1
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
2
|
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors. Toxins (Basel) 2022; 14:toxins14110732. [PMID: 36355982 PMCID: PMC9695532 DOI: 10.3390/toxins14110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway.
Collapse
|
3
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
4
|
Llorens P, Herrera M, Juan-García A, Payá JJ, Moltó JC, Ariño A, Juan C. Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins (Basel) 2022; 14:291. [PMID: 35622538 PMCID: PMC9142966 DOI: 10.3390/toxins14050291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The measurement of human exposure to mycotoxins is necessary for its association with adverse health effects. This exposure is usually estimated from contamination levels of foodstuffs, which are the primary source of toxin exposure, and data on food consumption patterns. However, variations in contamination level, intestinal absorption, toxin distribution, and excretion lead to individual variations in toxin exposure that can be more readily measured with a biomarker. This review deals with the latest literature information about ZEN biomarkers in humans, animals, and cell line cultures. Their presence in urine, biomarkers that have effects in the kidney, liver, reproductive system and blood and biomarkers of cell response have been reported. It has highlighted the importance of determining α-zearalenol and β-zearalenol biomarkers to estimate the probable dietary intake (PDI) of a specific population or to characterize the severity of exposure to ZEN in animals or cell lines. α-ZEL and β-ZEL are cytotoxic by inhibiting cell proliferation, total protein and DNA syntheses, in this sense, an induction of expression proteins Hsp27 and Hsp70 was observed, and an increase in gene expression (TLR4, NF-kBp65, TNF-α, IL-1β, IL-6, IL-8, MGMT, α-GST, Hsp70, Nrf2, L-Fabp, HO-1, MAPK8), the determination of which indicates an oxidative stress effect. The integrity of the cell or tissue membrane is assessed by lactate dehydrogenase (LDH), which increase at exposure of ZEN (84.2 µM), and the proportions of some fatty acids of the renal tissue membrane were increased at treatments with ZEN. This review allows starting future studies of animal and population exposure in parallel with those of health effects works.
Collapse
Affiliation(s)
- Paula Llorens
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (P.L.); (A.J.-G.); (J.J.P.); (J.C.M.); (C.J.)
| | - Marta Herrera
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain;
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (P.L.); (A.J.-G.); (J.J.P.); (J.C.M.); (C.J.)
| | - Juan José Payá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (P.L.); (A.J.-G.); (J.J.P.); (J.C.M.); (C.J.)
| | - Juan Carlos Moltó
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (P.L.); (A.J.-G.); (J.J.P.); (J.C.M.); (C.J.)
| | - Agustín Ariño
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain;
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (P.L.); (A.J.-G.); (J.J.P.); (J.C.M.); (C.J.)
| |
Collapse
|
5
|
Tang Y, Liu C, Yang J, Peng X. A novel enzyme synthesized by Acinetobacter sp. SM04 is responsible for zearalenone biodegradation. Biosci Biotechnol Biochem 2022; 86:209-216. [PMID: 34864831 DOI: 10.1093/bbb/zbab204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022]
Abstract
Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin produced by multiple Fusarium species, contaminates cereals and threatens the health of both humans and animals by inducing hepatotoxicity, immunotoxicity, and genotoxicity. A new alkali tolerant enzyme named Ase, capable of degrading ZEA without H2O2, was derived from Acinetobacter sp. SM04 in this study. The Ase gene shares 97% sequence identity with hypothetical proteins from Acinetobacter pittii strain WCHAP 100004 and YMC 2010/8/T346 and Acinetobacter calcoaceticus PHEA-2, respectively. Based on the Acinetobacter genus database, the gene encoding Ase was cloned and extracellularly expressed in Escherichia coli BL21. After degrading 88.4% of ZEA (20 µg/mL), it was confirmed through MCF-7 cell proliferation assays that Ase can transform ZEA into a nonestrogenic toxic metabolite. Recombinant Ase (molecular weight: 28 kDa), produced by E. coli BL21/pET32a(+)-His-Ase, was identified as an oxygen-utilizing and cytochrome-related enzyme with optimal activity at 60 °C and pH 9.0.
Collapse
Affiliation(s)
- Yuqian Tang
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou, P. R. China
- South China Institute of Collaborative Innovation, Dongguan, Guangdong, P. R. China
| | - Chendi Liu
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou, P. R. China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou, P. R. China
- South China Institute of Collaborative Innovation, Dongguan, Guangdong, P. R. China
| | - Xian Peng
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou, P. R. China
| |
Collapse
|
6
|
Protective Effects of the Hydroethanolic Extract of Fridericia chica on Undifferentiated Human Neuroblastoma Cells Exposed to α-Zearalenol (α-ZEL) and β-Zearalenol (β-ZEL). Toxins (Basel) 2021; 13:toxins13110748. [PMID: 34822532 PMCID: PMC8618744 DOI: 10.3390/toxins13110748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fridericia chica (Bignoniaceae) is a traditional medicinal plant. The aim of this research was to determine the protective effects of the hydroethanolic extract from the F. chica leaves (HEFc) against the cytotoxicity of zearalenone (α-ZEL) and β-ZEL on SH-SY5Y cells. Free radical scavenging activity of HEFc was evaluated using the DPPH method. The cytotoxicity of both zearalenone metabolites and HEFc was examined using MTT test, as was the cytoprotective effects of the HEFc on cells treated with these mycotoxins. The chemical composition of HEFc was determined using UPLC-QTOF-MS/MS. HEFc elicited good DPPH radical scavenging activity following a concentration-dependent relationship. Cells exposed to α-ZEL exhibited a viability ˂50% after 48 h of treatment (25 and 50 µM), while those exposed to β-ZEL showed viability ˂50% (100 µM) and ˂25% (25-100 µM) after 24 and 48 h of exposure, respectively. HEFc showed a significant increase in cell viability after exposure to α-ZEL (25 and 50 µM) and β-ZEL (6-100 µM) (p < 0.05). UPLC-QTOF-MS/MS analyses allowed the identification of 10 phytochemical components in the HEFc. In short, the hydroethanolic extract of F. chica grown in Colombian Caribbean can protect against the effects of mycotoxins and it is a valuable source of compounds with antioxidant properties.
Collapse
|
7
|
Wu J, Li J, Liu Y, Liao X, Wu D, Chen Y, Liang Z, Yuan Z, Li R, Yi J, Wen L. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117557. [PMID: 34167001 DOI: 10.1016/j.envpol.2021.117557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium strains, that is widely present in crops, and endangers the reproductive system of animals. Tannic acid (TA) is a natural polyphenolic substance that is widespread in the roots, stems, and leaves of plants, and has special pharmacological activity. This study was designed to investigate the therapeutic effect of TA on ZEA-induced ovarian damage in mice and to explore the molecular mechanism involved. Ninety healthy Kunming female mice were divided into six equal groups. All the groups but the control group were administered daily with ZEA [10 mg/kg body weight (bw)] orally, for 7 days, to induce damage to the reproductive system. Some groups were also administered with TA (50, 100, and 200 mg/bw) for 7 days. Mice were euthanized 24 h later to allow for collection of serum and ovaries. TA can effectively alleviate the appearance of congestion and redness of the ovary, caused by ZEA, and increase the number of healthy growing follicles. Moreover, the estrogen content and the levels of MDA and ROS in the ovaries can be effectively reduced by TA. It can also reduce the apoptosis of ovarian cells, decreases the protein expression of the estrogen receptor, Fas, Fasl, caspase-3, caspase-8, caspase-9, and Bax, and increases the protein expression of Bcl-2. Our study indicates that TA reduces the strong estrogen and oxidative damage induced by ZEA, and these therapeutic effects may be partially mediated by the death receptor and mitochondrial apoptosis signaling pathway.
