1
|
Winter-Hjelm N, Klausen KG, Normann AS, Sandvig A, Sandvig I, Sikorski P. Functional Complexity of Engineered Neural Networks Self-Organized on Structured 3D Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410150. [PMID: 40026123 DOI: 10.1002/smll.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Engineered neural networks are indispensable tools for studying neural function and dysfunction in controlled microenvironments. In vitro, neurons self-organize into complex assemblies with structural and functional features reminiscent to those observed for in vivo circuits. Traditionally, these models are established on planar interfaces, but studies suggest that the lack of a 3D growth space affects neuronal organization and function. While methods supporting 3D growth exist, reproducible 3D neuroengineering techniques compatible with electrophysiological recording methods are still needed. In this study, a reproducible biocompatible interface made of the polymer SU-8 to support 3D network development is developed. Using electron microscopy and immunocytochemistry, it is shown that neurons utilize these 3D interfaces to self-assemble into complex, multi-layered 3D networks. Furthermore, interfacing the 3D structures with custom microelectrode arrays enables characterizing of electrophysiological activity. Both planar control networks and 3D networks display complex interactions with integrated and segregated functional dynamics. However, control networks show stronger functional interconnections, higher entropy, and increased firing rates. In summary, the interfaces provide a versatile approach for supporting neural networks with a 3D growth environment, compatible with assorted electrophysiology and imaging techniques. This system can offer new insights into the impact of 3D topologies on neural network organization and function.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Kasper Grøndahl Klausen
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Amund Stensrud Normann
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, 907 37, Sweden
- Department for Neurorehabilitation, Umeå University Hospital, Umeå, 907 37, Sweden
- Department of Community Medicine and Rehabilitatio, Section for Spinal cord and Head Injuries, Umeå University Hospital, Umeå, 907 37, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Antimony trioxide nanoparticles promote ferroptosis in developing zebrafish (Danio rerio) by disrupting iron homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175140. [PMID: 39084369 DOI: 10.1016/j.scitotenv.2024.175140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The widespread use of antimony trioxide (ATO) and ATO nanoparticles (nATO) has led to increasing ecological and health risks. However, there is relatively insufficient research on the aquatic ecotoxicology of nATO. This study revealed that nATO affects the development of zebrafish embryos and mainly induces ferroptosis through the dissolution of Sb(III). The size of nATO ranged from 50 to 250 nm, and it generated free radicals in water. It can be ingested and accumulate in zebrafish larvae and affects normal development. Compared with those in the control group, the levels of reactive oxygen species (ROS), cell apoptosis, mitochondrial damage and iron content in the group exposed to high concentrations of nATO were increased. The transcriptomics results indicated that nATO significantly altered the expression levels of key genes related to glutathione metabolism and ferroptosis. Quantitative polymerase chain reaction consistently demonstrated the reliability of the transcriptome data and revealed that nATO induced ferroptosis by disrupting iron homeostasis and the key factor is the dissolution of Sb(III). Furthermore, ferrostatin-1, an inhibitor of ferroptosis, decreased the levels of ROS, apoptosis and mitochondrial damage induced by nATO, which further prove that nATO can promote ferroptosis. This work deepens the understanding of the ecological toxicological effects of nATO in aquatic environments and its mechanisms, which is highly important for the development of antimony management strategies.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Qin M, Huang L, Li M, Shao T, Zhang J, Jiang X, Shao C, Zhao C, Pan Y, Zhou Q, Wang Y, Liu XM, Qiu J. Immunotoxicity Evaluation of Trihalophenolic Disinfection By-Products in Mouse and Human Mononuclear Macrophage Systems: The Role of RNA Epitranscriptomic Modification in Mammalian Immunity. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127023. [PMID: 38157273 PMCID: PMC10756339 DOI: 10.1289/ehp11329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND 2,4,6-Trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are three widely detected trihalophenolic disinfection by-products (DBPs). Previous studies have mainly focused on the carcinogenic risk and developmental toxicity of 2,4,6-trihalophenols. Very little is known about their immunotoxicity in mammals. OBJECTIVES We investigated the effects of 2,4,6-trihalophenols on mammalian immunity using a mouse macrophage model infected with bacteria or intracellular parasites and aimed to elucidate the underlying mechanisms from an epitranscriptomic perspective. The identified mechanisms were further validated in human peripheral blood mononuclear cells (PBMCs). METHODS The mouse macrophage cell line RAW264.7 and primary mouse peritoneal macrophages were exposed to different concentrations of TCP, TBP, and TIP. The pro-inflammatory marker Ly6C, the survival of the bacterium Escherichia coli (E. coli), and the parasite burden of Toxoplasma gondii (T. gondii) were assessed. Furthermore, the global gene expression profiling of macrophages following exposure to 2,4,6-trihalophenols was obtained through RNA-sequencing (RNA-seq). The effects of 2,4,6-trihalophenols on RNA N 6 -methyladenosine (m 6 A ) methyltransferases and total RNA m 6 A levels were evaluated using Western blotting and dot blot, respectively. Transcriptome-wide m 6 A methylome was analyzed by m 6 A -seq . In addition, expression of m 6 A regulators and total RNA m 6 A levels in human PBMCs exposed to 2,4,6-trihalophenols were detected using quantitative reverse transcriptase polymerase chain reaction and dot blot, respectively. RESULTS Mouse macrophages exposed to TCP, TBP, or TIP had lower expression of the pro-inflammatory marker Ly6C, with a greater difference from control observed for TIP-exposed cells. Consistently, macrophages exposed to such DBPs, especially TIP, were susceptible to infection with the bacterium E. coli and the intracellular parasite T. gondii, indicating a compromised ability of macrophages to defend against pathogens. Intriguingly, macrophages exposed to TIP had significantly greater m 6 A levels, which correlated with the greater expression levels of m 6 A methyltransferases. Macrophages exposed to each of the three 2,4,6-trihalophenols exhibited transcriptome-wide redistribution of m 6 A . In particular, the m 6 A peaks in genes associated with immune-related pathways were altered after exposure. In addition, differences in m 6 A were also observed in human PBMCs after exposure to 2,4,6-trihalophenols. DISCUSSION These findings suggest that 2,4,6-trihalophenol exposure impaired the ability of macrophages to defend against pathogens. This response might be associated with notable differences in m 6 A after exposure. To the best of our knowledge, this study presents the first m 6 A landscape across the transcriptome of immune cells exposed to pollutants. However, significant challenges remain in elucidating the mechanisms by which m 6 A mediates immune dysregulation in infected macrophages after 2,4,6-trihalophenol exposure. https://doi.org/10.1289/EHP11329.
