1
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Martins JRN, Lopes S, Hurtado HN, da Silva FN, Villard DR, Taboga SR, Souza KLA, Quesada I, Soriano S, Rafacho A. Acute and chronic effects of the organophosphate malathion on the pancreatic α and β cell viability, cell structure, and voltage-gated K + currents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104046. [PMID: 36587778 DOI: 10.1016/j.etap.2022.104046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and β cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in β-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and β cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.
Collapse
Affiliation(s)
- J R N Martins
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - S Lopes
- Central Laboratory of Electron Microscopy LCME, PROPESQ, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - H N Hurtado
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - F N da Silva
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - D R Villard
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - S R Taboga
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - K L A Souza
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - I Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - S Soriano
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil.
| |
Collapse
|
3
|
Shen X, Nie F, Fang H, Liu K, Li Z, Li X, Chen Y, Chen R, Zheng T, Fan J. Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci Nutr 2023; 11:917-929. [PMID: 36789063 PMCID: PMC9922109 DOI: 10.1002/fsn3.3126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to compare chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities of coffee flowers (ACF) and coffee leaves (ACL) with green coffee beans (ACGB) of Coffea Arabica L. The chemical compositions were determined by employing high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectroscopy (GC-MS) techniques. Antioxidant effects of the components were evaluated using DPPH and ABTS radical scavenging assays, and the ferric reducing antioxidant power (FRAP) assay. Their acetylcholinesterase inhibitory activities were also evaluated. The coffee sample extracts contained a total of 214 components identified by HPLC-MS and belonged to 12 classes (such as nucleotides and amino acids and their derivatives, tannins, flavonoids, alkaloids, benzene, phenylpropanoids, and lipids.), where phenylpropanoids were the dominant component (>30%). The contents of flavonoids, alkaloids, saccharides, and carboxylic acid and its derivatives in ACF and ACL varied significantly (p < .05) compared to similar components in ACGB. Meanwhile, 30 differentially changed chemical compositions (variable importance in projection [VIP] > 1, p < .01 and fold change [FC] > 4, or <0.25), that determine the difference in characteristics, were confirmed in the three coffee samples. Furthermore, among 25 volatile chemical components identified by GC-MS, caffeine, n-hexadecanoic acid, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol], and quinic acid were common in these samples with caffeine being the highest in percentage. In addition, ACL showed the significantly highest (p < .05) DPPH radical scavenging capacity with IC50 value of 0.491 ± 0.148 mg/ml, and acetylcholinesterase inhibitory activity with inhibition ratio 25.18 ± 2.96%, whereas ACF showed the significantly highest (p < .05) ABTS radical scavenging activity with 36.413 ± 1.523 mmol trolox/g Ex. The results suggested that ACL and ACF had potential values as novel foods in the future.
Collapse
Affiliation(s)
- Xiaojing Shen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
- Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingChina
- Yunnan Organic Tea Industry Intelligent Engineering Research CenterKey Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan ProvinceKunmingChina
| | - Fanqiu Nie
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Haixian Fang
- Quality Standardizing and Testing Technology Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| | - Kunyi Liu
- College of Wuliangye Technology and Food EngineeringYibin Vocational and Technical CollegeYibinChina
- Research Platform for Innovation and Utilization of Medicine Food Homology and Fermented FoodYibin Vocational and Technical CollegeYibinChina
| | - Zelin Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Xingyu Li
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Yumeng Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | - Rui Chen
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| | | | - Jiangping Fan
- College of Food Science and Technology, College of ScienceYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
4
|
Chung YL, Hou YC, Wang IK, Lu KC, Yen TH. Organophosphate pesticides and new-onset diabetes mellitus: From molecular mechanisms to a possible therapeutic perspective. World J Diabetes 2021; 12:1818-1831. [PMID: 34888010 PMCID: PMC8613664 DOI: 10.4239/wjd.v12.i11.1818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Organophosphate is a commonly used pesticide in the agricultural sector. The main action of organophosphate focuses on acetylcholinesterase inhibition, and it therefore contributes to acute cholinergic crisis, intermediate syndrome and delayed neurotoxicity. From sporadic case series to epidemiologic studies, organophosphate has been linked to hyperglycemia and the occurrence of new-onset diabetes mellitus. Organophosphate-mediated direct damage to pancreatic beta cells, insulin resistance related to systemic inflammation and excessive hepatic gluconeogenesis and polymorphisms of the enzyme governing organophosphate elimination are all possible contributors to the development of new-onset diabetes mellitus. To date, a preventive strategy for organophosphate-mediated new-onset diabetes mellitus is still lacking. However, lowering reactive oxygen species levels may be a practical method to reduce the risk of developing hyperglycemia.