Collapse
Affiliation(s)
- Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanwei Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Liao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Dongyi Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, China.
| |
Collapse
|
8
|
Sabini M, Cariddi L, Escobar F, Mañas F, Roma D, Candela FM, Bagnis G, Soria E, Sabini L, Dalcero A. Preventive effects of the antioxidant and antigenotoxic Achyrocline satureioides extract against zearalenone-induced mammal cytogenotoxicity and histological damage. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zearalenone (ZEN), a Fusarium’s mycotoxin, is immunotoxic, genotoxic, hepatonephrotoxic and, affects the reproductive system. ZEN induces toxic and genotoxic effects on humans and other animals. Achyrocline satureioides has several medicinal properties. Moreover, the aqueous extract of A. satureioides is a safe agent that exerts low cytotoxicity and no genotoxicity. This extract is a promissory candidate to counteract ZEN effects. The present study aimed to investigate the capacity of cold aqueous extract from A. satureioides to protect against ZEN multi-target toxicity in different experimental mammal models. Anticytotoxicity was evaluated by neutral red uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium reduction assays. Comet assay and micronuclei test, oxidative stress (TBARs), and histopathological damage were evaluated in Balb/C mice. Anticytotoxic studies indicated that cold aqueous extract (100 and 300 μg/ml) protected from damage induced by ZEN (50 μg/ml) on Vero cells. In vivo studies indicated that ZEN (40 mg/kg body weight) induced an increase of genotoxicity: micronuclei (34 MNPCE/1000 PCE) and increase of damage (tail moment) in blood cells. Also, it increased lipid peroxidation in liver and kidneys and generated several histopathological alterations in both organs. Cold aqueous extract (100 mg/kg body weight) protected from genotoxicity induced by ZEN in both tests. Cold aqueous extract, also, reduced the lipid peroxidation and histopathological damage in liver and kidneys. In conclusion, the cold aqueous extract of A. satureioides that contains bioactive flavonoids prevents the multi-target toxicity induced by ZEN improving all the parameters evaluated in vitro and in vivo, which is a valuable and original finding in order to develop future treatments for human and veterinary medicine.
Collapse
Affiliation(s)
- M.C. Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, FCM, Córdoba, Argentina
| | - L.N. Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F.M. Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F. Mañas
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - D. Roma
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F. Menis Candela
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - G. Bagnis
- Cátedra de Histología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - E.A. Soria
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, FCM, Córdoba, Argentina
| | - L.I. Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - A.M. Dalcero
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| |
Collapse
|
9
|
Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I, Poór M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int J Mol Sci 2021; 22:6281. [PMID: 34208060 PMCID: PMC8230625 DOI: 10.3390/ijms22126281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins are toxic metabolites of filamentous fungi. Previous studies demonstrated the co-occurrence of Fusarium and Alternaria toxins, including zearalenone (ZEN), ZEN metabolites, and alternariol (AOH). These xenoestrogenic mycotoxins appear in soy-based meals and dietary supplements, resulting in the co-exposure to ZEN and AOH with the phytoestrogen genistein (GEN). In this study, the cytotoxic and estrogenic effects of ZEN, reduced ZEN metabolites, AOH, and GEN are examined to evaluate their individual and combined impacts. Our results demonstrate that reduced ZEN metabolites, AOH, and GEN can aggravate ZEN-induced toxicity; in addition, the compounds tested exerted mostly synergism or additive combined effects regarding cytotoxicity and/or estrogenicity. Therefore, these observations underline the importance and the considerable risk of mycotoxin co-exposure and the combined effects of mycoestrogens with phytoestrogens.
Collapse
Affiliation(s)
- Adrienn Balázs
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Tamás Kőszegi
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary;
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| |
Collapse
|
10
|
Agahi F, Juan C, Font G, Juan-García A. In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone and β-zearalenone. Food Chem Toxicol 2020; 146:111818. [PMID: 33098936 PMCID: PMC7576377 DOI: 10.1016/j.fct.2020.111818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Zearalenone (ZEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (ZEA's metabolites) are co/present in cereals, fruits or their products. All three with other compounds, constitute a cocktail-mixture that consumers (and also animals) are exposed and never entirely evaluated, nor in vitro nor in vivo. Effect of ZEA has been correlated to endocrine disruptor alterations as well as its metabolites (α-ZEL and β-ZEL); however, toxic effects associated to metabolites generated once ingested are unknown and difficult to study. The present study defines the metabolomics profile of all three mycotoxins (ZEA, α-ZEL and β-ZEL) and explores the prediction of their toxic effects proposing an in silico workflow by using three programs of predictions: MetaTox, SwissADME and PASS online. Metabolomic profile was also defined and toxic effect evaluated for all metabolite products from Phase I and II reaction (a total of 15 compounds). Results revealed that products describing metabolomics profile were: from O-glucuronidation (1z and 2z for ZEA and 1 ab, 2 ab and 3 ab for ZEA's metabolites), S-sulfation (3z and 4z for ZEA and 4 ab, 5 ab and 6 ab for ZEA's metabolites) and hydrolysis (5z and 7 ab for ZEA's metabolites, respectively). Lipinsky's rule-of-five was followed by all compounds except those coming from O-glucuronidation (HBA>10). Metabolite products had better properties to reach blood brain barrier than initial mycotoxins. According to Pa values (probability of activation) order of toxic effects studied was carcinogenicity > nephrotoxic > hepatotoxic > endocrine disruptor > mutagenic (AMES TEST) > genotoxic. Prediction of inhibition, induction and substrate function on different isoforms of Cytochrome P450 (CYP1A1, CYP1A2, CYP2C9 and CYP3A4) varied for each compounds analyzed; similarly, for activation of caspases 3 and 8. Relying to our findings, the metabolomics profile of ZEA, α-ZEL and β-ZEL analyzed by in silico programs predicts alteration of systems/pathways/mechanisms that ends up causing several toxic effects, giving an excellent sight and direct studies before starting in vitro or in vivo assays contributing to 3Rs principle; however, confirmation can be only demonstrated by performing those assays.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
11
|
Song T, Yang W, Huang L, Yang Z, Jiang S. Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro. Anim Biosci 2020; 34:993-1005. [PMID: 32898953 PMCID: PMC8100490 DOI: 10.5713/ajas.20.0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) μmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.
Collapse
Affiliation(s)
- Tingting Song
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271 018, China
| | - Weiren Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271 018, China
| | - Libo Huang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271 018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271 018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271 018, China
| |
Collapse
|
12
|
Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020; 182:34-53. [PMID: 32423889 DOI: 10.1016/j.toxicon.2020.04.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are low-molecular weight compounds produced mainly by fungi, with Fusarium and Aspergillus origin. Secondary, metabolites, are mostly found on plants. However, the contamination of the feed and forage has been also reported. Because of their pharmacological activity, mycotoxins can be used as chemical warfare agents, drugs or growth promotants. Additionally, mycotoxins are found as one of the most dangerous genotoxic factors which cause the damage of DNA and lead to disease development. This review includes the knowledge of mycotoxins as both, an invisible danger of forage and as food additives. Special emphasis shall be given on mycotoxins with proven cancerogenic activity; including aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Factors such as species, mechanisms/modes of action, metabolism, and defense mechanisms were taken into account. The main concern was focused on zearalenone characterization, because of its estrogenic activity, caused by structural similarity to estrogens, naturally occurring in cells. By binding to estrogenic receptors, toxins are, accumulated in organisms and long-term exposure may cause the disturbances, especially in the reproductive system. The next part of this paper contains the description of main strategies of toxins determination. Finally, in the review, several potential methods for the dioxins neutralization were discussed.