Collapse
Affiliation(s)
- Min Qin
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linyuan Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Meishuang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Chenlu Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengsi Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Van Daele L, Van de Voorde B, Colenbier R, De Vos L, Parmentier L, Van der Meeren L, Skirtach A, Dmitriev RI, Dubruel P, Van Vlierberghe S. Effect of molar mass and alkyl chain length on the surface properties and biocompatibility of poly(alkylene terephthalate)s for potential cardiovascular applications. J Mater Chem B 2023; 11:10158-10173. [PMID: 37850250 DOI: 10.1039/d3tb01889j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Treatments for occluded arteries include balloon angioplasty with or without stenting and bypass grafting surgery. Poly(ethylene terephthalate) is frequently used as a vascular graft material, but its high stiffness leads to compliance mismatch with the human blood vessels, resulting in altered hemodynamics, thrombus formation and graft failure. Poly(alkylene terephthalate)s (PATs) with longer alkyl chain lengths hold great potential for improving the compliance. In this work, the effect of the polymer molar mass and the alkyl chain length on the surface roughness and wettability of spin-coated PAT films was investigated, as well as the endothelial cell adhesion and proliferation on these samples. We found that surface roughness generally increases with increasing molar mass and alkyl chain length, while no trend for the wettability could be observed. All investigated PATs are non-cytotoxic and support endothelial cell adhesion and growth. For some PATs, the endothelial cells even reorganized into a tubular-like structure, suggesting angiogenic maturation. In conclusion, this research demonstrates the biocompatibility of PATs and their potential to be applied as materials serving cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Babs Van de Voorde
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Robin Colenbier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
- Tissue engineering and Biomaterials Group, Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 6B3, UZP123, 9000 Ghent, Belgium
| | - Lobke De Vos
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Louis Van der Meeren
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - André Skirtach
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Ruslan I Dmitriev
- Tissue engineering and Biomaterials Group, Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 6B3, UZP123, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Saafane A, Girard D. Interaction between iron oxide nanoparticles (IONs) and primary human immune cells: An up-to-date review of the literature. Toxicol In Vitro 2023:105635. [PMID: 37356554 DOI: 10.1016/j.tiv.2023.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nanotechnology has been gaining more and more momentum lately and the potential use of nanomaterials such as nanoparticles (NPs) continues to grow in a variety of activity sectors. Among the NPs, iron oxide nanoparticles (IONs) have retained an increasing interest from the scientific community and industrials due to their superparamagnetic properties allowing their use in many fields, including medicine. However, some undesired effects of IONs and potential risk for human health are becoming increasingly reported in several studies. Although many in vivo studies reported that IONs induce immunotoxicity in different animal models, it is not clear how IONs can alter the biology of primary human immune cells. In this article, we will review the works that have been done regarding the interaction between IONs and primary immune cells. This review also outlines the importance of using primary immune cells in risk assessment of NPs as a reliable strategy for encouraging non-animal studies approaches, to determine risks that might affect the human immune system following different exposure scenarios. Taken all together, the reported observations help to get a more global picture on how IONs alter the human immune system especially the fact that inflammation, known to involve several immune cell types, is frequently reported as an undesired effect of IONs.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
7
|
Pondman K, Le Gac S, Kishore U. Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 2023; 228:152317. [PMID: 36592542 DOI: 10.1016/j.imbio.2022.152317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Nanoparticles (NPs) are not only employed in many biomedical applications in an engineered form, but also occur in our environment, in a more hazardous form. NPs interact with the immune system through various pathways and can lead to a myriad of different scenarios, ranging from their quiet removal from circulation by macrophages without any impact for the body, to systemic inflammatory effects and immuno-toxicity. In the latter case, the function of the immune system is affected by the presence of NPs. This review describes, how both the innate and adaptive immune system are involved in interactions with NPs, together with the models used to analyse these interactions. These models vary between simple 2D in vitro models, to in vivo animal models, and also include complex all human organ on chip models which are able to recapitulate more accurately the interaction in the in vivo situation. Thereafter, commonly encountered NPs in both the environment and in biomedical applications and their possible effects on the immune system are discussed in more detail. Not all effects of NPs on the immune system are detrimental; in the final section, we review several promising strategies in which the immune response towards NPs can be exploited to suit specific applications such as vaccination and cancer immunotherapy.
Collapse
Affiliation(s)
- Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Uday Kishore
- Biosciences, Brunel University London, Uxbridge, UK; Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Echalar B, Dostalova D, Palacka K, Javorkova E, Hermankova B, Cervena T, Zajicova A, Holan V, Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol In Vitro 2023; 87:105536. [PMID: 36528116 DOI: 10.1016/j.tiv.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
Collapse
Affiliation(s)
- Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Dominika Dostalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
9
|
The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-022-10500-2. [PMID: 36810951 DOI: 10.1007/s12015-022-10500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Negative impacts of nanomaterials on stem cells and cells of the immune system are one of the main causes of an impaired or slowed tissue healing. Therefore, we tested effects of four selected types of metal nanoparticles (NPs): zinc oxide (ZnO), copper oxide (CuO), silver (Ag), and titanium dioxide (TiO2) on the metabolic activity and secretory potential of mouse mesenchymal stem cells (MSCs), and on the ability of MSCs to stimulate production of cytokines and growth factors by macrophages. Individual types of nanoparticles differed in the ability to inhibit metabolic activity, and significantly decreased the production of cytokines and growth factors (interleukin-6, vascular endothelial growth factor, hepatocyte growth factor, insulin-like growth factor-1) by MSCs, with the strongest inhibitory effect of CuO NPs and the least effect of TiO2 NPs. The recent studies indicate that immunomodulatory and therapeutic effects of transplanted MSCs are mediated by macrophages engulfing apoptotic MSCs. We co-cultivated macrophages with heat-inactivated MSCs which were untreated or were preincubated with the highest nontoxic concentrations of metal NPs, and the secretory activity of macrophages was determined. Macrophages cultivated in the presence of both untreated MSCs or MSCs preincubated with NPs produced significantly enhanced and comparable levels of various cytokines and growth factors. These results suggest that metal nanoparticles inhibit therapeutic properties of MSCs by a direct negative effect on their secretory activity, but MSCs cultivated in the presence of metal NPs have preserved the ability to stimulate cytokine and growth factor production by macrophages.