Collapse
Affiliation(s)
- Ya-Ling Chung
- Department of Medical Laboratory, Cardinal-Tien Hospital, New Taipei City 231, Taiwan
| | - Yi-Chou Hou
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City 231, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Rechek H, Haouat A, Hamaidia K, Allal H, Boudiar T, Pinto DCGA, Cardoso SM, Bensouici C, Soltani N, Silva AMS. Chemical Composition and Antioxidant, Anti-Inflammatory, and Enzyme Inhibitory Activities of an Endemic Species from Southern Algeria: Warionia saharae. Molecules 2021; 26:molecules26175257. [PMID: 34500690 PMCID: PMC8434534 DOI: 10.3390/molecules26175257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH● scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.
Collapse
Affiliation(s)
- Habiba Rechek
- Faculty of Sciences of Nature and Life, Mohamed Cherif Messaadia University, Souk-Ahras 41000, Algeria;
- Department of Biology of Organisms, Faculty of Sciences of Nature and Life, University of Batna 2, Mostefa Ben Boulaid, Batna 05078, Algeria
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ammar Haouat
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, Constantine 25000, Algeria;
- Department of Biology, Faculty of Sciences of Nature and Life, University of Oued Souf, Oued Souf 39000, Algeria
| | - Kaouther Hamaidia
- Faculty of Sciences of Nature and Life, Mohamed Cherif Messaadia University, Souk-Ahras 41000, Algeria;
- Laboratory of Applied Animal Biology, Badji Mokhtar University, Annaba 23000, Algeria;
- Correspondence: (K.H.); (D.C.G.A.P.); (A.M.S.S.); Tel.: +213-66-509-5858 (K.H.); +351-234-401407 (D.C.G.A.P.); +351-234-370714 (A.M.S.S.)
| | - Hamza Allal
- Department of Technology, Faculty of Technology, 20 August 1955 Skikda University, Skikda 21000, Algeria;
| | - Tarek Boudiar
- Centre de Recherche en Biotechnologie, Ali Mendjli Nouvelle Ville UV 03, Constantine 25000, Algeria; (T.B.); (C.B.)
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (K.H.); (D.C.G.A.P.); (A.M.S.S.); Tel.: +213-66-509-5858 (K.H.); +351-234-401407 (D.C.G.A.P.); +351-234-370714 (A.M.S.S.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Chawki Bensouici
- Centre de Recherche en Biotechnologie, Ali Mendjli Nouvelle Ville UV 03, Constantine 25000, Algeria; (T.B.); (C.B.)
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Badji Mokhtar University, Annaba 23000, Algeria;
| | - Artur M. S. Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (K.H.); (D.C.G.A.P.); (A.M.S.S.); Tel.: +213-66-509-5858 (K.H.); +351-234-401407 (D.C.G.A.P.); +351-234-370714 (A.M.S.S.)