Collapse
|
13
|
Karaman EF, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol Lett 2020; 326:52-60. [PMID: 32119988 DOI: 10.1016/j.toxlet.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
Zearalenone, produced by various Fusarium species, is a non-steroidal estrogenic mycotoxin that contaminates cereals, resulting in adverse effects on human health. We investigated the effects of zearalenone and its metabolite alpha zearalenol on epigenetic modifications and its relationship with metabolic pathways in human hepatocellular carcinoma cells following 24 h of exposure. Zearalenone and alpha zearalenol at the concentrations of 1, 10 and 50 μM significantly increased global levels of DNA methylation and global histone modifications (H3K27me3, H3K9me3, H3K9ac). Expression levels of the chromatin modifying enzymes EHMT2, ESCO1, HAT1, KAT2B, PRMT6 and SETD8 were upregulated by 50 μM of zearalenone exposure using PCR arrays, consistent with the results of global histone modifications. Zearalenone and alpha zearalenol also changed expression levels of the AhR, LXRα, PPARα, PPARɣ, L-fabp, LDLR, Glut2, Akt1 and HK2 genes, which are related to nuclear receptors and metabolic pathways. PPARɣ, a key regulator of lipid metabolism, was selected from among these genes for further analysis. The PPARɣ promoter reduced methylation significantly following zearalenone exposure. Taken together, the epigenetic mechanisms of DNA methylation and histone modifications may be key mechanisms in zearalenone toxicity. Furthermore, effects of zearalenone in metabolic pathways could be mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, 34010, Topkapi, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
14
|
Cheng Q, Jiang S, Huang L, Wang Y, Yang W, Yang Z, Ge J. Effects of zearalenone-induced oxidative stress and Keap1-Nrf2 signaling pathway-related gene expression in the ileum and mesenteric lymph nodes of post-weaning gilts. Toxicology 2019; 429:152337. [PMID: 31760079 DOI: 10.1016/j.tox.2019.152337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
Zearalenone (ZEA) contamination of feed affects animal husbandry and the human health. Currently, the molecular mechanism underlying small intestine-related diseases caused by ZEA-induced oxidative stress is not well understood. In this study, we aimed to identify the mechanisms involved in ZEA (0.5-1.5 mg/kg)-induced oxidative stress in the ileum and mesenteric lymph nodes (MLNs) and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in post-weaning gilts. Forty post-weaning gilts (Landrace × Yorkshire × Duroc) with an average body weight of 14.01 ± 0.86 kg were randomly allocated to four groups and fed a corn-soybean meal basal diet supplemented with < 0.1, 0.5, 1.0, or 1.5 mg/kg ZEA. The results showed that the activity of total superoxide dismutase and glutathione peroxidase decreased (p < 0.05) linearly and quadratically and that the content of malondialdehyde increased (p < 0.05) quadratically in the ileum and MLNs with increasing ZEA in the diet. Immunohistochemical analysis showed that the expression of Nrf2 and glutathione peroxidase 1 (Gpx1) immunoreactive proteins in the ileum and MLNs were significantly enhanced with increasing ZEA. The relative mRNA and protein expression of Nrf2, Gpx1, quinone oxidoreductase 1 (Nqo1), hemeoxygenase 1 (Ho1), modifier subunit of glutamate-cysteine ligase (Gclm), and catalytic subunit of glutamate-cysteine ligase (Gclc) increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Keap1 decreased (p < 0.05) linearly and quadratically in the ileum with increasing ZEA concentrations in the diet. Further, the relative mRNA and protein expression of Nrf2 and Gpx1 increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Nqo1, Ho1, and Gclm decreased (p < 0.05) quadratically in the MLNs as ZEA concentrations increased in the diet. Our results provide valuable genetic information on ZEA-induced oxidative stress in the ileum and MLNs of post-weaning gilts and have elucidated the key regulatory genes involved in the Keap1-Nrf2 signaling pathway. Results indicated that the Keap1-Nrf2 signaling pathway might be a key target to further prevent and treat ZEA-induced injury to the ileum in post-weaning gilts.
Collapse
Affiliation(s)
- Qun Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Zaibin Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jinshan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd, No. 226 Gongye 2 Road, Feicheng City, Shandong,271600, China
| |
Collapse
|
15
|
Zhou M, Yang L, Chen Y, Sun T, Wang N, Chen X, Yang Z, Ge J, Jiang S. Comparative study of stress response, growth and development of uteri in post-weaning gilts challenged with zearalenone and estradiol benzoate. J Anim Physiol Anim Nutr (Berl) 2019; 103:1885-1894. [PMID: 31483545 DOI: 10.1111/jpn.13195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022]
Abstract
The objective of this study was to evaluate the effects of zearalenone (ZEA) and estradiol benzoate (EB) on stress injury and uterine development in post-weaning gilts. Thirty healthy post-weaning female gilts (Duroc × Landrace × Large White) aged 28-32 days were randomly allocated to three treatments as follows: (a) basal diet (Control), (b) basal diet plus 1.0 mg/kg purified ZEA (ZEA) and (c) basal diet plus 0.75 ml (1.5 mg) EB per pig at 3-days intervals by intramuscular injection (EB). The serum estradiol (E2 ), the final and the increased vulvar area, uterine index, thickness of the myometrium and endometrium, and protein expression of heat shock protein 70 (HSP70) in ZEA group were higher than those in the control group (p < .05), but lower than those in the EB group (p < .05). The serum luteinizing hormone in ZEA group was lower than that of the control group (p < .05), but higher than that in the EB group (p < .05). Higher serum follicle-stimulating hormone and progesterone were observed in the ZEA and control groups than those in the EB group (p < .05). The serum glutathione peroxidase activity in the ZEA group was lower than that in the control and EB groups (p < .001), and the malondialdehyde in the ZEA group was higher than that in the control and EB groups (p < .001). Moreover, the relative mRNA and protein expression of growth hormone receptor (GHR) and relative mRNA expression of HSP70 in the ZEA and EB groups were higher than those in the control group (p < .05). In conclusion, both ZEA (1.0 mg/kg) and EB (1.5 mg at 3 days intervals by intramuscular injection) stimulated vulvar swelling and uterine hypertrophy by disordering serum hormones and up-regulating GHR expression, and induced stress by different mechanisms in this study. Furthermore, the observed up-regulating HSP70 expression challenged by ZEA or EB may be part of the mechanism to resist stress injury.
Collapse
Affiliation(s)
- Min Zhou
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Shandong Agricultural University, Taian, P. R. China
| | - Lijie Yang
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Shandong Agricultural University, Taian, P. R. China
| | - Yanhong Chen
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China
| | - Tong Sun
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China
| | - Nuan Wang
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China
| | - Xing Chen
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Shandong Agricultural University, Taian, P. R. China
| | - Jinshan Ge
- Shandong Zhongcheng feed Technology Co., Ltd., Feicheng City, Shandong Province, P. R. China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, College of Shandong Agricultural University, Taian, P. R. China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
16
|
Sun Y, Wen J, Chen R, Deng Y. Variable protein homeostasis in housekeeping and non-housekeeping pathways under mycotoxins stress. Sci Rep 2019; 9:7819. [PMID: 31127180 PMCID: PMC6534621 DOI: 10.1038/s41598-019-44305-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
Abstract
Transcript levels are the primary factor determining protein levels, but for the majority of genes, fold changes in transcript levels are larger than the corresponding changes in protein levels, a phenomenon that is termed “protein homeostasis”. However, this phenomenon is not well characterized in the context of environmental changes. In this study, we sequenced the entire transcriptome and proteome of chicken primary hepatocytes administered three mycotoxin treatments Aflatoxin B1 (AFB1), Ochoratoxin A (OTA) and Zearalenone (ZEN). Each mycotoxin induced unique set of differential expressed transcripts and proteins, suggesting variable cytotoxicity and biochemical action in cell. We found a weak positive correlation between transcript and protein changes, and the transcript changes were higher than the protein changes. Furthermore, we observed pathway-specific protein homeostasis pattern under mycotoxin stress. Specifically, the “Metabolism”, “Transcription” and “Translation” pathways (housekeeping pathways) showed lower fold changes in protein/mRNA levels than non-housekeeping pathways such as “Cell growth and death” and “Immune system”. Protein molecular weight had a weak negative effect on protein production, and this effect was stronger for non-housekeeping pathways. Overall, we hypothesize housekeeping pathways maintain stable protein production for baseline cellular function, whereas non-housekeeping pathways is associated with the fitness response to environmental stress.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China. .,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.
| |
Collapse
|
17
|
Marin DE, Pistol GC, Bulgaru CV, Taranu I. Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:937-947. [PMID: 30919009 DOI: 10.1007/s00210-019-01644-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Zearalenone (ZEA), a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain. ZEA derivatives (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL)) can also be produced by Fusarium spp. in corn stems infected by fungi in the field. Also, following oral exposure, zearalenone is metabolized in various tissues, particularly in the liver, the major metabolites being α-ZOL and β-ZOL. The co-exposure of cells to mixture of a combination of mycotoxins may cause an increase of toxicity produced by these mycotoxins. In this in vitro study, we investigated the combined effects of ZEA, α-ZOL, β-ZOL in binary mixtures on the viability and inflammatory response of human liver cancer cell line (HepG2). Cell viability was assessed after 72 h using a neutral red assay. Effect of the toxins and their binary combinations on the expression of genes involved in inflammation (IL-1β, TNF-α, and IL-8) were assessed through qPCR. Our viability data showed that irrespective of the toxin combinations, the toxins have synergistic effect. ZEA + α-ZOL and ZEA + β-ZOL mixtures have induced a slight to high antagonistic response on inflammatory cytokines at low concentrations that have turned into strong synergism for high concentrations. α-ZOL + β-ZOL showed antagonistic effects on inflammation for IL-1β and TNF-α, but act synergic for IL-8 at high toxin concentrations. This study clearly shows that co-contamination of food and feed with ZEA metabolites should be taken into consideration, as the co-exposure to mycotoxins might result in stronger adverse effect than resulted from the exposure to individual toxin.
