Shah SAA, Naz H, Ur Rahman N, Shaheen F, Wadood A, Khan HU, Ahmad M. Norditerpenoid alkaloids of Delphinium denudatum as cholinesterase inhibitors. Bioorg Chem 2018; 78:427-435. [PMID: 29698893 DOI: 10.1016/j.bioorg.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Three new norditerpenoids alkaloids, 1β-hydroxy,14β-acetyl condelphine (1), jadwarine-A (2), jadwarine-B (3) along with two known alkaloids isotalatizidine hydrate (4) and dihydropentagynine (5) were isolated from medicinal plant Delphinium denudatum. The structures of natural products 1-5 were established on the basis of HR-EIMS, 1H and 13C NMR (1D & 2D) spectroscopic data as well as by comparison from literature data. The structures of compound 1 and 4 were also confirmed by single crystal X-ray diffraction studies. In-vitro AChE and BChE enzyme inhibitory activities of compounds 1-5 and molecular docking studies were performed to investigate the possible molecular inhibitory mechanism of the isolated natural products. Compound 2, 4 and 5 showed competitive inhibitory effects by inhibiting AChE and BChE, respectively, while 1 and 3 showed non-competitive inhibition. This work is the first report that provides a supporting evidence about the use of constituents of Delphinium denudatum in cerebral dementia and Alzheimer diseases.
Collapse
Affiliation(s)
- Hanif Ahmad
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan
| | - Shujaat Ahmad
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan; Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir (U), 18000 KP, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Humera Naz
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Najeeb Ur Rahman
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan
| | - Farzana Shaheen
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Chakdara, Dir (L) 18550, KP, Pakistan.
| |
Collapse
|
23
|
In Vitro Evaluation of Serine Hydrolase Inhibitors. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Košak U, Brus B, Knez D, Žakelj S, Trontelj J, Pišlar A, Šink R, Jukič M, Živin M, Podkowa A, Nachon F, Brazzolotto X, Stojan J, Kos J, Coquelle N, Sałat K, Colletier JP, Gobec S. The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. J Med Chem 2017; 61:119-139. [DOI: 10.1021/acs.jmedchem.7b01086] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Urban Košak
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Boris Brus
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Jukič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Živin
- Institute
of Pathological Physiology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Adrian Podkowa
- Faculty
of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny
sur Orge, France
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny
sur Orge, France
| | - Jure Stojan
- Institute
of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov
trg 2, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Nicolas Coquelle
- University Grenoble Alpes, and CNRS and CEA, IBS, F-38044 Grenoble, France
| | - Kinga Sałat
- Faculty
of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | | | - Stanislav Gobec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Nwidu LL, Elmorsy E, Thornton J, Wijamunige B, Wijesekara A, Tarbox R, Warren A, Carter WG. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. PHARMACEUTICAL BIOLOGY 2017; 55:1875-1883. [PMID: 28629287 PMCID: PMC6130458 DOI: 10.1080/13880209.2017.1339283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 06/03/2017] [Indexed: 05/02/2023]
Abstract
CONTEXT There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). OBJECTIVE The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. MATERIALS AND METHODS Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. RESULTS Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. DISCUSSION AND CONCLUSIONS Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
Collapse
Affiliation(s)
- Lucky Legbosi Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jack Thornton
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Buddhika Wijamunige
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Anusha Wijesekara
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Rebecca Tarbox
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Averil Warren
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Wayne Grant Carter
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
26
|
Ahmad H, Ahmad S, Khan E, Shahzad A, Ali M, Tahir MN, Shaheen F, Ahmad M. Isolation, crystal structure determination and cholinesterase inhibitory potential of isotalatizidine hydrate from Delphinium denudatum. PHARMACEUTICAL BIOLOGY 2017; 55:680-686. [PMID: 28033733 PMCID: PMC6130761 DOI: 10.1080/13880209.2016.1240207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/19/2016] [Indexed: 06/01/2023]
Abstract