| |
Collapse
|
6
|
Yao T, Yan J, Li Y, Wang J, Qiao M, Hu X, Shi X, Cao S, Qiu F. An integrated approach based on phytochemistry, network pharmacology and metabolomics reveals the mechanism of action of Xanthium strumarium L. for allergic rhinitis. RSC Adv 2020; 10:41154-41163. [PMID: 35519219 PMCID: PMC9057783 DOI: 10.1039/d0ra06763f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Xanthium strumarium L. (XS) is a traditional Chinese medicine (TCM) that has been widely used in Chinese medicine prescription for allergic rhinitis (AR). However, the action mechanisms of XS on the therapeutic effects on AR remain elusive. Herein, an integrated approach of phytochemistry, network pharmacology and metabolomics was first applied to uncover the action mechanisms of XS for AR. The therapeutic effect of XS extract on AR was evaluated in rat models of ovalbumin (OVA)-induced AR. The cytokine levels in rat serum and histopathological changes of nasal mucosa were assessed after oral treatment with XS. Chemical compositions of XS were elucidated by phytochemical methods, and active ingredients were identified via ADME-TOX screening in silico. Network pharmacology was performed to establish and analyze the compound-target-disease network so as to find the possible mechanism of XS in treating AR. In addition, metabolomics analysis was applied to investigate the changes in the endogenous metabolite levels that result from XS treatments. As result, the XS extract significantly increased the serum concentrations of IL-2 and reduced the levels of serum IL-4, while XS could ameliorate inflammation in the nasal sub-mucosal area, indicating that XS has significant therapeutic effects on AR model rats. Furthermore, a total of 119 compounds were isolated from XS, and 59 of these compounds were identified as active ingredients through ADME-TOX screening in silico. An in-depth analysis of the network pharmacology implied that the active ingredients of XS could regulate the inflammatory response via “multi-component, multi-target” patterns. In combination with the results of metabolomics, we found that the active ingredients of XS have a beneficial effect on AR through regulating the metabolism of arachidonic acid, which was reflected by medicating the Fc epsilon RI signaling pathway, and the neuroactive ligand–receptor interaction pathway, as well as the key proteins in arachidonic acid metabolism, such as PTGS2, PTGS1, PTGES and ALOX5. Additionally, molecular docking showed that multiple compounds have better binding with PTGS2 and ALOX5, which might be two crucial targets. Overall, these results suggest that the treatment of XS for AR is realized by regulating the metabolism of arachidonic acid via a combination form. This study provides the basis for clinical applications of XS. This study investigated the mechanism of Xanthium strumarium L. for allergic rhinitis through an integrated approach of phytochemistry, network pharmacology and metabolomics.![]()
Collapse
Affiliation(s)
- Tie Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang 110016 China .,School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Jiankun Yan
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China.,Analysis Center of College of Science & Technology, Hebei Agricultural University Cangzhou 061100 China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Jiaxin Wang
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Miao Qiao
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Xintong Hu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Xuliu Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China.,Analysis Center of College of Science & Technology, Hebei Agricultural University Cangzhou 061100 China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Feng Qiu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang 110016 China .,School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| |
Collapse
|
7
|
Salau VF, Erukainure OL, Ibeji CU, Koorbanally NA, Islam MS. Ferric-Induced Pancreatic Injury Involves Exacerbation of Cholinergic and Proteolytic Activities, and Dysregulation of Metabolic Pathways: Protective Effect of Caffeic Acid. Biol Trace Elem Res 2020; 196:517-527. [PMID: 31691895 DOI: 10.1007/s12011-019-01937-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The protective effect of caffeic acid on ferric-induced pancreatic injury was investigated using ex vivo and in silico models. Incubation of pancreatic tissues with Fe2+ led to significant depleted levels of glutathione (GSH) and SOD and catalase activities, with concomitant elevated levels of malondialdehyde (MDA) and nitric oxide (NO) and acetylcholinesterase and α-chymotrypsin activities. Treatment with caffeic acid led to significant reversion of these levels and activities. Molecular docking revealed a higher binding affinity of caffeic acid with acetylcholinesterase via hydrogen bonding, Pi-Pi stacking, and Van der Waals interactions. FTIR spectroscopy of pancreatic metabolite revealed little or no effect by caffeic acid on functional groups in ferric-induced injured pancreas. The LC-MS analysis of the metabolites revealed Fe2+ caused a 20% depletion of the normal metabolites, with concomitant generation of glyceraldehyde and 3,4-dihydroxymandelaldehyde. Treatment with caffeic acid led to the restoration of TG(22:4(7Z,10Z,13Z,16Z)/24:0/22:5(7Z,10Z,13Z,16Z,19Z)) and dTDP-D-glucose, while depleting glyceraldehyde as well as activating gluconeogenesis. These results indicate the ability of caffeic acid to protect against ferric toxicity by exacerbating antioxidative activities, with concomitant inhibition of MDA and NO levels while deactivating metabolic pathways linked to oxidative stress.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
8
|
Lakshmi J, Mukhopadhyay K, Ramaswamy P, Mahadevan S. A Systematic Review on Organophosphate Pesticide and Type II Diabetes Mellitus. Curr Diabetes Rev 2020; 16:586-597. [PMID: 31544698 DOI: 10.2174/1573399815666190712192844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022]
Abstract
Organophosphate (OP) pesticides are extremely poisonous and they affect the glucose breakdown in numerous and mechanism. There are higher evidence of stimulating diabetes mellitus through OP pesticides especially the type II diabetes. The upsurge in the level of glucose (hyperglycemia), and insulin resistance along with their related outcomes are discussed in this review. The data related to investigational and clinical techniques endorse a connection amid such molecular mechanism and compounds of OPs. Numerous studies conducted till March 2018 have reported OP' exposures and diabetes-related outcomes. The acute and chronic exposure in case of these insecticides and diabetesrelated outcomes are defined in this study. Initially, it was declared that OPs prompt to hyperglycemia. Then, a high association of glucose in blood beside insulin was found out. The affirmation from some clinical as well as investigational studies supported a connection amid exposure to OP and diabetes, yet in maximum number of instances, non-specific diabetes occurs.