Collapse
Affiliation(s)
- D E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania.
| | - G C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - C V Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - I Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| |
Collapse
|
18
|
Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem Toxicol 2019; 126:262-276. [PMID: 30825585 DOI: 10.1016/j.fct.2019.02.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Zearalenone (ZEA), a non-steroidal estrogen mycotoxin produced by several species of Fusarium fungi, can be metabolized into many other derivatives by microorganisms, plants, animals and humans. It can affect mammalian reproductive capability by impacting the synthesis and secretion of sex hormones, including testosterone, estradiol and progesterone. This review summarizes the mechanisms in which ZEA and its derivatives disturb the synthesis and secretion of sex steroid hormones. Because of its structural analogy to estrogen, ZEA and its derivatives can exert a variety of estrogen-like effects and engage in estrogen negative feedback regulation, which can result in mediating the production of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland. ZEA and its derivatives can ultimately reduce the number of Leydig cells and granulosa cells by inducing oxidative stress, endoplasmic reticulum (ER) stress, cell cycle arrest, cell apoptosis, and cell regeneration delay. Additionally, they can disrupt the mitochondrial structure and influence mitochondrial functions through overproduction of reactive oxygen species (ROS) and aberrant autophagy signaling ways. Finally, ZEA and its derivatives can disturb the expressions and activities of the related steroidogenic enzymes through cross talking between membrane and nuclear estrogen receptors.
Collapse
|
19
|
Gao X, Xiao ZH, Liu M, Zhang NY, Khalil MM, Gu CQ, Qi DS, Sun LH. Dietary Silymarin Supplementation Alleviates Zearalenone-Induced Hepatotoxicity and Reproductive Toxicity in Rats. J Nutr 2018; 148:1209-1216. [PMID: 30137478 DOI: 10.1093/jn/nxy114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Background Zearalenone (ZEN) can cause serious defects in development and reproduction in humans and animals. Silymarin shows antioxidant and estrogenic effects. Objective This study was conducted to determine if silymarin can antagonize ZEN-induced hepatic and reproductive toxicities. Methods Thirty-five 21-d-old female Sprague-Dawley rats (n = 7/diet) were fed a control diet (Ctrl) or Ctrl plus 20 mg ZEN/kg or Ctrl plus 20 mg ZEN/kg with 100, 200, or 500 mg silymarin/kg for 6 wk. Serum, livers, ovaries, and uterus were collected at week 6 for biochemistry, hormone, and redox status and selected gene and protein assays. Results The consumption of ZEN decreased (P < 0.05) the final body weight by 17.9%, induced liver injury, increased (P < 0.05) aspartate aminotransferase and alkaline phosphatase activities, and decreased (P < 0.05) total protein and albumin concentrations in serum by 16.7-40.6%. ZEN also caused reproductive toxicity, including decreased (P < 0.05) 17β-estradiol and increased (P < 0.05) follicle-stimulating hormone concentrations in serum by 12.7-46.3% and induced histopathologic alterations in the liver, ovaries, and uterus. Interestingly, these alterations induced by ZEN were alleviated (P < 0.05) by silymarin supplementation at 100, 200, and 500 mg/kg. Moreover, silymarin supplementation at the 3 doses mitigated (P < 0.05) ZEN-induced impairment in hepatic glutathione peroxidase activity, total antioxidant capacity, and malondialdehyde concentration by 17.6-100%. Meanwhile, silymarin supplementation at all doses upregulated (P < 0.05) phospho-ribosomal protein S6 kinase 1 (p-RPS6KB1) and 3β-hydroxysteroid dehydrogenase (HSD3B) by 43.0-121% but downregulated (P < 0.05) AMP-activated protein kinase (AMPK) and 3α-hydroxysteroid dehydrogenase (HSD3A) in the liver relative to the ZEN group by 11.2-40.6%. In addition, silymarin supplementation at all doses elevated (P < 0.05) HSD3B by 1.8- to 2.5-fold and decreased (P < 0.05) estrogen receptor 1 (ESR1), ATP binding cassette (ABC) c1, and Abcc5 in ovaries and the uterus by 10.7-63.2%. Conclusion Dietary silymarin supplementation at 100, 200, and 500 mg/kg protected rats from ZEN-induced hepatotoxicity and reproductive toxicity, potentially through improvement in the antioxidant capacity and regulation in the genes related to protein synthesis, ZEN metabolism, hormone synthesis, and ABC transporters in the tissues.
Collapse
Affiliation(s)
- Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhuo-Hui Xiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Meng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Mahmoud Mohamed Khalil
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chang-Qin Gu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
20
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
21
|
Chen P, Liu T, Jiang S, Yang Z, Huang L, Liu F. Effects of purified zearalenone on selected immunological and histopathologic measurements of spleen in post-weanling gilts. ACTA ACUST UNITED AC 2017; 3:212-218. [PMID: 29767107 PMCID: PMC5941232 DOI: 10.1016/j.aninu.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 11/09/2022]
Abstract
The present study was aimed at investigating the adverse effects of dietary zearalenone (ZEA) on the lymphocyte proliferation rate (LPR), interleukin-2 (IL-2), mRNA expressions of pro-inflammatory cytokines, and histopathologic changes of spleen in post-weanling gilts. A total of 20 crossbred piglets (Yorkshire × Landrace × Duroc) with an initial BW of 10.36 ± 1.21 kg (21 d of age) were used in the study. Piglets were fed a basal diet with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. The results showed that LPR and IL-2 production of spleen decreased linearly (P < 0.05) as dietary ZEA increased. Splenic mRNA expressions of interleukin-1β (IL-1β) and interleukin-6 (IL-6) were linearly up-regulated (P < 0.05) as dietary ZEA increased. On the contrary, linear down-regulation (P < 0.05) of mRNA expression of interferon-γ (IFN-γ) was observed as dietary ZEA increased. Swelling splenocyte in 1.1 mg/kg ZEA treatments, atrophy of white pulp and swelling of red pulp in 2.0 and 3.2 mg/kg ZEA treatments were observed. The cytoplasmic edema in 1.1 mg/kg ZEA treatments, significant chromatin deformation in 2.0 mg/kg ZEA treatment and phagocytosis in 3.2 mg/kg ZEA treatment were observed. Results suggested that dietary ZEA at 1.1 to 3.2 mg/kg can induce splenic damages and negatively affect immune function of spleen in post-weanling gilts.