Collapse
|
10
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Gu J, Lin D, Sun Y, Guo Y, Chen B, Zhang Y, Liu F. Integrating transcriptome and physiological analysis to reveal the essential responses of Daphnia magna to antimony trioxide nanoparticle. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129303. [PMID: 35717819 DOI: 10.1016/j.jhazmat.2022.129303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) pollution has already posed a severe threat to the aquatic ecosystem. However, the toxicity mechanisms of Sb on aquatic organisms are far from being elucidated. One of the crucial questions remaining unresolved is the characterization of molecular toxicity of Sb(III). Transcriptomics profiling combined with physiological characterizations was applied to investigate the response of Daphnia magna to nano-size antimony trioxide (nATO) and its soluble Sb(III) counterpart antimony potassium tartrate (APT) in the present study. Both nATO and APT induced the formation of oxidative stress, enhanced the activities of anti-oxidative enzymes, altered the metabolism of xenobiotics, increased the concentration of hydrogen sulfide (H2S) and nitric oxide (NO), and triggered the self-protection mechanisms such as ubiquitin-mediated proteolysis. In addition, nATO and APT caused damage to the nervous system of D. magna, inhibited its locomotion and nutrient uptake in a concentration-dependent manner. Moreover, nATO exposure enhanced the autophagy activity, reflected by the up-regulated expression of hypoxia-inducible factor-1α, calmodulin-dependent protein kinase-β, and inositol-requiring enzyme 1. The present study, for the first time, depicted a global map of cellular response to nATO, provided essential information on Sb(III) toxicity to aquatic organisms, and is of great significance to the development of Sb management strategies.
Collapse
Affiliation(s)
- Jihai Gu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dongdong Lin
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanyang Sun
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yongzhi Guo
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bing Chen
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
12
|
Ren M, Zhong Z, Ding S, Wang J, Dai Z, Li C, Cao J, Wang Y, Yu Z, Zhang C. Selective and simultaneous high resolution 2-D imaging of As III, Cr III and Sb III and dissolved oxygen by developing a new DGT technique comprising a hybrid sensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155460. [PMID: 35472342 DOI: 10.1016/j.scitotenv.2022.155460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
A new diffusive gradients in thin films technique (HR-MPTS DGT) with mercapto-functionalized attapulgite in a binding gel was developed for simultaneous two-dimensional (2-D) chemical imaging of AsIII, CrIII and SbIII selectively at the submillimeter scale, combined with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The HR-MPTS DGT exhibited selective accumulation of AsIII, SbIII and CrIII (> 97%), yet negligible accumulation of AsV, SbV and CrVI (< 2%). Accumulation of AsIII, CrIII and SbIII on the binding gel had a linear relationship (R2 > 0.99) with the corresponding standardized laser ablation signals, proving the feasibility of LA-ICP-MS analysis. Analysis for AsIII, CrIII and SbIII was provided with favorable analytical precision (relative standard deviation <10%). With the purpose of evaluating the dynamics of AsIII, CrIII, SbIII and O2 in the rooting zone, a hybrid sensor, which comprises the HR-MPTS gel overlying an O2 planar optode, was deployed in rhizosphere sediments. Results showed that the consumption of both AsIII and SbIII due to the oxidation extended ~4.48 mm into the sediments, which was consistent with the extension length of the oxidized sediment layers around the roots created by O2 leakage.
Collapse
Affiliation(s)
- Mingyi Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Zhihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxin Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| | - Zhi Yu
- School of Hydraulic Engineering, Changsha University of Science& Technology, Changsha 410114, China
| | - Chaosheng Zhang
- School of Geography, Archaeology & Irish Studies, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348:798-824. [PMID: 35752250 DOI: 10.1016/j.jconrel.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/19/2022]
Abstract
Tumours are the second leading cause of death globally, generating alterations in biological interactions and, as a result, malfunctioning of crucial genetic traits. Technological advancements have made it possible to identify tumours at the cellular level, making transcriptional gene variations and other genetic variables more easily investigated. Standard chemotherapy is seen as a non-specific treatment that has the potential to destroy healthy cells while also causing systemic toxicity in individuals. As a result, developing new technologies has become a pressing necessity. QDs are semiconductor particles with diameters ranging from 2 to 10 nanometers. QDs have grabbed the interest of many researchers due to their unique characteristics, including compact size, large surface area, surface charges, and precise targeting. QD-based drug carriers are well known among the many nanocarriers. Using QDs as a delivery approach enhances solubility, lengthens retention time, and reduces the harmful effects of loaded medicines. Several varieties of quantum dots used in drug administration are discussed in this article, along with their chemical and physical characteristics and manufacturing methods. Furthermore, it discusses the role of QDs in biological, medicinal, and theranostic applications.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Monarch Pastagia
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Alisha Khera
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
14
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Li Q, Ma X, Qi C, Li R, Zhang W, Li J, Shen J, Sun X. Facile preparation of novel magnetic mesoporous FeMn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel for antimony removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153529. [PMID: 35101497 DOI: 10.1016/j.scitotenv.2022.153529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Effective removal of Sb(III) and Sb(V) has long been an urgent task for protecting human health and environment. In this study, novel magnetic mesoporous FeMn binary oxides (MMFMs) were fabricated via calcinating the Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel, and the structure of MMFMs were closely related to the Fe:Mn ratio. Owing to the mesoporous structure together with synergistic effect of FeMn binary component, the MMFMs exhibited excellent mass transfer and adsorption ability to Sb(III) and Sb(V). MMFM3 achieved a maximum Sb(III) and Sb(V) adsorption capacity of 281.5 and 204.6 mg/g, respectively. Co-existing anions of Cl-, NO3- and SO42- exhibited marginal influence on the adsorption for both Sb(III) and Sb(V), except the PO43- for Sb(III) and SiO32- or PO43- for Sb(V). X-ray photoelectron spectroscopic investigation revealed that high valence Mn(IV) was mainly responsible for the oxidation transformation of the highly toxic Sb(III) into less toxic Sb(V), while the FeOx content played major role for the adsorption of Sb(V). The generated inner-sphere FeOSb complex between Fe-OH groups and Sb(III/V) dominantly contributed to the removal of Sb(III/V). Overall, mesoporous structure, magnetic separation ability, excellent adsorption performance together with exceptional regeneration properties demonstrated the great potential of MMFMs for Sb(III/V) remediation.