CONTEXT Delphinium denudatum Wall (Ranunculaceae) is a rich source of diterpenoid alkaloids and is widely used for the treatment of various neurological disorders such as epilepsy, sciatica and Alzheimer's disease. OBJECTIVE The present study describes crystal structure determination and cholinesterase inhibitory potential of isotalatazidine hydrate isolated from the aerial part of Delphinium denudatum. MATERIALS AND METHODS Phytochemical investigation of Delphinium denudatum resulted in the isolation of isotalatazidine hydrate in crystalline form. The molecular structure of the isolated compound was established by X-ray diffraction. The structural data (bond length and angles) of the compound were calculated by Density Functional Theory (DFT) using B3LYP/6-31 + G (p) basis set. The cholinesterase inhibitory potential of the isolated natural product was determined at various concentrations (62.5, 125, 250, 500 and 1000 μg/mL) followed by molecular docking to investigate the possible inhibitory mechanism of isotalatazidine hydrate. RESULTS The compound crystallized in hexagonal unit cell with space group P65. Some other electronic properties such as energies associated with HOMO-LUMO, band gaps, global hardness, global electrophilicity, electron affinity and ionization potential were also calculated by means of B3LYP/6-31 + G (p) basis set. The compound showed competitive type inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 12.13 μM and 21.41 μM, respectively. DISCUSSION AND CONCLUSION These results suggest that isotalatazidine hydrate is a potent dual cholinesterase inhibitor and can be used as a target drug in Alzheimer diseases. This is first report indicating isotalatazidine hydrate with anticholinesterase potential.
Collapse
Affiliation(s)
- Hanif Ahmad
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
| | - Shujaat Ahmad
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, KP, Pakistan
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
| | - Adnan Shahzad
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
| | | | - Farzana Shaheen
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS) University of Karachi, Karachi, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, ChakdaraKP, Pakistan
| |
Collapse
|
27
|
Nisa MU, Munawar MA, Iqbal A, Ahmed A, Ashraf M, Gardener QTAA, Khan MA. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors. Eur J Med Chem 2017; 138:396-406. [DOI: 10.1016/j.ejmech.2017.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
28
|
Abdel-Salam OME, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA. Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. ASIAN PAC J TROP MED 2017; 10:773-786. [PMID: 28942826 DOI: 10.1016/j.apjtm.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effect of NG-nitro-l-arginine methyl ester (l-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, and 7-nitroindazole (7-NI), a selective neuronal NOS inhibitor, on oxidative stress and tissue damage in brain and liver and on DNA damage of peripheral blood lymphocytes in malathion intoxicated rats. METHODS Malathion (150 mg/kg) was given intraperitoneally (i.p.) along with l-NAME or 7-NI (10 or 20 mg/kg, i.p.) and rats were euthanized 4 h later. The lipid peroxidation product malondialdehyde (MDA), nitric oxide (nitrite), reduced glutathione (GSH) concentrations and paraoxonase-1 (PON-1) activity were measured in both brain and liver. Moreover, the activities of glutathione peroxidase (GPx) acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), total antioxidant capacity (TAC), glucose concentrations were determined in brain. Liver enzyme determination, Comet assay, histopathological examination of brain and liver sections and inducible nitric oxide synthase (iNOS) immunohistochemistry were also performed. RESULTS (i) Rats treated with only malathion exhibited increased nitric oxide and lipid peroxidation (malondialdehyde) accompanied with a decrease in GSH content, and PON-1 activity in brain and liver. Glutathione peroxidase activity, TAC, glucose concentrations, AChE and BChE activities were decreased in brain. There were also raised liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and increased DNA damage of peripheral blood lymphocytes (Comet assay). Malathion caused marked histopathological changes and increased the expression of iNOS in brain and liver tissues. (ii) In brain of malathion-intoxicated rats, l-NAME or 7-NI resulted in decreased nitrite and MDA contents while increasing TAC and PON1 activity. Reduced GSH and GPx activity showed an increase by l-NAME. AChE activity increased by 20 mg/kg l-NAME and 10 mg/kg 7-NI. AChE activity decreased by the higher dose of 7-NI while either dose of 7-NI resulted in decreased BChE activity. (iii) In liver of malathion-intoxicated rats, decreased MDA content was observed after l-NAME or 7-NI. Nitrite level was unchanged by l-NAME but increased after 7-NI which also resulted in decreased GSH concentration and PON1 activity. Either inhibitor resulted in decreased liver ALT activity. (iv) DNA damage of peripheral blood lymphocytes was markedly inhibited by l-NAME or 7-NI treatment. (v) iNOS expression in brain and liver decreased by l-NAME or 7-NI. (vi) More marked improvement of the histopathological alterations induced by malathion in brain and liver was observed after 7-NI compared with l-NAME. CONCLUSIONS In malathion intoxicated rats, the neuronal NOS inhibitor 7-NI and to much less extent l-NAME were able to protect the brain and liver tissue integrity along with improvement in oxidative stress parameters. The decrease in DNA damage of peripheral blood lymphocytes by NOS inhibitors also suggests the involvement of nitric oxide in this process.