Collapse
Affiliation(s)
- Peng Chen
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Tingjun Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
22
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
23
|
Ben Salem I, Boussabbeh M, Prola A, Guilbert A, Bacha H, Lemaire C, Abid-Essefi S. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15504-15514. [PMID: 27121014 DOI: 10.1007/s11356-016-6741-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | | | | | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Christophe Lemaire
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
- Université de Versailles Saint Quentin en Yvelines, Versailles, France
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia.
| |
Collapse
|
24
|
Tatay E, Font G, Ruiz MJ. Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem Toxicol 2016; 96:43-9. [PMID: 27465603 DOI: 10.1016/j.fct.2016.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 cells. Zearalenone metabolites, but not ZEA, increased DNA damage 43% (α-ZOL) and 28% (β-ZOL) compared to control cells. The GSH levels decreased from 18% to 36%. The GPx and SOD activities respectively increased from 26% to 62% and from 23% to 69% in CHO-K1 cells, whereas CAT activity decreased from 14% to 52%. In addition, intracellular ROS production was induced by ZEA and its metabolites. The endogenous antioxidant system components GSH, GPx and SOD were activated against ZEA and its metabolites. These antioxidant system components thus could contribute to decrease cell injury by ZEA and its metabolites.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Guillermina Font
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
25
|
Yang L, Yang W, Feng Q, Huang L, Zhang G, Liu F, Jiang S, Yang Z. Effects of purified zearalenone on selected immunological measurements of blood in post-weaning gilts. ACTA ACUST UNITED AC 2016; 2:142-148. [PMID: 29767104 PMCID: PMC5941023 DOI: 10.1016/j.aninu.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is produced mainly by Fusarium fungi. Previous studies have indicated that acute ZEA exposure induced various damages in different species; however, its transparent hematotoxicity in female piglets at dietary levels of 1.1 to 3.2 mg/kg has not been shown. The present study was conducted to investigate the effects of dietary ZEA (1.1–3.2 mg/kg) on hematology, T lymphocyte subset, immunoglobulin, antibody titer, lymphocyte proliferation rate (LPR), and interleukin-2 (IL-2) in peripheral blood of post-weaning gilts. A total of 20 female piglets (Landrace × Yorkshire × Duroc), weaned at 42 d with an average body weight of 10.36 ± 1.21 kg were used in the study. Female piglets were kept in a temperature controlled room, divided into four treatments, and fed a diet based on corn-soybean meal-fishmeal-whey, with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. Feed intake and refusal were measured daily and individual pigs were weighed weekly. Blood and serum samples were collected for selected immunological measurements. Female piglets fed different levels of dietary ZEA grew similarly with no difference in feed intake. Hematological values including leukocytes, platelets, lymphocytes, hematocrit, and mean corpuscular hemoglobin (MCH) decreased linearly (P < 0.05) as dietary ZEA increased. Female piglets fed diets containing 2.0 mg/kg ZEA or greater showed significantly decreased CD4+CD8+, CD4+, and CD4+/CD8+ in comparison to the control (P < 0.05), whereas CD8+ was significantly increased (P = 0.026) in the gilts which were fed the diet containing 3.2 mg/kg ZEA. Serum immunoglobulin G (IgG) and the antibody titer on d 18 were reduced linearly as dietary ZEA levels increased (P < 0.001). Linear decrease in LPR was observed (P < 0.05). Female piglets fed diets containing 2.0 mg/kg ZEA or more showed significantly decreased IL-2 in comparison to the control (P < 0.05). The results suggested that dietary ZEA at the levels of 1.1 to 3.2 mg/kg can induce different degrees of hematotoxicity and negatively affect immune function in female piglets.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang Feng
- Tai'an Central Hospital, Shandong 271000, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Guiguo Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
26
|
Biodegradation of zearalenone by Saccharomyces cerevisiae: Possible involvement of ZEN responsive proteins of the yeast. J Proteomics 2016; 143:416-423. [PMID: 27109348 DOI: 10.1016/j.jprot.2016.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED The mycotoxin zearalenone, also known as F-2 mycotoxin or RAL is a potent estrogenic metabolite produced by some Gibberella and Fusarium species. It is a common contaminant of cereal crops, livestock and poultry products. However, detoxification of zearalenone (ZEN) remains a challenge. Recently, biological approach for ZEN detoxification is being explored. In this study, we investigated the biodegradation of ZEN by using Saccharomyces cerevisiae and the possible mechanisms involved. The findings revealed that, after 48h of incubation of S. cerevisiae in combination with ZEN, the ZEN was completely degraded by S. cerevisiae. On the contrary, heat-killed cells and cell-free culture filtrates of S. cerevisiae could not degrade ZEN. Furthermore, addition of cycloheximide to S. cerevisiae combined with ZEN at time 0h prevented ZEN degradation, while addition of cycloheximide at 12h significantly slowed down degradation. The results also indicated cellular proteomics of S. cerevisiae. Several differential proteins were identified, most of which were related to basic metabolism. BIOLOGICAL SIGNIFICANCE The findings revealed that, after 48h of incubating ZEN together with S. cerevisiae, ZEN was completely degraded by S. cerevisiae. The mechanisms involved in the degradation of ZEN by S. cerevisiae may be the production of associated intracellular and extracellular enzymes, which have the ability to degrade ZEN. In addition, there were some functional proteins produced by S. cerevisiae, indicating that the basic metabolism of S. cerevisiae was improved when ZEN was added. This novel discovery by the authors, will greatly contribute to the field of biodegradation of mycotoxin by antagonists. The authors also believed this innovation will open the grounds for further research and improvement of S. cerevisiae in the field of biodegradation.
Collapse
|
27
|
Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Lemaire C, Abid-Essefi S. Activation of ER stress and apoptosis by α- and β-zearalenol in HCT116 cells, protective role of Quercetin. Neurotoxicology 2016; 53:334-342. [DOI: 10.1016/j.neuro.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/14/2023]
|
28
|
Prevention of deoxynivalenol- and zearalenone-associated oxidative stress does not restore MA-10 Leydig cell functions. Toxicology 2016; 341-343:17-27. [DOI: 10.1016/j.tox.2016.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 11/23/2022]
|
29
|
Li Y, He X, Yang X, Huang K, Luo Y, Zhu L, Li Y, Xu W. Zinc inhibits the reproductive toxicity of Zearalenone in immortalized murine ovarian granular KK-1 cells. Sci Rep 2015; 5:14277. [PMID: 26395757 PMCID: PMC4585791 DOI: 10.1038/srep14277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEA) mainly injures the reproductive system of mammals. In the present study, we aimed to explore the mechanism by which zinc inhibits ZEA-induced reproductive damage in KK-1 cells for the first time. The results shown that both zinc sulfate and zinc gluconate addition increased the intracellular zinc concentration and influenced the expression of zinc transporters (Slc30a1 and Slc39a1) in a time-dependent manner. Co-incubation of zinc with ZEA significantly reduced the ZEA-induced reactive oxygen species and malondialdehyde elevation by promoting the transcription of Mtf1 and Mt2. Meanwhile, two different zincs inhibited the ZEA-induced loss of mitochondrial membrane potential and elevation of late-stage apoptosis via activating the mitochondrial apoptotic pathway by recovering the mRNA and protein expression of pro-apoptotic genes (Bax, Casp3, Casp9). Zinc also recovered cells from S-phase cell cycle arrest. In addition, both of them promoted the ZEA-induced estrogen production but regulated the expression of steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, Cyp17a1) in different way. All these results indicated that zinc could inhibit the reproductive toxicity of ZEA.
Collapse
Affiliation(s)
- Yijia Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| | - Xuan Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Yuzhe Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China, 100083
| |
Collapse
|
30
|
Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015; 80:17-31. [DOI: 10.1016/j.fct.2015.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
31
|
Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55-67. [PMID: 25058043 DOI: 10.1016/j.tox.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
Collapse
|
32
|
Wang HW, Wang JQ, Zheng BQ, Li SL, Zhang YD, Li FD, Zheng N. Cytotoxicity induced by ochratoxin A, zearalenone, and α-zearalenol: effects of individual and combined treatment. Food Chem Toxicol 2014; 71:217-24. [PMID: 24952310 DOI: 10.1016/j.fct.2014.05.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
This study investigated the cytotoxicity of combined mycotoxins of ochratoxin A (OTA), zearalenone (ZEA), and/or α-zearalenol (α-ZOL). The cytotoxicity of two mycotoxin combinations (two two-toxin combinations and one three-toxin combination) on human Hep G2 cells was evaluated using a tetrazolium salt (MTT) assay and isobologram analysis. Our results demonstrated significant cytotoxic effects of the two-toxin combination and the three-toxin combination on Hep G2 cells in a time- and concentration-dependent manner. The combination indexes (CI) were 2.73-7.67 for the OTA+ZEA combination and 1.23-17.82 for the OTA+α-ZOL combination after 24 h, 48 h, and 72 h of exposure at all inhibit concentration (IC) levels (IC10-IC90), indicating an antagonism. The CIs of the ZEA+α-ZOL combination were 1.29-2.55 after 24 h and 72 h of exposure (IC10-IC90), indicating an antagonism. The CIs of the ZEA+α-ZOL combination were 0.74-1.68 after 48 h of exposure, indicating synergism (IC80-IC90), additive effects (IC50-IC70), or antagonism (IC10-IC40). For the OTA+ZEA+α-ZOL combination, the CIs were 1.41-14.65 after 24 h, 48 h, and 72 h of exposure (IC10-IC90), indicating an antagonism.