Collapse
Affiliation(s)
- Jothi Lakshmi
- Department of Environmental Health Engineering, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Krishnendu Mukhopadhyay
- Department of Environmental Health Engineering, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Padmavathi Ramaswamy
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| |
Collapse
|
9
|
Czajka M, Matysiak-Kucharek M, Jodłowska-Jędrych B, Sawicki K, Fal B, Drop B, Kruszewski M, Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. ENVIRONMENTAL RESEARCH 2019; 178:108685. [PMID: 31479978 DOI: 10.1016/j.envres.2019.108685] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Widespread use and the bioaccumulation of pesticides in the environment lead to the contamination of air, water, soil and agricultural resources. A huge body of evidence points to the association between the pesticide exposure and increase in the incidence of chronic diseases, e.g. cancer, birth defects, reproductive disorders, neurodegenerative, cardiovascular and respiratory diseases, developmental disorders, metabolic disorders, chronic renal disorders or autoimmune diseases. Organophosphorus compounds are among the most widely used pesticides. A growing body of evidence is suggesting the potential interdependence between the organophosphorus pesticides (OPs) exposure and risk of obesity and type 2 diabetes mellitus (T2DM). This article reviews the current literature to highlight the latest in vitro and in vivo evidences on the possible influence of OPs on obesity and T2DM development, as well as epidemiological evidence for the metabolic toxicity of OPs in humans. The article also draws attention to the influence of maternal OPs exposure on offspring. Summarized studies suggest that OPs exposure is associated with metabolic changes linked with obesity and T2DM indicated that such exposures may increase risk or vulnerability to other contributory components.
Collapse
Affiliation(s)
- Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080, Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Berta Fal
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| |
Collapse
|
10
|
Pothu UK, Thammisetty AK, Nelakuditi LK. Evaluation of cholinesterase and lipid profile levels in chronic pesticide exposed persons. J Family Med Prim Care 2019; 8:2073-2078. [PMID: 31334182 PMCID: PMC6618179 DOI: 10.4103/jfmpc.jfmpc_239_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Agriculture being the predominant occupation in India with rampant usage of pesticides to meet its enormous population needs. This pesticide abuse is taking a toll on the health of the persons involved in this work. Objectives: To evaluate pesticide exposure by assessing serum cholinesterase levels, and comparing them with the serum lipid profile levels which assumes the cardiovascular risk status. Study Design: It is a cross-sectional comparative study involving around 283 agricultural farm workers in Rajamahendravaram, Andhra Pradesh. The study period was for about 3 months during pesticide spraying season. Materials and Methods: All the blood samples were collected and analysed for biochemical parameters like plasma glucose, blood urea, serum creatinine, and lipid profile and serum cholinesterase levels using XL 640 fully automated random access analyser. Statistical Analysis Used: Results were analysed using SPSS software version 20. Results: The study group was classified into two groups based on serum cholinesterase levels. It was observed that there were significant alterations in lipid profile levels in the study group with decreased cholinesterase levels when compared to those of normal cholinesterase levels. There was significant negative correlation between cholinesterase levels and non-HDL cholesterol and total cholesterol/HDL ratio. Conclusion: This study implicates that the pesticides have an adverse health effect with regard to cardiovascular risk status.