Collapse
Affiliation(s)
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nadia A Mohammed
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | | | | - Amany A Sleem
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| |
Collapse
|
29
|
Makhaeva GF, Sokolov VB, Shevtsova EF, Kovaleva NV, Lushchekina SV, Boltneva NP, Rudakova EV, Aksinenko AY, Shevtsov PN, Neganova ME, Dubova LG, Bachurin SO. Focused design of polypharmacophoric neuroprotective compounds: Conjugates of γ-carbolines with carbazole derivatives and tetrahydrocarbazole. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alzheimer’s disease has a complex multifactorial nature; therefore, a promising approach for the development of efficient therapeutic agents is the concept of multitarget drugs, which affect several biological targets involved in the pathogenesis of the disease. We developed a synthetic algorithm for conjugating several pharmacophoric ligands acting on the key stages of pathogenesis of several neurodegenerative diseases and synthesized hybrid structures combining the γ-carboline fragment of Dimebon with carbazole and tetrahydrocarbazole moieties. Using the complex primary screening system the structures have been revealed that combine the high inhibitory activity and selectivity towards butyrylcholinesterase with the radical-scavenging activity and the ability to potentiate tubulin polymerization to microtubules with a normal structure and/or prevent mitochondrial permeability transition. The lead compound was identified for future optimization and development of new multi-target drugs against neurodegenerative diseases combining the cognitive-stimulating and neuroprotective potentials.
Collapse
|
30
|
de Candia M, Zaetta G, Denora N, Tricarico D, Majellaro M, Cellamare S, Altomare CD. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur J Med Chem 2017; 125:288-298. [DOI: 10.1016/j.ejmech.2016.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022]
|
31
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
32
|
Cholinergic enzymes and inflammatory markers in rats infected by Sporothrix schenckii. Microb Pathog 2016; 97:94-102. [DOI: 10.1016/j.micpath.2016.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/21/2016] [Accepted: 05/27/2016] [Indexed: 11/23/2022]
|
33
|
Reid GA, Darvesh S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 2015; 298:424-35. [PMID: 25931333 DOI: 10.1016/j.neuroscience.2015.04.039] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/27/2022]
Abstract
In Alzheimer's disease (AD), numerous β-amyloid (Aβ) plaques are associated with butyrylcholinesterase (BChE) activity, the significance of which is unclear. A mouse model, containing five human familial AD genes (5XFAD), also develops Aβ plaques with BChE activity. Knock-out of BChE in this model showed diminished fibrillar Aβ plaque deposition, more so in males than females. This suggests that lack of BChE reduces deposition of fibrillar Aβ in AD and this effect may be influenced by sex.
Collapse
Affiliation(s)
- G Andrew Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
34
|
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2014; 148:34-46. [PMID: 25448037 DOI: 10.1016/j.pharmthera.2014.11.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Phase I clinical trials have shown that pure human butyrylcholinesterase (BChE) is safe when administered to humans. A potential therapeutic use of BChE is for prevention of nerve agent toxicity. A recombinant mutant of BChE that rapidly inactivates cocaine is being developed as a treatment to help recovering cocaine addicts avoid relapse into drug taking. These clinical applications rely on knowledge of the structure, stability, and properties of BChE, information that is reviewed here. Gene therapy with a vector that sustains expression for a year from a single injection is a promising method for delivering therapeutic quantities of BChE.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
35
|
Ricketts T, McGoldrick P, Fratta P, de Oliveira HM, Kent R, Phatak V, Brandner S, Blanco G, Greensmith L, Acevedo-Arozena A, Fisher EMC. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects. PLoS One 2014; 9:e85962. [PMID: 24465814 PMCID: PMC3897576 DOI: 10.1371/journal.pone.0085962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community.