Collapse
Affiliation(s)
- H W Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - J Q Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Q Zheng
- Tangshan Livestock and Aquatic Products Quality Monitoring Center, Tangshan 06300, PR China
| | - S L Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Y D Zhang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - F D Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - N Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
33
|
Yin S, Zhang Y, Gao R, Cheng B, Shan A. The immunomodulatory effects induced by dietary Zearalenone in pregnant rats. Immunopharmacol Immunotoxicol 2014; 36:187-94. [PMID: 24754511 DOI: 10.3109/08923973.2014.909847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Zearalenone (ZEN) is a common contaminant that is present in feedstuff of high humidity and high temperatures. OBJECTIVE The aim of this study was to investigate the effects of diets contaminated with different concentrations of ZEN on immunomodulation in early pregnant rats. MATERIALS AND METHODS Forty-eight pregnant Sprague Dawley (SD) rats were randomly divided into four treatment groups fed on a diet supplemented with one of four concentrations of ZEN: 0 mg/kg (ZEN 0), 50 mg/kg (ZEN 50), 100 mg/kg (ZEN 100) and 150 mg/kg (ZEN 150). The pregnant rats were fed ZEN-treated diets from gestation days 0 to 7 and a basal diet from gestation days 8 to 20. RESULTS ZEN exposure (ZEN 100 and 150) caused significant decreases in splenic coefficients, viability of splenocyte and T-cell proliferation and induced histopathological damage in the spleen of early pregnant rats compared with other groups. Levels of IgG and IgA were decreased, while IgM was increased, in high doses of ZEN (ZEN 100 and ZEN 150) compared with other groups. ZEN 150 caused increases in white blood cells and hemoglobin and induced a significant decrease in platelets in blood of the pregnant rats compared with other groups. ZEN 150 increased the mRNA expression levels of interleukin (IL)-6, IL-18 and IL-1β and decreased the mRNA expression levels of interferon-γ, tumor necrosis factor-α and IL-10 in the spleen of pregnant rats compared with ZEN 0. CONCLUSION High doses of ZEN-induced immunomodulatory effects on early pregnant rats by altering immunological parameters.
Collapse
Affiliation(s)
- Shutong Yin
- Institute of Animal Nutrition, Northeast Agricultural University , Harbin , P.R. China
| | | | | | | | | |
Collapse
|
34
|
Zhou C, Zhang Y, Yin S, Jia Z, Shan A. Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum Exp Toxicol 2014; 34:65-73. [DOI: 10.1177/0960327113504972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of the present research was to examine the toxic influence of different doses of zearalenone (ZEN) on the liver, especially oxidative stress induced by ZEN on the liver. A total of 48 pregnant Sprague-Dawley rats were randomly assigned into 4 treatments groups with 12 animals in each. The rats were fed with a normal diet treated with 0 mg/kg (control), 50 mg/kg (treatment 1), 100 mg/kg (treatment 2), or 150 mg/kg (treatment 3) ZEN in feed on gestation days (GDs) 0–7 and then all the rats were fed with a normal diet on GDs 8–20. The experimental period lasted 21 days. The results showed that exposure to ZEN induced increase in aspartate amino transferase, alanine aminotransferase, and alkaline phosphatase activities and decrease in total protein and albumin content in a dose-dependent manner and also induce decrease in superoxide dismutase and glutathione peroxidase activities and increase in malondialdehyde content in a dose-dependent manner in the serum and the liver. The increased transcription of cytochrome P450 2E1 (CYP2E1) was detected in the liver after exposure to ZEN. These results suggested that ZEN not only caused damage in the liver of pregnant rats in a dose-dependent manner but also induced the messenger RNA expression of CYP2E1 in the liver.
Collapse
Affiliation(s)
- C Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Y Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - S Yin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Z Jia
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - A Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
35
|
Boeira SP, Filho CB, Del'Fabbro L, Roman SS, Royes LFF, Fighera MR, Jessé CR, Oliveira MS, Furian AF. Lycopene treatment prevents hematological, reproductive and histopathological damage induced by acute zearalenone administration in male Swiss mice. ACTA ACUST UNITED AC 2014; 66:179-85. [PMID: 24503513 DOI: 10.1016/j.etp.2014.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/17/2013] [Accepted: 01/06/2014] [Indexed: 01/26/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin commonly found as a contaminant in cereals. ZEA toxicity targets mainly the reproductive system, and oxidative stress plays an etiological role in its toxic effects. Therefore, the present study aimed to investigate the effect of lycopene, a potent carotenoid antioxidant, on markers of oxidative stress in liver, kidney and testes, and on reproductive, hematological and histopathological parameters after ZEA administration. Adult Swiss albino male mice received lycopene (20mg/kg, p.o.) for ten days before a single oral administration of ZEA (40mg/kg, p.o.), and 48h thereafter tissues (liver, kidney, testes and blood) were collected for biochemical, hematological and histological analyses. Lycopene prevented ZEA-induced changes in hematological parameters (increased number of leukocytes, segmented neutrophils, sticks, eosinophils and monocytes and decreased number of red blood cells (RBC), number of lymphocytes and platelets). Moreover, lycopene prevented the reduction in the number and motility of spermatozoa and the testicular tissue damage induced by ZEA. In addition, lycopene prevented the decrease in glutathione-S-transferase activity in kidney and testes and increased glutathione-S-transferase activity per se in the liver, kidneys and testes as well as superoxide dismutase activity in the liver. In summary, lycopene was able to prevent ZEA-induced acute toxic effects in male mice, suggesting that this antioxidant carotenoid may represent a promising prophylactic strategy against ZEA toxicity.
Collapse
Affiliation(s)
- Silvana Peterini Boeira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Lucian Del'Fabbro
- Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Silvane Souza Roman
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, 99700-000 Erechim, RS, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Educação Física e Desportos, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Cristiano Ricardo Jessé
- Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, 97500-970 Uruguaiana, RS, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
36
|
Venkataramana M, Chandra Nayaka S, Anand T, Rajesh R, Aiyaz M, Divakara ST, Murali HS, Prakash HS, Lakshmana Rao PV. Zearalenone induced toxicity in SHSY-5Y cells: The role of oxidative stress evidenced by N-acetyl cysteine. Food Chem Toxicol 2014; 65:335-42. [PMID: 24412706 DOI: 10.1016/j.fct.2013.12.042] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022]
Abstract
Zearalenone (ZEN) is a mycotoxin from Fusarium species commonly found in many food commodities and are known to cause reproductive disorders, genotoxic and immunosuppressive effects. Although many studies have demonstrated the cytotoxic effects of ZEN, the mechanisms by which ZEN mediates its cytotoxic effects appear to differ according to cell type and route of exposure. Meantime, the available information on the neurotoxic effects of ZEN is very much limited. In the present study we evaluated the role of oxidative stress in ZEN mediated neurotoxicity in SH-SY5Y cells and investigated the possible underlying mechanism. ZEN induced ROS formation and elevated levels of MDA, loss of mitochondrial membrane potential (MMP) and increase in DNA damage in a dose dependent manner as assessed by COMET assay and agarose gel electrophoresis. However, there was no DNA damage by plasmid breakage assay at 6, 12 and 24h time points. DAPI staining showed apoptotic nuclei at 12 and 24h. Further, ZEN treated SH-SY5Y cells showed a marked suppressive effect on the neuronal gene expression. Use of an antioxidant N-acetylcysteine (NAC) reversed the toxin-induced generation of ROS and also attenuated loss of MMP. Collectively, these results suggest that ROS is the main upstream signal leading to increased ZEN mediated neurotoxicity in SH-SY5Y cells.