Collapse
Affiliation(s)
- Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengsi Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
16
|
Kumari A, Kumari P, Rajput VD, Sushkova SN, Minkina T. Metal(loid) nanosorbents in restoration of polluted soils: geochemical, ecotoxicological, and remediation perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:235-246. [PMID: 34165675 DOI: 10.1007/s10653-021-00996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 05/15/2023]
Abstract
Nowadays, the applications of nanomaterials (NMs) are becoming the edge over others and referred as one of the pillars of emerging science and technology. Thereby, a wide array of NMs have been developed along with the products that can be used for the reclamation of contaminated terrestrial ecosystems. The NMs got a great consideration due to their peculiar characteristics and high efficacy. Therefore, this review addresses in depth the ability of metal(loid) NMs as nanosorbents along with their applications in soil remediation. Adsorption is commonly employed for the elimination of innumerable contaminants because of low expenses, reliability, and convenience. The first emphasis of this work will be the use of nanoscale meta(loid) adsorbents for contaminated soil remediation along with their geochemistry. Because NMs mediated soil remediation promises more efficient and cost-effective than conventional methods and can enhance the probability of in situ contaminants remediation. However, the extensive usage of NMs is enhancing their concentrations in the environment and get a route to enter the surrounding flora and fauna that can induce serious concerns due to the lack of absolute understanding regarding NMs interactions with living organisms. Therefore, the second focus of this work will be on the ecotoxicological impacts with special attentions on morpho-physiological alterations in edible plants.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Poonam Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Svetlana N Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
17
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Mabwa D, Kubiena T, Parnell H, Su R, Furniss D, Tang Z, Leach R, Benson TM, Scotchford CA, Seddon AB. Evaluating the cytotoxicity of Ge–Sb–Se chalcogenide glass optical fibres on 3T3 mouse fibroblasts. RSC Adv 2021; 11:8682-8693. [PMID: 35423389 PMCID: PMC8695193 DOI: 10.1039/d0ra00353k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/02/2021] [Indexed: 01/17/2023] Open
Abstract
In vivo cancer detection based on the mid-infrared molecular fingerprint of tissue is promising for the fast diagnosis and treatment of suspected cancer patients. Few materials are mid-infrared transmissive, even fewer, which can be converted into functional, low-loss optical fibres for in vivo non-invasive testing. Chalcogenide-based glass optical fibres are, however, one of the few. These glasses are transmissive in the mid-infrared and are currently under development for use in molecular sensing devices. The cytotoxicity of these materials is however unknown. The cytotoxicity of Ge–Sb–Se chalcogenide optical glass fibres on 3T3 mouse fibroblast cells is here investigated. Fibres exposed to four different pre-treatment conditions are used: as-drawn (AD), propylamine-etched (PE), oxidised-and-washed (OW) and oxidised (Ox). To achieve the latter two conditions, fibres are treated with H2O2(aqueous (aq.)) and dried to produce a surface oxide layer; this is either washed off (OW) or left on the glass surface (Ox). Cellular response is investigated via 3 day elution and 14 day direct contact trials. The concentration of the metalloids (Ge, Sb and Se) in each leachate was measured via inductively coupled plasma mass spectrometry. Cell viability is assessed using the neutral red assay and scanning electron microscopy. The concentration of Ge, Sb and Se ions after a 3 day dissolution was as follows. In AD leachates, Ge: 0.40 mg L−1, Sb: 0.17 mg L−1, and Se: 0.06 mg L−1. In PE leachates, Ge: 0.22 mg L−1, Sb: 0.15 mg L−1, and Se: 0.02 mg L−1. In Ox leachates, Ge: 823.8 mg L−1, Sb: 2586.6 mg L−1, and Se: 3750 mg L−1. Direct contact trials show confluent cell layers on AD, PE and OW fibres after 14 days, while no cells are observed on the Ox surfaces. A >50% cell viability is observed in AD, PE and OW eluates after 3 days, when compared with Ox eluates (<10% cell viability). Toxicity in Ox is attributed to the notable pH change, from neutral pH 7.49 to acidic pH 2.44, that takes place on dissolution of the surface oxide layer in the growth media. We conclude, as-prepared Ge–Sb–Se glasses are cytocompatible and toxicity arises when an oxide layer is forced to develop on the glass surface. We present a study that aims to evaluate the cytotoxicity of Ge20Sb10Se70 at% glass optical fibres on 3T3 mouse fibroblast cells. To observe the toxicity of these optical fibres, 3T3 fibroblast proliferation was investigated.![]()
Collapse
|
19
|
Wang X, Ning Z, Sun W, Liu H, Li B. Energy and environmental impact assessment of a passive remediation bioreactor for antimony-rich mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35040-35050. [PMID: 32588309 DOI: 10.1007/s11356-020-09816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Industrial processes, such as smelting and mining, lead to antimony (Sb) contamination, which poses an environmental and human health risk. In this study, the energy consumption and environmental impacts of a passive biological treatment system were quantitatively evaluated using life cycle assessment (LCA), and the results were compared with that of an adsorption purification system. The results showed that the biosystem had a lower energy consumption compared with the adsorption system, with an energy savings of 27.39%. The environmental impacts of the bioreactor were also lower regarding acidification, ecotoxicity, carcinogens, climate change, resource depletion, and respiratory effects. The construction resulted in the most energy consumption (99%) for the passive bioreactor. Therefore, adopting environmentally friendly construction materials could make the biosystem a more energy-efficient option. Results demonstrated that the bioreactor in this research can have great potential for Sb mine drainage applications in terms of energy savings and environmental remediation without diminishing performance. The study findings can be useful for deciding the most energy effective process for mine drainage remediation. In addition, the identification of the energy and environmental impacts of the processes provide valuable information for the design of future systems that consume less materials and utilize new construction materials.