Collapse
Affiliation(s)
- Thomas Ricketts
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Philip McGoldrick
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Pietro Fratta
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | | | - Rosie Kent
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Vinaya Phatak
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Gonzalo Blanco
- Biology Department, University of York, York, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Abraham Acevedo-Arozena
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Elizabeth M. C. Fisher
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| |
Collapse
|
36
|
Reassessment of the Role of the Central Cholinergic System. J Mol Neurosci 2013; 53:352-8. [DOI: 10.1007/s12031-013-0164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022]
|
37
|
Murthy V, Gao Y, Geng L, LeBrasseur N, White T, Brimijoin S. Preclinical studies on neurobehavioral and neuromuscular effects of cocaine hydrolase gene therapy in mice. J Mol Neurosci 2013; 53:409-16. [PMID: 24085526 DOI: 10.1007/s12031-013-0130-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/18/2013] [Indexed: 11/27/2022]
Abstract
Cocaine hydrolase gene transfer of mutated human butyrylcholinesterase (BChE) is evolving as a promising therapy for cocaine addiction. BChE levels after gene transfer can be 1,500-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. Because mutated BChE is approximately 70 % as efficient in hydrolyzing acetylcholine as wild-type enzyme, it is important to examine the impact on cholinergic function. Here, we focused on memory and cognition (Stone T-maze), basic neuromuscular function (treadmill endurance and grip strength), and coordination (Rotarod). BALB/c mice were given adeno-associated virus vector or helper-dependent adenoviral vector encoding mouse or human BChE optimized for cocaine. Age-matched controls received saline or luciferase vector. Despite high doses (up to 10(13) particles per mouse) and high transgene expression (1,000-fold above baseline), no deleterious effects of vector treatment were seen in neurobehavioral functions. The vector-treated mice performed as saline-treated and luciferase controls in maze studies and strength tests, and their Rotarod and treadmill performance decreased less with age. Thus, neither the viral vectors nor the large excess of BChE caused observable toxic effects on the motor and cognitive systems investigated. This outcome justifies further steps toward an eventual clinical trial of vector-based gene transfer for cocaine abuse.
Collapse
|
38
|
Mrvova K, Obzerova L, Girard E, Krejci E, Hrabovska A. Monoclonal antibodies to mouse butyrylcholinesterase. Chem Biol Interact 2013; 203:348-53. [DOI: 10.1016/j.cbi.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/24/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
|
39
|
Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013; 234:53-68. [PMID: 23305761 DOI: 10.1016/j.neuroscience.2012.12.054] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
The cholinergic system plays important roles in neurotransmission in both the peripheral and central nervous systems. The cholinergic neurotransmitter acetylcholine is synthesized by choline acetyltransferase (ChAT) and its action terminated by acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The predominance of AChE has focused much attention on understanding the relationship of this enzyme to ChAT-positive cholinergic neurons. However, there is ample evidence that BuChE also plays an important role in cholinergic regulation. To elucidate the relationship of BuChE to neural elements that are producing acetylcholine, the distribution of this enzyme was compared to that of ChAT in the mouse CNS. Brain tissues from 129S1/SvImJ mice were stained for BuChE and ChAT using histochemical, immunohistochemical and immunofluorescent techniques. Both BuChE and ChAT were found in neural elements throughout the CNS. BuChE staining with histochemistry and immunohistochemistry produced the same distribution of labeling throughout the brain and spinal cord. Immunofluorescent double labeling demonstrated that many nuclei in the medulla oblongata, as well as regions of the spinal cord, had neurons that contained both BuChE and ChAT. BuChE-positive neurons without ChAT were found in close proximity with ChAT-positive neuropil in areas such as the thalamus and amygdala. BuChE-positive neuropil was also found closely associated with ChAT-positive neurons, particularly in tegmental nuclei of the pons. These observations provide further neuroanatomical evidence of a role for BuChE in the regulation of acetylcholine levels in the CNS.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
40
|
Brimijoin S. Interception of cocaine by enzyme or antibody delivered with viral gene transfer: a novel strategy for preventing relapse in recovering drug users. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 10:880-91. [PMID: 22229308 DOI: 10.2174/187152711799219398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
Abstract
Recent progress in enzyme engineering has led to versions of human butyrylcholinesterase (BChE) that hydrolyze cocaine efficiently in plasma, reduce concentrations reaching reward neurocircuity in the brain, and weaken behavioral responses to this drug. Along with enzyme advances, increasingly avid anti-cocaine antibodies and potent anti-cocaine vaccines have also been developed. Here we review these developments and consider the potential advantages along with the risks of delivering drug-intercepting proteins via gene transfer approaches to treat cocaine addiction.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester Minnesota, USA.