Collapse
Affiliation(s)
- M Venkataramana
- DRDO-BU Centre for Life Sciences, Coimbatore, Tamilnadu 641046, India
| | - S Chandra Nayaka
- DOS in Biotechnology, University of Mysore, Mysore 570006, Karnataka, India.
| | - T Anand
- Defence Food Research Laboratory, Siddhartha Nagar, Mysore, Karnataka, India
| | - Rajaiah Rajesh
- Department of Microbiology and Immunology, The University of Maryland, School of Medicine, Baltimore, MD 21201, United States
| | - Mohammed Aiyaz
- DOS in Biotechnology, University of Mysore, Mysore 570006, Karnataka, India
| | - S T Divakara
- DOS in Biotechnology, University of Mysore, Mysore 570006, Karnataka, India
| | - H S Murali
- Defence Food Research Laboratory, Siddhartha Nagar, Mysore, Karnataka, India
| | - H S Prakash
- DOS in Biotechnology, University of Mysore, Mysore 570006, Karnataka, India
| | - P V Lakshmana Rao
- DRDO-BU Centre for Life Sciences, Coimbatore, Tamilnadu 641046, India
| |
Collapse
|
37
|
Cheli F, Fusi E, Baldi A. Cell-based models for mycotoxin screening and toxicity evaluation: an update. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review presents the applications of cell-based models in mycotoxin research, with a focus on models for mycotoxin screening and cytotoxicity evaluation. Various cell-based models, cell and cell culture condition related factors, toxicity endpoints and culture systems as well as predictive value of cell-based bioassays are reviewed. Advantages, drawbacks and technical problems regarding set up and validation of consistent, robust, reproducible and high-throughput cell-based models are discussed. Various cell-based models have been developed and used as screening tests for mycotoxins but the data obtained are difficult to compare. However, the results highlight the potential of cell-based models as promising in vitro platforms for the initial screening and cytotoxicity evaluation of mycotoxins and as a significant analytical approach in mycotoxin research before any animal or human clinical studies. To develop cell-based models as powerful high-throughput laboratory platforms for the analysis of large numbers of samples, there are mainly two fundamental requirements that should be met, i.e. the availability of easy-to-use and, if possible, automated cell platforms and the possibility to obtain reproducible results that are comparable between laboratories. The transition from a research model to a test model still needs optimisation, standardisation, and validation of analytical protocols. The validation of a cell-based bioassay is a complex process, as several critical points, such as the choice of the cellular model, the assay procedures, and the appropriate use and interpretation of the results, must be strictly defined to ensure more consistency in the results. The development of cell-based models exploring the third dimension together with automation and miniaturisation will bring cellular platforms to a level appropriate for cost-effective and large-scale analysis in the field of mycotoxin research.
Collapse
Affiliation(s)
- F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milano, Italy
| | - E. Fusi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milano, Italy
| | - A. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milano, Italy
| |
Collapse
|
38
|
Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh S. A Review on Mycotoxins in Food and Feed: Malaysia Case Study. Compr Rev Food Sci Food Saf 2013; 12:629-651. [DOI: 10.1111/1541-4337.12029] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/17/2013] [Indexed: 01/15/2023]
Affiliation(s)
- L. Afsah-Hejri
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - S. Jinap
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - P. Hajeb
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - S. Radu
- Food Safety Research Centre (FOSREC); Faculty of Food Science and Technology, Univ. Putra Malaysia; 43400 UPM; Serdang; Selangor; Malaysia
| | - Sh. Shakibazadeh
- Dept. of Aquaculture, Faculty of Agriculture; Univ. Putra Malaysia; 43400, UPM Serdang; Selangor; Malaysia
| |
Collapse
|
39
|
Tatay E, Meca G, Font G, Ruiz MJ. Interactive effects of zearalenone and its metabolites on cytotoxicity and metabolization in ovarian CHO-K1 cells. Toxicol In Vitro 2013; 28:95-103. [PMID: 23850742 DOI: 10.1016/j.tiv.2013.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/18/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin with high binding affinity to estrogen receptors. ZEA is rapidly absorbed and metabolized in vivo to α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). So, mixtures of them may be present in biological systems and suppose a hazard to animals and human health. The aims of this study were to determine the cytotoxic effects of ZEA and its metabolites, alone and in combination in ovarian (CHO-K1) cells during 24, 48 and 72h by the MTT assay; and to investigate the metabolism of the CHO-K1 cells on ZEA, and its conversion into α-ZOL and β-ZOL by CHO-K1 cell after 24 and 48h of exposure. The IC50 value obtained for individual mycotoxins range from 60.3 to >100.0μM, from 30.0 to 33.0μM and from 55.0 to >75.0μM for ZEA, α-ZOL and β-ZOL, respectively. Cytotoxic interactions were assayed by the isobologram method, which provides a combination index (CI) value as a quantitative measure of the degree of the three mycotoxin interaction. The CI values for binary combinations ranged from 0.56±0.15 (synergism at low concentrations) to 5.25±5.10 (addition at high concentrations) and tertiary combinations from 2.95±0.75 (antagonism at low concentrations) to 0.41±0.23 (synergism at high concentrations). The concentration of ZEA and its metabolites was determined with liquid chromatography coupled to the mass spectrometer detector-linear ion trap (LC-MS-LIT). The percentage of ZEA degradation ranged from 4% (24h) to 81% (48h). In the same conditions, α-ZOL and β-ZOL concentration decreased from 8% to 85%. No conversion of ZEA in α-ZOL and β-ZOL was detected. However, at 24h of exposure other degradation products of ZEA and its derived were detected.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
40
|
Possible role for glutathione-S-transferase in the oligozoospermia elicited by acute zearalenone administration in Swiss albino mice. Toxicon 2012; 60:358-66. [DOI: 10.1016/j.toxicon.2012.04.353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022]
|
41
|
Prouillac C, Koraichi F, Videmann B, Mazallon M, Rodriguez F, Baltas M, Lecoeur S. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: structure activity relationships. Toxicol Appl Pharmacol 2012; 259:366-75. [PMID: 22310176 DOI: 10.1016/j.taap.2012.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/15/2022]
Abstract
Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as a potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules.
Collapse
Affiliation(s)
- Caroline Prouillac
- Université Lyon, US/C 1233 INRA VetAgroSup, Métabolisme et Toxicologie Comparée des Xénobiotiques, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Cytosol protein regulation in H295R steroidogenesis model induced by the zearalenone metabolites, α- and β-zearalenol. Toxicon 2012; 59:17-24. [DOI: 10.1016/j.toxicon.2011.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022]
|
43
|
Ayed Y, Ayed-Boussema I, Ouanes Z, Bacha H. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: comparison with zearalenone. Mutat Res 2011; 726:42-6. [PMID: 21889607 DOI: 10.1016/j.mrgentox.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. It contaminates different components of the food chain and can cause serious economic and public health problems. The major metabolites of ZEN in various animal species are alpha- and beta-zearalenol (α-, β-ZOL). Some in vivo studies have shown that these two metabolites are as toxic as the mother molecule (ZEN), but other investigations have demonstrated that α- and β-ZOL are less toxic than ZEN. Thus, the aim of the present study was to evaluate cytotoxicity and genotoxicity of α- and β-ZOL in vivo, in mouse bone-marrow cells and in vitro, in cultured HeLa cells, and to compare it with ZEN. ZEN showed the same cytotoxicity as α-ZOL and both are more cytotoxic than β-ZOL. Genotoxicity of ZEN and its derivatives was assessed by the chromosome aberration assay. Our results show that ZEN as well as α- and β-ZOL increased the percentage of chromosome aberrations in mouse bone-marrow cells and in HeLa cells. In the two systems, ZEN and α-ZOL exhibited the same range of genotoxicity and both were more genotoxic than β-ZOL. Furthermore, our results show that either ZEN or its two metabolites inhibited cell viability in a dose-dependent manner. We conclude that biotransformation of ZEN may be considered as only a partial detoxification pathway since the resulting metabolites remain relatively toxic.