Collapse
Affiliation(s)
- Xiaoyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Zengping Ning
- China State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| |
Collapse
|
20
|
Vishnyakov A, Udavliev D, Timofeev D, Kvan O. Evaluation of bone marrow hemopoiesis and the elemental status of the red bone marrow of chickens under introduction of copper to the organism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17393-17400. [PMID: 32157530 DOI: 10.1007/s11356-020-08161-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The role of chemical elements in an organism is versatile and multifunctional. However, you should pay attention to the reaction of the organism on the introduction of chemical elements with different biological roles, which is predetermined by the physiological role of organs and body systems. These include the red bone marrow, which primarily responds to endogenous and exogenous factors by its functional significance. Analyzing the myelogram of birds after the various ways of copper NP introduction into the body and the different dosages, we found that, by the end of the experiment, the total numbers of bone marrow cells in all groups were lower than the initial values: in the second group-12.54% lower (p < 0.05), in third-26.32% lower (p < 0.001), for the fourth-14.75% lower (p < 0.05), with exception for the first experimental group where this index was 45.51% higher (р < 0.001). We revealed the following changes in the peripheral blood: the hemoglobin content by the end of the experiment was significantly higher than the initial values: by 18.63% for the first group (p < 0.01); 28.61% higher in the third group (p < 0.001); and 15.76% higher for the fourth (p < 0.01), except the animals of the second group (3.23% lower). The concentration of erythrocytes in all groups was higher than that of the background: by 24.56% (p < 0.001), by 3.37%, by 26.18% (p < 0.001), and by 14.85% (p < 0.01), respectively; the leukocyte concentration in the first group was 39.63% higher (p < 0.001), it remained at the level of the initial values in the other groups. The erythrocyte sedimentation rate in all groups increased by 2.4, 4.0, 2.01, and 1.86 times (p < 0.001), respectively. We revealed that the introduction of copper into an organism in the form of nanopowder both with feed and intramuscularly significantly caused an increase of the content of such elements as arsenic, copper, and silicon and a decrease of calcium, potassium, magnesium, phosphorus, boron, cobalt, iodine, lithium, sodium, zinc, tin, and strontium in the marrowy aspirate. Moreover, compared with the first group (p < 0.01), increasing doses of nanopowders caused a significant rise in the arsenic and tin concentrations and a decline of iodine and strontium. We found that copper nanoparticles ambiguously affect the bone marrow hemopoiesis of poultry; increasing the dose and changing the type of introduction activating the bone marrow hematopoietic function, in particular, granulocyto-, megakaryocyto-, and erythropoiesis.
Collapse
Affiliation(s)
| | - Damir Udavliev
- Moscow State University of Food Production, 11, Volokolamskoe shosse, Moscow, 125080, Russia
| | - Dmitriy Timofeev
- Moscow State University of Food Production, 11, Volokolamskoe shosse, Moscow, 125080, Russia
| | - Olga Kvan
- Federal Research Center of Biological Systems and Agro-technologies, Russian Academy of Sciences, 29, 9 Yanvarya, Orenburg, 460000, Russia.
| |
Collapse
|
21
|
Soltani A, Kahkhaie KR, Haftcheshmeh SM, Jalali Nezhad AA, Akbar Boojar MM. The comparative study of the effects of Fe 2 O 3 and TiO 2 micro- and nanoparticles on oxidative states of lung and bone marrow tissues and colony stimulating factor secretion. J Cell Biochem 2019; 120:7573-7580. [PMID: 30485510 DOI: 10.1002/jcb.28031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2 O 3 ) and titanium oxide (TiO 2 ) with their micro-sized counterpart on mouse lung and bone marrow-derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.
Collapse
Affiliation(s)
- Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kolsoum Rezaie Kahkhaie
- Department of Medical Biochemistry, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.,Medicinal Plants Research Center, Zabol University of Medical Sciences (ZBUMS), Zabol, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ali Jalali Nezhad
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|
22
|
Ren M, Wang D, Ding S, Yang L, Xu S, Yang C, Wang Y, Zhang C. Seasonal mobility of antimony in sediment-water systems in algae- and macrophyte-dominated zones of Lake Taihu (China). CHEMOSPHERE 2019; 223:108-116. [PMID: 30772589 DOI: 10.1016/j.chemosphere.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Differences in trophic status can lead to different water quality and sediment geochemistry characteristics, influencing antimony (Sb) mobility in sediments and its release into the water column. In this study, seasonal sampling was conducted in algal- and macrophyte-dominated zones of Lake Taihu, China. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to measure soluble Sb and DGT-labile Sb in the sediment-water profiles at a 4 mm vertical resolution. Results showed that total Sb in sediments from the two zones were on average 3.50 mg/kg and 3.21 mg/kg in the algal- and macrophyte-dominated zones, respectively, with the residual fraction being 96.3% and 95.4% of the total Sb contents in the two zones. In winter, soluble Sb concentrations in both zones increased. This was probably due to the oxidation of Sb(III) to Sb(V) by Mn and Fe oxides. In summer and autumn, soluble Sb concentrations in the algal-dominated region remained low. This is attributed to the dominance of insoluble Sb(III) in sediments under anoxic conditions under eutrophic environments. In contrast, soluble Sb concentrations in the macrophyte-dominated zone were significantly high in summer and were 4.15-times higher than limits set by the World Health Organization (WHO). This likely resulted from the photochemical and rhizospheric oxidation of insoluble Sb(III) compounds. It is suggested that Sb contamination in the sediment-water system of the macrophyte-dominated zone deserves additional attention.
Collapse
Affiliation(s)
- Minyi Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Liyuan Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Shiwei Xu
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Chenye Yang
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology & Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Ren M, Ding S, Fu Z, Yang L, Tang W, Tsang DCW, Wang D, Wang Y. Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:427-436. [PMID: 30611035 DOI: 10.1016/j.jhazmat.2018.12.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 05/14/2023]
Abstract
Antimony (Sb) mobilization in sediments and its impact on water quality remained to be studied. In this study, high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) technique were used to measure soluble Sb and labile Sb in sediment-overlying water profiles for a full year in a eutrophic region of Lake Taihu. Results showed that the highest mean concentrations of soluble Sb in overlying water (11.27 and 6.99 μg/L) appeared in December 2016 and January 2017, due to oxidation of Sb(III) to Sb(V) by Mn and Fe oxides, all of which exceeded the surface or drinking water limits set by China, United States and European Union. From April to November 2016, the concentrations of soluble Sb remained low with small monthly fluctuations and mean values ranging from 1.79 to 2.93 μg/L. This was attributed to the predominance of insoluble Sb(III) in sediments under anoxic conditions. The concentration of soluble Sb was slightly higher in summer than in autumn, due to the complexation of Sb(III) with DOM, as shown under anaerobic incubation. The mobility of inorganic Sb in sediments was mostly determined by the transition between Sb(III) and Sb(V), with Sb pollution in bottom water during winter being of concern.