| |
Collapse
|
41
|
Farar V, Mohr F, Legrand M, Lamotte d'Incamps B, Cendelin J, Leroy J, Abitbol M, Bernard V, Baud F, Fournet V, Houze P, Klein J, Plaud B, Tuma J, Zimmermann M, Ascher P, Hrabovska A, Myslivecek J, Krejci E. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem 2012; 122:1065-80. [PMID: 22747514 DOI: 10.1111/j.1471-4159.2012.07856.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.
Collapse
Affiliation(s)
- Vladimir Farar
- Centre d'Etude de la Sensorimotricité, Université Paris Descartes, CNRS UMR 8194, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sakkiah S, Lee KW. Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Acta Pharmacol Sin 2012; 33:964-78. [PMID: 22684028 DOI: 10.1038/aps.2012.21] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM To identify the critical chemical features, with reliable geometric constraints, that contributes to the inhibition of butyrylcholinesterase (BChE) function. METHODS Ligand-based pharmacophore modeling was used to identify the critical chemical features of BChE inhibitors. The generated pharmacophore model was validated using various techniques, such as Fischer's randomization method, test set, and decoy set. The best pharmacophore model was used as a query in virtual screening to identify novel scaffolds that inhibit BChE. Compounds selected by the best hypothesis in the virtual screening were tested for drug-like properties, and molecular docking study was applied to determine the optimal orientation of the hit compounds in the BChE active site. To find the reactivity of the hit compounds, frontier orbital analysis was carried out using density functional theory. RESULTS Based on its correlation coefficient (0.96), root mean square (RMS) deviation (1.01), and total cost (105.72), the quantitative hypothesis Hypo1 consisting of 2 HBA, 1 Hy-Ali, and 1 Hy-Ar was selected as the best hypothesis. Thus, Hypo1 was used as a 3D query in virtual screening of the Maybridge and Chembridge databases. The hit compounds were filtered using ADMET, Lipinski's Rule of Five, and molecular docking to reduce the number of false positive results. Finally, 33 compounds were selected based on their critical interactions with the significant amino acids in BChE's active site. To confirm the inhibitors' potencies, the orbital energies, such as HOMO and LUMO, of the hit compounds and 7 training set compounds were calculated. Among the 33 hit compounds, 10 compounds with the highest HOMO values were selected, and this set was further culled to 5 compounds based on their energy gaps important for stability and energy transfer. From the overall results, 5 hit compounds were confirmed to be potential BChE inhibitors that satisfied all the pharmacophoric features in Hypo1. CONCLUSION This study pinpoints important chemical features with geometric constraints that contribute to the inhibition of BChE activity. Five compounds are selected as the best hit BchE-inhibitory compounds.