Collapse
Affiliation(s)
- Yosra Ayed
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | |
Collapse
|
44
|
Frizzell C, Ndossi D, Verhaegen S, Dahl E, Eriksen G, Sørlie M, Ropstad E, Muller M, Elliott CT, Connolly L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol Lett 2011; 206:210-7. [PMID: 21803136 DOI: 10.1016/j.toxlet.2011.07.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/28/2022]
Abstract
The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). α-ZOL exhibited the strongest estrogenic potency (EC(50) 0.022±0.001 nM), slightly less potent than 17-β estradiol (EC(50) 0.015±0.002 nM). ZEN was ~70 times less potent than α-ZOL and twice as potent as β-ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, α-ZOL or β-ZOL. ZEN, α-ZOL or β-ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 μM. At 100 μM, cell viability decreased and levels of hormones were significantly reduced except for progesterone. β-ZOL increased estradiol concentrations more than α-ZOL or ZEN, with a maximum effect at 10 μM, with β-ZOL (562±59 pg/ml)>α-ZOL (494±60 pg/ml)>ZEN (375±43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.
Collapse
Affiliation(s)
- C Frizzell
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques. Anal Bioanal Chem 2011; 401:2069-78. [PMID: 21750881 PMCID: PMC3175039 DOI: 10.1007/s00216-011-5206-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/09/2011] [Accepted: 06/24/2011] [Indexed: 11/13/2022]
Abstract
This study presents a selective method of isolation of zearalenone (ZON) and its metabolite, α-zearalenol (α-ZOL), in neoplastically changed human tissue by accelerated solvent and ultrasonic extractions using a mixture of acetonitrile/water (84/16% v/v) as the extraction solvent. Extraction effectiveness was determined through the selection of parameters (composition of the solvent mixture, temperature, pressure, number of cycles) with tissue contamination at the level of nanograms per gram. The produced acetonitrile/water extracts were purified, and analytes were enriched in columns packed with homemade molecularly imprinted polymers. Purified extracts were determined by liquid chromatography (LC) coupled with different detection systems (diode array detection - DAD and mass spectrometry - MS) involving the Ascentis RP-Amide as a stationary phase and gradient elution. The combination of UE-MISPE-LC (ultrasonic extraction - molecularly imprinted solid-phase extraction - liquid chromatography) produced high (R ≈ 95–98%) and repeatable (RSD < 3%) recovery values for ZON and α-ZOL.
Collapse
|
46
|
Jiang SZ, Yang ZB, Yang WR, Gao J, Liu FX, Broomhead J, Chi F. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J Anim Sci 2011; 89:3008-15. [PMID: 21531849 DOI: 10.2527/jas.2010-3658] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is produced mainly by Fusarium fungi. Previous studies indicated that acute ZEA exposure induced oxidative stress and damage in multiple organs. Therefore, the present study was designed to investigate the adverse effects of dietary ZEA (1.1 to 3.2 mg/kg of diet) on oxidative stress and organ damage in postweaning gilts. A total of 20 gilts (Landrace × Yorkshire × Duroc) weaned at d 21 with an average BW of 10.36 ± 1.21 kg was used in the study. Gilts were housed in a temperature-controlled room, divided into 4 treatments, and fed a basal diet only (control) or basal diet supplemented with purified ZEA at a dietary concentration of 1 (ZEA1), 2 (ZEA2), or 3 (ZEA3) mg/kg of diet for 18 d ad libitum. The actual ZEA contents (analyzed) were 0, 1.1 ± 0.02, 2.0 ± 0.01, and 3.2 ± 0.02 mg/kg for control, ZEA1, ZEA2, and ZEA3, respectively. Gilts fed different amounts of dietary ZEA grew similarly with no difference (P > 0.05) in feed intake. Vulva size increased linearly over the 18 d of feeding in gilts fed diets containing 1.1 mg of ZEA/kg or greater (P < 0.001). Relative weight of genital organs, liver, and kidney increased linearly (P < 0.05) in a ZEA-dose-dependent manner. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamate transferase, urea, and creatinine (P < 0.05), and malondialdehyde concentrations in both serum and liver (P < 0.001) were also increased linearly in a ZEA-dose-dependent manner. However, spleen relative weight (P = 0.002) and activities of total superoxide dismutase and glutathione peroxidase (in both serum and liver (P < 0.05) were decreased linearly as dietary ZEA increased. Results showed that besides genital organs, the liver, kidney, and spleen may also be target tissues in young gilts fed diets containing 1.1 to 3.2 mg of ZEA/kg for 18 d. Increased key liver enzymes in the serum suggest progressive liver damage caused by feeding ZEA, and an increase in oxidative stress in gilts is another potential impact of ZEA toxicity in pigs.
Collapse
Affiliation(s)
- S Z Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Banjerdpongchai R, Kongtawelert P, Khantamat O, Srisomsap C, Chokchaichamnankit D, Subhasitanont P, Svasti J. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. J Hematol Oncol 2010; 3:50. [PMID: 21190589 PMCID: PMC3018374 DOI: 10.1186/1756-8722-3-50] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/30/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Zearalenone (ZEA) is a phytoestrogen from Fusarium species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved. METHODS Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach. RESULTS ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and calreticulin, whereas only ERp29 mRNA transcript increased. CONCLUSION ZEA induced human leukemic cell apoptosis via endoplasmic stress and mitochondrial pathway.
Collapse
Affiliation(s)
- Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prachya Kongtawelert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
48
|
Metzler M, Pfeiffer E, Hildebrand A. Zearalenone and its metabolites as endocrine disrupting chemicals. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1244] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zearalenone (ZEA) is a macrocyclic β-resorcylic acid lactone produced by numerous species of Fusarium. It frequently contaminates corn and cereal products in many regions of the world. The biological activity of ZEA is dominated by its pronounced oestrogenicity, which is even enhanced in certain reductive metabolites. This review updates the metabolism in fungi, plants and mammalian systems, as well as the pharmacokinetics of ZEA. The present evidence for the hormonal effects of the parent mycoestrogen and some of its metabolites in vitro and in farm and experimental animals in vivo is reviewed, together with its association with endocrine-disruptive effects in humans. Possible mechanisms of the oestrogenic and carcinogenic activity of ZEA are discussed and future areas of research proposed.
Collapse
Affiliation(s)
- M. Metzler
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| | - E. Pfeiffer
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| | - A. Hildebrand
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| |
Collapse
|
49
|
Dong M, He X, Tulayakul P, Li JY, Dong KS, Manabe N, Nakayama H, Kumagai S. The toxic effects and fate of intravenously administered zearalenone in goats. Toxicon 2010; 55:523-30. [DOI: 10.1016/j.toxicon.2009.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/26/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
|
50
|
Salah-Abbès JB, Abbès S, Abdel-Wahhab MA, Oueslati R. In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 2010; 62:231-239. [PMID: 20487203 DOI: 10.1211/jpp.62.02.0011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the antiradical and antioxidant properties of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) extracted from Raphanus sativus and to assess the effects of MTBITC on tumour cell growth, cytotoxicity induced by zearalenone, an oestrogenic mycotoxin, and modulation of the expression of the genes involved in these aspects of cell behaviour. METHODS A murine leukaemia cell line (L1210) was grown in vitro and supplemented with MTBITC (2, 4, 8, 16 and 32 microm) for 48 h. Cell growth was evaluated by the MTT assay. The chemopreventive role of MTBITC on the cytotoxic effect of zearalenone in a Balb/c mice keratinocyte cell line (C5-O) was also evaluated. Apoptosis and lipid peroxidation were assessed, as well as the expression of genes involved following zearalenone treatment alone or in combination with MTBITC. KEY FINDINGS MTBITC showed a significant ability to inhibit nitroblue tetrazolium reduction by superoxide radicals in a non-enzymatic superoxide generating system, to scavenge free radicals and to cause a decrease in L1210 cell growth. The C5-O cells treated with zearalenone alone showed a high frequency of apoptotic cells and lipid peroxidation, typical of oxidative stress generated by zearalenone. The cotreatment with MTBITC reduced the cytotoxicity of zearalenone and the subsequent gene expression analysis demonstrated that MTBITC decreased the expression of caspase 8, implicated in the physiological mechanism to eliminate injured or abnormal cells. CONCLUSIONS The results suggest that MTBITC was able to inhibit L1210 cell growth and counteract the zearalenone oxidative stress to C5-O cells through caspase 8 inhibition of apoptosis.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, Zarzouna, Tunisia.
| | | | | | | |
Collapse
|