Collapse
Affiliation(s)
- Usha Kiran Pothu
- Department of Biochemistry, GSL Medical College and General Hospital, Rajahmundry, Andhra Pradesh, India
| | - Anil Kumar Thammisetty
- Department of Biochemistry, GSL Medical College and General Hospital, Rajahmundry, Andhra Pradesh, India
| | - Lakshmana Kumar Nelakuditi
- Department of Biochemistry, GSL Medical College and General Hospital, Rajahmundry, Andhra Pradesh, India
| |
Collapse
|
11
|
Xiao X, Clark JM, Park Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol 2017; 105:456-474. [PMID: 28487232 DOI: 10.1016/j.fct.2017.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
The introduction of insecticides has greatly improved agricultural productivity and human nutrition; however, the wide use of insecticides has also sparked growing concern over their health impacts. Increased rate of cancers, neurodegenerative disorders, reproductive dysfunction, birth defects, respiratory diseases, cardiovascular diseases and aging have been linked with insecticide exposure. Meanwhile, a growing body of evidence is suggesting that exposure to insecticides can also potentiate the risk of obesity and type 2 diabetes. This review summarizes the relationship between insecticide exposure and development of obesity and type 2 diabetes using epidemiological and rodent animal studies, including potential mechanisms. The evidence as a whole suggests that exposure to insecticides is linked to increased risk of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaïd-Nouira Y, Neffati F, Najjar MF, Haouas Z, Ben Cheikh H. Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17828-17838. [PMID: 26162445 DOI: 10.1007/s11356-015-5014-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
The increasing use of organophosphorus pesticides in the environment constitutes an ecotoxicological hazard especially for humans and non-target animals. Hereby, we analyzed the toxic effects of malathion on the histological structure of liver and biochemical parameters in male rats. Three groups received daily different amounts of malathion: 1/1000, 1/100, and 1/10 LD50 for 30 days. The weights of treated rat's liver have increased. Analyzed tissues showed centrilobular and sinusoidal congestion, hepatocyte hypertrophy, cellular vacuolization, anucleated hepatocytes, depletion of organelles affecting the majority of cells, and presence of necrotic foci into the hepatic parenchyma. Histological sections of the liver showed important hepatocyte glycogen storage. We conclude that malathion stimulates the filing of glycogen in a dose-dependent manner. Biochemical parameters showed that alanine transaminase (ALT), aspartate transaminase (AST), gamma glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels increased in the treated groups when the level of total protein decreased in intoxicated groups.
Collapse
Affiliation(s)
- Imen Flehi-Slim
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| | - Issam Chargui
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| | - Sonia Boughattas
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia.
| | - Aymen El Mabrouk
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| | - Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| | - Fadwa Neffati
- Laboratory of Biochemistry-Toxicology, University Hospital of Monastir, Monastir, Tunisia
| | - Mohamed Fadhel Najjar
- Laboratory of Biochemistry-Toxicology, University Hospital of Monastir, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| | - Hassen Ben Cheikh
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, Research Unity of Genetic (02/UR/08-03), Avenue Ibnou Sina 5000, Monastir, Tunisia
| |
Collapse
|
13
|
Lasram MM, El-Golli N, Lamine AJ, Douib IB, Bouzid K, Annabi A, El Fazaa S, Abdelmoula J, Gharbi N. Changes in glucose metabolism and reversion of genes expression in the liver of insulin-resistant rats exposed to malathion. The protective effects of N-acetylcysteine. Gen Comp Endocrinol 2015; 215:88-97. [PMID: 25449180 DOI: 10.1016/j.ygcen.2014.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022]
Abstract
Organophosphorus pesticides are known to disturb glucose homeostasis and increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on insulin signaling pathways and the protective effects of N-acetylcysteine (NAC). Malathion (200 mg/kg) and NAC (2 g/l) were administered orally to rats, during 28 consecutive days. Malathion increases plasma glucose, plasma insulin and glycated hemoglobin levels. Further, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The GP, GSK3β and PEPCK mRNA expressions were amplified by malathion while, the expression of glucokinase gene is down-regulated. On the basis of biochemical and molecular findings, it is concluded that malathion impairs glucose homeostasis through insulin resistance and insulin signaling pathways disruptions in a way to result in a reduced function of insulin into hepatocytes. Otherwise, when malathion-treated rats were compared to NAC supplemented rats, fasting glucose and insulin levels, as well as insulin resistance indices were reduced. Furthermore, NAC restored liver GP and PEPCK expression. N-acetylcysteine showed therapeutic effects against malathion-induced insulin signaling pathways disruption in liver. These data support the concept that antioxidant therapies attenuate insulin resistance and ameliorate insulin sensitivity.