Collapse
|
43
|
Johnson G, Moore SW. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int 2012; 61:783-97. [PMID: 22750491 DOI: 10.1016/j.neuint.2012.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 02/07/2023]
Abstract
While acetylcholinesterase (EC 3.1.1.7) has a clearly defined role in neurotransmission, the functions of its sister enzyme butyrylcholinesterase (EC 3.1.1.8) are more obscure. Numerous mutations, many inactivating, are observed in the human butyrylcholinesterase gene, and the butyrylcholinesterase knockout mouse has an essentially normal phenotype, suggesting that the enzyme may be redundant. Yet the gene has survived for many millions of years since the duplication of an ancestral acetylcholinesterase early in vertebrate evolution. In this paper, we ask the questions: why has butyrylcholinesterase been retained, and why are inactivating mutations apparently tolerated? Butyrylcholinesterase has diverged both structurally and in terms of tissue and cellular expression patterns from acetylcholinesterase. Butyrylcholinesterase-like activity and enzymes have arisen a number of times in the animal kingdom, suggesting the usefulness of such enzymes. Analysis of the published literature suggests that butyrylcholinesterase has specific roles in detoxification as well as in neurotransmission, both in the brain, where it appears to control certain areas and functions, and in the neuromuscular junction, where its function appears to complement that of acetylcholinesterase. An analysis of the mutations in human butyrylcholinesterase and their relation to the enzyme's structure is shown. In conclusion, it appears that the structure of butyrylcholinesterase's catalytic apparatus is a compromise between the apparently conflicting selective demands of a more generalised detoxifier and the necessity for maintaining high catalytic efficiency. It is also possible that the tolerance of mutation in human butyrylcholinesterase is a consequence of the detoxification function. Butyrylcholinesterase appears to be a good example of a gene that has survived by subfunctionalisation.
Collapse
Affiliation(s)
- Glynis Johnson
- Division of Paediatric Surgery, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa.
| | | |
Collapse
|
44
|
Abstract
Rapid progress in the past decade with re-engineering of human plasma butyrylcholinesterase has led to enzymes that destroy cocaine so efficiently that they prevent or interrupt drug actions in the CNS even though confined to the blood stream. Over the same time window, improved gene-transfer technology has made it possible to deliver such enzymes by endogenous gene transduction at high levels for periods of a year or longer after a single treatment. This article reviews recent advances in this field and considers prospects for development of a robust therapy aimed at aiding recovering drug users avoid addiction relapse.
Collapse
|
45
|
Kristoff G, Barrionuevo DC, Cacciatore LC, Guerrero NRV, Cochón AC. In vivo studies on inhibition and recovery of B-esterase activities in Biomphalaria glabrata exposed to azinphos-methyl: analysis of enzyme, substrate and tissue dependence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 112-113:19-26. [PMID: 22360939 DOI: 10.1016/j.aquatox.2012.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
Cholinesterases and carboxylesterases belong to the group of B-esterases, the serine superfamily of esterases that are inhibited by organophosphorus compounds. It is now generally accepted that before using the B-esterases as biomarkers of exposure to organophosphorus and carbamates in a given species, the biochemical characteristics of these enzymes should be carefully studied. In this study, the enzyme/s and the tissue/s to be selected as sensitive biomarkers of organophosphorus exposition in the freshwater gastropod Biomphalaria glabrata were investigated. Firstly, the substrate dependence of cholinesterase and carboxylesterase activities in whole organism soft tissue and in different tissues of the snail (head-foot, pulmonary region, digestive gland, and gonads) was analyzed. Measurements of cholinesterase activity were performed using three substrates: acetylthiocholine (AcSCh), propionylthiocholine (PrSCh), and butyrylthiocholine (BuSCh). Carboxylesterase activity was determined using four different substrates: 1-naphthyl acetate (1-NA), 2-naphthyl acetate (2-NA), p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). Regardless of the tissue analyzed, the highest specific activity was obtained when using AcSCh, followed by PrSCh. Cholinesterase activity measured with BuSCh was very low in all cases. On the other hand, the highest cholinesterase activity was measured in head-foot and in pulmonary region, representing in the case of AcSCh hydrolysis 196% and 180% of the activity measured in whole organism soft tissue, respectively. In contrast, AcSCh hydrolysis in digestive gland and gonads was 28% and 50% of that measured in whole organism soft tissue. Regarding carboxylesterase activity, although all tissues hydrolyzed the four substrates assayed, substrate preferences varied among tissues. In particular, digestive glands showed higher carboxylesterase activity than the other tissues (299%, 359% and 137% of whole organism soft tissue activity) when measured with 1-NA, 2-NA and p-NPA as substrates, respectively. In contrast, with p-NPB as substrate, the highest carboxylesterase activity was observed in pulmonary region. Exposure of the snails for 48 h to azinphos-methyl concentrations in the range of 0.05-2.5 mg L⁻¹ resulted in different degrees of inhibition of cholinesterase and carboxylesterase activities, depending on the enzyme, pesticide concentration, the substrate, and the tissue analyzed. In general, carboxylesterase activity measured with p-NPA and p-NPB was much more sensitive to azinphos-methyl inhibition than cholinesterase activity. The results also showed that while B-esterase activities in whole organism soft tissue and pulmonary region recovered completely within 14 days, carboxylesterase activity in digestive glands remained highly inhibited. On the whole, the results of the present study emphasize how important it is to characterize and measure cholinesterase and carboxylesterase activities jointly to make a proper assessment of the impact of organophosphorus pesticides in non-target species.