Collapse
Affiliation(s)
- Mingyi Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhen Fu
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Liyuan Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Wanying Tang
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| |
Collapse
|
24
|
Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 2018; 123:505-526. [DOI: 10.1016/j.micpath.2018.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
25
|
Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1091-1107. [PMID: 29956556 PMCID: PMC6214528 DOI: 10.1080/21691401.2018.1479709] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Humans are exposed to a wide variety of nanoparticles (NPs) present in the environment, in consumer, health and medical products, and in food. Conventional cytotoxicity testing compared to animal testing is less expensive, faster and avoids ethical problems at the expense of a lower predictive value. New cellular models and exposure conditions have been developed to overcome the limitations of conventional cell culture and obtain more predictive data. The use of three-dimensional culture, co-culture and inclusion of mechanical stimulation can provide physiologically more relevant culture conditions. These systems are particularly relevant for oral, respiratory and intravenous exposure to NPs and it may be assumed that physiologically relevant application of the NPs can improve the predictive value of in vitro testing. Various groups have used advanced culture and exposure systems, but few direct comparisons between data from conventional cultures and from advanced systems exist. In silico models may present another option to predict human health risk by NPs without using animal studies. In the absence of validation, the question whether these alternative models provide more predictive data than conventional testing remains elusive.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Bijukumar DR, Segu A, Souza JCM, Li X, Barba M, Mercuri LG, J Jacobs J, Mathew MT. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:951-963. [PMID: 29339190 PMCID: PMC6017990 DOI: 10.1016/j.nano.2018.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Despite the technological improvements in orthopedic joint replacement implants, wear and corrosion products associated with the metal components of these implants may result in adverse local tissue and perhaps systemic reactions and toxicities. The current review encompasses a literature review of the local and systemic toxicity studies concerning the effect of CoCrMo wear debris released from wear and corrosion of orthopedic implants and prostheses. Release of metallic debris is mainly in the form of micro- and nano-particles, ions of different valences, and oxides composed of Co and Cr. Though these substances alter human biology, their direct effects of these substances on specific tissue types remain poorly understood. This may partially be the consequence of the multivariate research methodologies employed, leading to inconsistent reports. This review proposes the importance of developing new and more appropriate in-vitro methodologies to study the cellular responses and toxicity mediated by joint replacement wear debris in-vivo.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Abhijith Segu
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Júlio C M Souza
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimaraes, Portugal
| | - XueJun Li
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Mark Barba
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; OrthoIllinois, Rockford, IL, USA
| | - Louis G Mercuri
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Joshua J Jacobs
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew Thoppil Mathew
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
27
|
Zhao H, Wu L, Wu J, Yu H, Zhou J, Luan B, Xu C. Aberrantly Expressed SALL4 Promotes Cell Proliferation via β-Catenin/c-Myc Pathway in Human Choriocarcinoma Cells. Reprod Sci 2017. [DOI: 10.1177/1933719117715130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Huandi Yu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jiayi Zhou
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Baoxin Luan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomater 2017; 55:204-213. [PMID: 28373085 DOI: 10.1016/j.actbio.2017.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
Abstract
Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models. STATEMENT OF SIGNIFICANCE Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, the use of certain cell models can be questioned as they phenotypically differ from the target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell type-specific effects were witnessed, indicating that nanosafety should be evaluated in a human cell model that represents the target cell as closely as possible.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daniel Valdepérez
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Beatriz Pelaz
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Tianqiang Wang
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Wolfgang J Parak
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
29
|
Wani IA, Ahmad T. Understanding Toxicity of Nanomaterials in Biological Systems. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nanotechnology is a growing applied science having considerable global socioeconomic value. Nanoscale materials are casting their impact on almost all industries and all areas of society. A wide range of engineered nanoscale products has emerged with widespread applications in fields such as energy, medicine, electronics, plastics, energy and aerospace etc. While the market for nanotechnology products will have grown over one trillion US dollars by 2015, the presence of these material is likely to increase leading to increasing likelihood of exposure. The direct use of nanomaterials in humans for medical and cosmetic purposes dictates vigorous safety assessment of toxicity. Therefore this book chapter provides the detailed toxicity assessment of various types of nanomaterials.
Collapse
|
30
|
In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev 2016; 106:381-401. [PMID: 27544694 DOI: 10.1016/j.addr.2016.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
The fascinating properties of nanomaterials opened new frontiers in medicine. Nanocarriers are useful systems in transporting drugs to site-specific targets. The unique physico-chemical characteristics making nanocarriers promising devices to treat diseases may also be responsible for potential adverse effects. In order to develop functional nano-based drug delivery systems, efficacy and safety should be carefully evaluated. To date, no common testing strategy to address nanomaterial toxicological challenges has been generated. Different cell culture models are currently used to evaluate nanocarrier safety using conventional in vitro assays, but overall they have generated a huge amount of conflicting data. In this review we describe state-of-the-art approaches for in vitro testing of orally administered nanocarriers, highlighting the importance of developing harmonized and validated standard operating procedures. These procedures should be applied in a safe-by-design context with the aim to reduce and/or eliminate the uncertainties and risks associated with nanomedicine development.
Collapse
|
31
|
Toxicity of antimony, copper, cobalt, manganese, titanium and zinc oxide nanoparticles for the alveolar and intestinal epithelial barrier cells in vitro. Cytotechnology 2016; 68:2363-2377. [PMID: 27761772 DOI: 10.1007/s10616-016-0032-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022] Open
Abstract
Heavy metals are found naturally on Earth and exposure to them in the living environment is increasing as a consequence of human activity. The toxicity of six different metal oxide nanoparticles (NP) at different points in time was compared using resazurin assay. After incubating Caco2 and A549 cells with 100 μg/mL of Sb2O3, Mn3O4 and TiO2 nanoparticles (NPs) for 24 h no toxic effects were observed while Co3O4 and ZnO NPs had moderate effects and CuO NPs were toxic below 100 μg/mL (24 h EC25 = 11 for A549 and 71 μg/mL for Caco2). The long-term monitoring (up to 9 days) of cells to NPs revealed that the toxic effects of Mn3O4 and Sb2O3 NPs remarkably increased over time. The 9 day EC50 values for Sb2O3 NPs were 22 and 48 μg/mL for A549 and Caco2 cells; and for Mn3O4 NPs were 47 and 29 μg/mL for A549 and Caco2 cells, respectively. In general, the sensitivity of the cell lines in the resazurin assay was comparable. Trans epithelial electrical resistance (TEER) measurements were performed for both cell types exposed to Co3O4, Sb2O3 and CuO NPs. In TEER assay, the Caco2 cells were more susceptible to the toxic effects of these NPs than A549 cells, where the most toxic NPs were the Sb2O3 NPs: the permeability of the Caco2 cell layer exposed to 10 μg/mL Sb2O3 NPs already increased after 24 h of exposure.