Collapse
Affiliation(s)
- Mohamed Montassar Lasram
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Narjes El-Golli
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Aicha Jrad Lamine
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Ines Bini Douib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Kahena Bouzid
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Alya Annabi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Jaouida Abdelmoula
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Najoua Gharbi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| |
Collapse
|
14
|
Rezg R, Mornagui B, Santos JSDO, Dulin F, El-Fazaa S, Ben El-Haj N, Bureau R, Gharbi N. Protective effects of caffeic acid against hypothalamic neuropeptides alterations induced by malathion in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6198-6207. [PMID: 25404496 DOI: 10.1007/s11356-014-3824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Exposure to pesticides is suspected to cause human health problems. Our study aimed to evaluate preventive effects of caffeic acid (3,4-dihydroxycinnamic acid) in the hypothalamus against malathion-induced neuropeptides gene expression alterations. Malathion at 100 mg/kg was administered intragastrically to rats alone or in combination with caffeic acid at 100 mg/kg during 4 weeks. A molecular expression of hypothalamic neuropeptides and plasmatic cholinesterase activity was investigated. Furthermore, we used in silico analysis, known as computational docking, to highlight the nature of acetylcholinesterase-malathion/caffeic acid interactions. Our findings showed differences in the responses and indicate that caffeic acid reversed malathion-induced decrease in corticotropin-releasing hormone mRNA but not brain-derived neurotrophic factor which presented an increased tendency. We suggest that caffeic acid can interact with acetylcholinesterase as the primary target of organophosphorus compounds. Results predict that caffeic acid can block partly the acetylcholinesterase gorge entrance via π-π stacking interaction with Tyr 124 and Trp 286 residues of the peripheral site leading to its stricture. Under this condition, we suggested that acetylcholine trafficking toward the catalytic site is ameliorated compared to malaoxon according to their sizes.
Collapse
Affiliation(s)
- Raja Rezg
- Laboratoire de Physiologie des Agressions, Département de Biologie, Faculté des Sciences de Tunis, Université El Manar, Tunis, Tunisie
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment. Int J Occup Med Environ Health 2013; 26:636-46. [DOI: 10.2478/s13382-013-0131-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 07/23/2013] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
16
|
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11:329-45. [PMID: 22336470 DOI: 10.1016/j.arr.2012.01.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/23/2011] [Accepted: 01/31/2012] [Indexed: 12/21/2022]
Abstract
Within the last years, a rapidly growing number of polyphenolic compounds with neuroprotective effects have been described. Many efforts have been made to explore the mechanisms behind the neuroprotective action of polyphenols. However, many pathways and mechanisms considered for mediating these effects are rather general than specific. Moreover, despite the beneficial effects of polyphenols in experimental treatment of neurodegeneration, little has been achieved in bringing them into routine clinical applications. In this review, we have summarized the protective effects of polyphenols against neurodegeneration, and we have also discussed some of the barricades in translating these biochemical compounds, into relevant therapeutics for neurodegenerative diseases.