Collapse
Affiliation(s)
- Gisela Kristoff
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
46
|
Gomes HJP, Souza RLR, Prevedello FC, Mira MT, Chautard-Freire-Maia EA. Investigation of Association between Susceptibility to Leprosy and SNPs inside and near the BCHE Gene of Butyrylcholinesterase. J Trop Med 2012; 2012:184819. [PMID: 22523498 PMCID: PMC3316951 DOI: 10.1155/2012/184819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/16/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022] Open
Abstract
Leprosy is a chronic disease caused by Mycobacterium leprae and affects the skin and the peripheral nervous system. Butyrylcholinesterase is coded by the BCHE gene, and the atypical allele (70G; rs1799807) has been investigated as a leprosy risk factor, with conflicting results. The present study estimated the frequencies of variants of rs1799807 and of five additional SNPs at the BCHE gene or near it: rs1126680, rs1803274, rs2863381, rs4440084, and rs4387996. A total of 167 patients and 150 healthy controls were genotyped by TaqMan PCR. Significantly higher allelic (70G) and genotypic (70DG) frequencies in rs1799807 were found in the patient group, with odds ratio (OR) of 6.33 (1.40 to 28.53) for the heterozygote. This finding was replicated in a comparison of the cases against a control group of 361 blood donors. The present data suggest that the atypical BChE variant may predispose to leprosy per se.
Collapse
Affiliation(s)
- Henrique J. P. Gomes
- Department of Genetics, Federal University of Paraná, P.O. Box 19071, 81531-980 Curitiba, PR, Brazil
| | - Ricardo L. R. Souza
- Department of Genetics, Federal University of Paraná, P.O. Box 19071, 81531-980 Curitiba, PR, Brazil
| | - Flávia Costa Prevedello
- Core for Advanced Molecular Investigation, Medical School, Pontifical Catholic University of Paraná, Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Marcelo Távora Mira
- Core for Advanced Molecular Investigation, Medical School, Pontifical Catholic University of Paraná, Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | | |
Collapse
|
47
|
Sekutor M, Mlinarić-Majerski K, Hrenar T, Tomić S, Primožič I. Adamantane-substituted guanylhydrazones: novel inhibitors of butyrylcholinesterase. Bioorg Chem 2012; 41-42:28-34. [PMID: 22336689 DOI: 10.1016/j.bioorg.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
A series of novel adamantane-substituted guanylhydrazones was synthesized and used in a study of inhibitory potential toward butyrylcholinesterase. The experimental results were further supported by using docking studies to examine the behavior of the inhibitors within the active site regions of the enzyme. The enzyme-inhibitor dissociation constants K(i) were determined from Hunter-Downs diagrams using Ellman's method for cholinesterase activity determination. Compounds 2-(N-guanidino)iminoadamantane hydrochloride (1) and 2,4-bis(N,N'-guanidino)iminoadamantane dihydrochloride (2) were found to be the best BChE inhibitors and their affinities for the enzyme active site were about five times higher compared to the enzyme peripheral site. The strongest interaction observed in complexes obtained by docking studies was the H-bond between the guanidine and the carboxylate of Glu199 and the second guanidine group in bisguanidine compounds was stabilized with additional H-bonds.