Collapse
|
32
|
Joris F, Valdepérez D, Pelaz B, Soenen SJ, Manshian BB, Parak WJ, De Smedt SC, Raemdonck K. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J Nanobiotechnology 2016; 14:69. [PMID: 27613519 PMCID: PMC5017038 DOI: 10.1186/s12951-016-0220-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While nanotechnology is advancing rapidly, nanosafety tends to lag behind since general mechanistic insights into cell-nanoparticle (NP) interactions remain rare. To tackle this issue, standardization of nanosafety assessment is imperative. In this regard, we believe that the cell type selection should not be overlooked since the applicability of cell lines could be questioned given their altered phenotype. Hence, we evaluated the impact of the cell type on in vitro nanosafety evaluations in a human and murine neuroblastoma cell line, neural progenitor cell line and in neural stem cells. Acute toxicity was evaluated for gold, silver and iron oxide (IO)NPs, and the latter were additionally subjected to a multiparametric analysis to assess sublethal effects. RESULTS The stem cells and murine neuroblastoma cell line respectively showed most and least acute cytotoxicity. Using high content imaging, we observed cell type- and species-specific responses to the IONPs on the level of reactive oxygen species production, calcium homeostasis, mitochondrial integrity and cell morphology, indicating that cellular homeostasis is impaired in distinct ways. CONCLUSIONS Our data reveal cell type-specific toxicity profiles and demonstrate that a single cell line or toxicity end point will not provide sufficient information on in vitro nanosafety. We propose to identify a set of standard cell lines for screening purposes and to select cell types for detailed nanosafety studies based on the intended application and/or expected exposure.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Daniel Valdepérez
- Department of Physics, Philipps University of Marburg, Renthof 7, 35037, Marburg, Germany
| | - Beatriz Pelaz
- Department of Physics, Philipps University of Marburg, Renthof 7, 35037, Marburg, Germany
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, 3000, Louvain, Belgium
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, 3000, Louvain, Belgium
| | - Wolfgang J Parak
- Department of Physics, Philipps University of Marburg, Renthof 7, 35037, Marburg, Germany
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
33
|
Abstract
Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system.
Collapse
Affiliation(s)
- Terrika A Ngobili
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, Raleigh, NC 27695, USA Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
34
|
Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MSG, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem Toxicol 2016; 91:42-57. [PMID: 26969113 DOI: 10.1016/j.fct.2016.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH), Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Universidade Federal do Rio de Janeiro, Brazil
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Hipodrom, Ankara, Turkey
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Lund University, Department of Laboratory Medicine, Malmö University Hospital, Malmö, Sweden
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, Romania
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Mauro S G Pavão
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Universidade Federal do Rio de Janeiro, Brazil
| | - Kirill S Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Engineering School, Vladivostok, Russia
| | - Mikhail I Shtilman
- Master School Biomaterials, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Athanassios Argiris
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Aristidis M Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Engineering School, Vladivostok, Russia.
| |
Collapse
|
35
|
Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles. Toxicol In Vitro 2015; 29:1982-92. [DOI: 10.1016/j.tiv.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022]
|
36
|
Cui G, Xin Y, Jiang X, Dong M, Li J, Wang P, Zhai S, Dong Y, Jia J, Yan B. Safety Profile of TiO₂-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation. Int J Mol Sci 2015; 16:27721-9. [PMID: 26610470 PMCID: PMC4661913 DOI: 10.3390/ijms161126055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022] Open
Abstract
Anatase TiO2 nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard fastness to rubbing test. Assuming TNPs may fall off nanofabrics during their life cycles, we also examine the possible toxicity of TNPs to human cells. We found that up to a concentration of 220 μg/mL, they do not affect viability of human acute monocytic leukemia cell line THP-1 macrophages and human liver and kidney cells.
Collapse
Affiliation(s)
- Guixin Cui
- China Textile Academy, Jiangnan Branch, Shaoxing 312000, China.
| | - Yan Xin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xin Jiang
- China Textile Academy, Jiangnan Branch, Shaoxing 312000, China.
| | - Mengqi Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Junling Li
- China Textile Academy, Jiangnan Branch, Shaoxing 312000, China.
| | - Peng Wang
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yongchun Dong
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
37
|
Luo J, Luo X, Crittenden J, Qu J, Bai Y, Peng Y, Li J. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11115-24. [PMID: 26301862 DOI: 10.1021/acs.est.5b02903] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Zirconium oxide (ZrO2)-carbon nanofibers (ZCN) were fabricated and batch experiments were used to determine antimonite (Sb(III)) and antimonate (Sb(V)) adsorption isotherms and kinetics. ZCN have a maximum Sb(III) and Sb(V) adsorption capacity of 70.83 and 57.17 mg/g, respectively. The adsorption process between ZCN and Sb was identified to be an exothermic and follows an ion-exchange reaction. The application of ZCN was demonstrated using tap water spiked with Sb (200 μg/L). We found that the concentration of Sb was well below the maximum contaminant level for drinking water with ZCN dosages of 2 g/L. X-ray photoelectron spectroscopy (XPS) revealed that an ionic bond of Zr-O was formed with Sb(III) and Sb(V). Based on the density functional theory (DFT) calculations, Sb(III) formed Sb-O and O-Zr bonds on the surface of the tetragonal ZrO2 (t-ZrO2) (111) plane and monoclinic ZrO2 planes (m-ZrO2) (111) plane when it adsorbs. Only an O-Zr bond was formed on the surface of t-ZrO2 (111) plane and m-ZrO2 (111) plane for Sb(V) adsorption. The adsorption energy (Ead) of Sb(III) and Sb(V) onto t-ZrO2 (111) plane were 1.13 and 6.07 eV, which were higher than that of m-ZrO2 (0.76 and 3.35 eV, respectively).