Collapse
|
17
|
Aboul-Soud MAM, Al-Othman AM, El-Desoky GE, Al-Othman ZA, Yusuf K, Ahmad J, Al-Khedhairy AA. Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats. J Toxicol Sci 2011; 36:285-96. [PMID: 21628957 DOI: 10.2131/jts.36.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study is undertaken to evaluate the protective effect of vitamin E (α-tocopherol) and selenium (Se) against malathion (MTN)-induced oxidative stress and hepatic injuries in experimental rats. Male rats were randomly divided into eight groups comprised of 10 rats each. The 1(st) group served as a negative control (C(N)), whereas the 2(nd) was supplemented with a combination of α-tocopherol (100 mg kg(-1) body weight, b.w.)/Se (0.1 mg kg(-1) bw). The 3(rd), 4(th) and 5(th) groups were respectively administered with increasing doses of MTN equivalent to (1/50 )LD(50) (M(1/50)), (1/25) LD(50) (M(1/25)) and (1/10) LD(50) (M(1/10)), respectively. The 6(th), 7(th) and 8(th) groups were administered the same doses of MTN as in the 3(rd), 4(th) and 5(th) groups with a concomitant supplementation with α-tocopherol/Se. Subchronic exposure of rats to MTN for 45 days resulted in statistical dose-dependent decrease in acetylcholinestrase (AChE) activity, increase in oxidative stress marker lipid peroxidation (LPO) and reduction in reduced glutathione (GSH) level. Moreover, the levels of glutathione persoxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were significantly decline in response to MTN exposure in a dose-dependent fashion. Furthermore, histopathological studies of liver in the rats which received MTN exhibited, moderate to severe degenerative and necrotic changes in the hepatocytes. Notably, the administration of α-tocopherol/Se protected the liver of rats exposed to MTN as evidenced by the appearance of normal histological structures, significant attenuation of the decline in all antioxidant enzymes tested (i.e. GPx, SOD and CAT), significant recovery in the GSH level and statistical reduction in LPO, as compared to the experimental rat. The effect of α-tocopherol/Se supplementation on transcriptional activity of three key stress and apoptosis-related genes (i.e., Tp53, CASP3 and CASP9), in response to MTN exposure in rats, was investigated. Results revealed a significant concentration-dependent up-regulation in the level of expression for the three genes examined, in response to MTN exposure, compared with the control. Interestingly, the supplementation of MTN-treated rats with α-tocopherol/Se modulates the observed significant dose-dependent up-regulation in the level of expression for three selected genes, indicative of an interfering role in the signaling transduction process of MTN-mediated poisoning. Taken together, these data suggest that the administration of α-tocopherol/Se may partially protect against MTN-induced hepatic oxidative stress and injuries.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Abdul Rahman Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, Riyadh 11451, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 2010; 30:1119-40. [PMID: 21071550 DOI: 10.1177/0960327110388959] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Lu L, Wang X, Lang L, Fu F. Protective effect of reduced glutathione on the liver injury induced by acute omethoate poisoning. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:279-283. [PMID: 21787660 DOI: 10.1016/j.etap.2010.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/08/2010] [Accepted: 08/03/2010] [Indexed: 05/31/2023]
Abstract
Omethoate is an organophosphate insecticide with high toxicity. The aim of this study was to investigate the protective effect of exogenous reduced glutathione (GSH) on omethoate-induced liver injury. Sprague-Dawley rats were randomly divided into three groups: control, OM (omethoate poisoning), and OM+GSH (omethoate poisoning treated with GSH). The activities of acetylcholinesterase (AChE), aspartate aminotransferase (AST), alanine aminotransferase (ALT) in plasma, free organophosphate (FOP) in the liver were determined, and the histopathological changes in the liver were observed. Furthermore, TNF-α and NO in liver homogenate were assayed. The results showed that AChE activity was significantly inhibited by omethoate, but was not altered by GSH treatment. GSH was able to prevent hepatocellular edema and fatty degeneration, decrease liver FOP, attenuate the increased AST and ALT activity, and decline the increase of TNF-α and NO induced by omethoate. These results indicate GSH can attenuate liver injury, and suggest that GSH may be administered to protect the organ from injury in patients with acute organophosphate poisoning.
Collapse
Affiliation(s)
- Lina Lu
- Department of Pharmacology, School of Pharmacy, Yantai University, 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, PR China
| | | | | | | |
Collapse
|
20
|
Rezg R, Mornagui B, Benahmed M, Gharsalla Chouchane S, Belhajhmida N, Abdeladhim M, Kamoun A, El-fazaa S, Gharbi N. Malathion exposure modulates hypothalamic gene expression and induces dyslipedemia in Wistar rats. Food Chem Toxicol 2010; 48:1473-7. [DOI: 10.1016/j.fct.2010.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/26/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
21
|
Kalender S, Uzun FG, Durak D, Demir F, Kalender Y. Malathion-induced hepatotoxicity in rats: The effects of vitamins C and E. Food Chem Toxicol 2010; 48:633-8. [DOI: 10.1016/j.fct.2009.11.044] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/13/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
22
|
Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol 2009; 47:1903-8. [DOI: 10.1016/j.fct.2009.05.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/15/2009] [Accepted: 05/07/2009] [Indexed: 11/20/2022]
|