Collapse
Affiliation(s)
- Marina Sekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
48
|
Effects of cholinesterase inhibitors on postoperative outcomes of older adults with dementia undergoing hip fracture surgery. Am J Geriatr Psychiatry 2011; 19:803-13. [PMID: 21873836 DOI: 10.1097/jgp.0b013e3181ff67a1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cholinesterase inhibitors (ChEIs) may interact with muscle relaxants given during general anesthesia (GA), increasing the risk of postoperative complications. We evaluated the effects of ChEIs on the postoperative outcomes of older adults who underwent hip fracture surgery. DESIGN Population-based cohort study using linked administrative databases. PARTICIPANTS All individuals with dementia age 66 years or older, who underwent hip fracture surgery between April 1, 2003, and December 31, 2007, in Ontario, Canada. EXPOSURES Use of any ChEI (donepezil, rivastigmine, or galantamine) before surgery. OUTCOMES The primary composite outcome included any of the following: 30-day postoperative mortality; intensive care unit admissions; or in-hospital resuscitation. Secondary outcomes included postoperative respiratory failure and pneumonia. ANALYSIS We stratified the study sample on the basis of residence (community or long-term care [LTC]) and type of anesthetic (general or regional) to create four residence/anesthesia groups. We used propensity scores to match users and nonusers of ChEIs within the residence/anesthesia strata. We then calculated the relative risks (RR) and 95% confidence intervals (CI) for outcomes associated with ChEIs in the matched groups. RESULTS A total of 624 pairs of individuals from the community and 725 pairs from LTC were created among individuals who received GA. High rates of postoperative mortality and complications were observed in both ChEI users and nonusers. The RR of the primary outcome associated with ChEI use for individuals receiving GA was 0.88 (95% CI: 0.68-1.16; χ2 = 0.93; df = 1; p = 0.34) and 0.82 (95% CI: 0.63-1.04; χ2 = 2.59; df = 1; p = 0.11) in the community and LTC groups, respectively. In addition, ChEIs were not associated with any significant increased risk of postoperative respiratory complications. CONCLUSIONS ChEI use was not associated with an increased risk of postoperative complications among older adults with dementia who underwent hip fracture surgery. However, the poor postoperative outcomes overall reinforced the need to prevent fractures and improve outcomes in this population.
Collapse
|
49
|
Parnetti L, Chiasserini D, Andreasson U, Ohlson M, Hüls C, Zetterberg H, Minthon L, Wallin AK, Andreasen N, Talesa VN, Blennow K. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer's disease. Acta Neurol Scand 2011; 124:122-9. [PMID: 20880294 DOI: 10.1111/j.1600-0404.2010.01435.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To measure cerebrospinal fluid (CSF) activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in patients with Alzheimer's disease (AD) participating in randomized clinical trials from three European centers, before and after long-term treatment with different AChE inhibitors (AChEIs). MATERIALS AND METHODS Of the 144 patients included in the study, 104 were treated with donepezil, 15 with galantamine, 16 with rivastigmine, and nine with placebo. CSF AChE and BChE activities were measured at baseline and after 1- year treatment. RESULTS Donepezil and galantamine groups showed a significant increase in CSF AChE activity at follow-up, while no changes for BChE activity were observed; in donepezil group, a positive correlation between plasma concentration and AChE activity was documented. Conversely, in rivastigmine group, a decrease in CSF activity of both enzymes was observed. CSF AChE and BChE activities were not correlated with the clinical outcome in any group considered. CSF biomarkers did not show any change after treatment. CONCLUSIONS AChEIs differently influence the activity of target enzymes in CSF independent of their pharmacodynamic effects.
Collapse
Affiliation(s)
- L Parnetti
- Clinica Neurologica, Ospedale S. Maria della Misericordia, Università degli studi di Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
AbdulHameed MDM, Liu J, Pan Y, Fang L, Silva-Rivera C, Zhan CG. Microscopic binding of butyrylcholinesterase with quinazolinimine derivatives and the structure–activity correlation. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0965-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|