Collapse
Affiliation(s)
- Jinming Luo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology , 828 West Peachtree Street, Atlanta, Georgia 30332, United States
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University , Nanchang 330063, China
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology , 828 West Peachtree Street, Atlanta, Georgia 30332, United States
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yue Peng
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology , 828 West Peachtree Street, Atlanta, Georgia 30332, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing, 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing, 100084, China
| |
Collapse
|
38
|
Bourgognon M, Klippstein R, Al-Jamal KT. Kupffer Cell Isolation for Nanoparticle Toxicity Testing. J Vis Exp 2015:e52989. [PMID: 26327223 DOI: 10.3791/52989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The large majority of in vitro nanotoxicological studies have used immortalized cell lines for their practicality. However, results from nanoparticle toxicity testing in immortalized cell lines or primary cells have shown discrepancies, highlighting the need to extend the use of primary cells for in vitro assays. This protocol describes the isolation of mouse liver macrophages, named Kupffer cells, and their use to study nanoparticle toxicity. Kupffer cells are the most abundant macrophage population in the body and constitute part of the reticulo-endothelial system (RES), responsible for the capture of circulating nanoparticles. The Kupffer cell isolation method reported here is based on a 2-step perfusion method followed by purification on density gradient. The method, based on collagenase digestion and density centrifugation, is adapted from the original protocol developed by Smedsrød et al. designed for rat liver cell isolation and provides high yield (up to 14 x 10(6) cells per mouse) and high purity (>95%) of Kupffer cells. This isolation method does not require sophisticated or expensive equipment and therefore represents an ideal compromise between complexity and cell yield. The use of heavier mice (35-45 g) improves the yield of the isolation method but also facilitates remarkably the procedure of portal vein cannulation. The toxicity of functionalized carbon nanotubes f-CNTs was measured in this model by the modified LDH assay. This method assesses cell viability by measuring the lack of structural integrity of Kupffer cell membrane after incubation with f-CNTs. Toxicity induced by f-CNTs can be measured consistently using this assay, highlighting that isolated Kupffer cells are useful for nanoparticle toxicity testing. The overall understanding of nanotoxicology could benefit from such models, making the nanoparticle selection for clinical translation more efficient.
Collapse
|
39
|
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. NANO TODAY 2015; 10:487-510. [PMID: 26640510 PMCID: PMC4666556 DOI: 10.1016/j.nantod.2015.06.006] [Citation(s) in RCA: 910] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
Collapse
Affiliation(s)
- Heather Herd Gustafson
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
| | - Dolly Holt-Casper
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
| | - David W. Grainger
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| | - Hamidreza Ghandehari
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| |
Collapse
|
40
|
Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01610] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Deepak Gusain
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| |
Collapse
|
41
|
|
42
|
Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1285-98. [PMID: 25735266 DOI: 10.1016/j.nano.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
Abstract
The objective of the Part II analysis was to evaluate animal and in vitro toxicology studies of CoCr particles with respect to their physicochemistry and dose relevance to metal-on-metal (MoM) implant patients as derived from Part I. In the various toxicology studies, physicochemical characteristics were infrequently considered and administered doses were orders of magnitude higher than what occurs in patients. Co was consistently shown to rapidly release from CoCr particles for distribution and elimination from the body. CoCr micron sized particles appear more biopersistent in vivo resulting in inflammatory responses that are not seen with similar mass concentrations of nanoparticles. We conclude, that in an attempt to obtain data for a complete risk assessment, future studies need to focus on physicochemical characteristics of nano and micron sized particles and on doses and dose metrics relevant to those generated in patients or in properly conducted hip simulator studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Günter Oberdörster
- University of Rochester, Department of Environmental Medicine, Rochester, NY, USA
| |
Collapse
|
43
|
Brüstle I, Simmet T, Nienhaus GU, Landfester K, Mailänder V. Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:383-395. [PMID: 25821678 PMCID: PMC4362397 DOI: 10.3762/bjnano.6.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/07/2015] [Indexed: 06/01/2023]
Abstract
The combination of stem cell therapy and nanoparticles promises to enhance the effect of cellular therapies by using nanocarriers as drug delivery devices to guide the further differentiation or homing of stem cells. The impact of nanoparticles on primary cell types remains much more elusive as most groups study the nanoparticle-cell interaction in malignant cell lines. Here, we report on the influence of polymeric nanoparticles on human hematopoietic stem cells (hHSCs) and mesenchymal stem cells (hMSCs). In this study we systematically investigated the influence of polymeric nanoparticles on the cell functionality and differentiation capacity of hHSCs and hMSCs to obtain a deeper knowledge of the interaction of stem cells and nanoparticles. As model systems of nanoparticles, two sets of either bioinert (polystyrene without carboxylic groups on the surface) or biodegradable (PLLA without magnetite) particles were analyzed. Flow cytometry and microscopy analysis showed high uptake rates and no toxicity for all four tested particles in hMSCs and hHSCs. During the differentiation process, the payload of particles per cell decreased. The PLLA-Fe particle showed a significant increase in the IL-8 release in hMSCs but not in hHSCs. We assume that this is due to an increase of free intracellular iron ions but obviously also depends on the cell type. For hHSCs and hMSCs, lineage differentiation into erythrocytes, granulocytes, and megakaryocytes or adipocytes, osteocytes and chondrocytes, was not influenced by the particles when analyzed with lineage specific cluster of differentiation markers. On the other hand qPCR analysis showed significant changes in the expression of some (but not all) investigated lineage markers for both primary cell types.
Collapse
Affiliation(s)
- Ivonne Brüstle
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstraße 20, 89081 Ulm, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Katharina Landfester
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- 3rd Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
44
|
Taylor U, Rehbock C, Streich C, Rath D, Barcikowski S. Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine (Lond) 2014; 9:1971-89. [DOI: 10.2217/nnm.14.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many studies have evaluated the toxicity of gold nanoparticles, although reliable predictions based on these results are rare. In order to overcome this problem, this article highlights strategies to improve comparability and standardization of nanotoxicological studies. To this end, it is proposed that we should adapt the nanomaterial to the addressed exposure scenario, using ligand-free nanoparticle references in order to differentiate ligand effects from size effects. Furthermore, surface-weighted particle dosing referenced to the biologically relevant parameter (e.g., cell number or organ mass) is proposed as the gold standard. In addition, it is recommended that we should shift the focus of toxicological experiments from ‘live–dead’ assays to the assessment of cell function, as this strategy allows observation of bioresponses at lower doses that are more relevant for in vivo scenarios.
Collapse
Affiliation(s)
- Ulrike Taylor
- Institute of Farm Animal Genetics, Friedrich-Löffler-Institut, Federal Research Institute of Animal Health, Höltystraße 10, 31535 Mariensee, Germany
| | - Christoph Rehbock
- Technical Chemistry I & Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Carmen Streich
- Technical Chemistry I & Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Detlef Rath
- Institute of Farm Animal Genetics, Friedrich-Löffler-Institut, Federal Research Institute of Animal Health, Höltystraße 10, 31535 Mariensee, Germany
| | - Stephan Barcikowski
- Technical Chemistry I & Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| |
Collapse
|
45
|
Ilinskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 2014; 171:3988-4000. [PMID: 24724793 PMCID: PMC4243973 DOI: 10.1111/bph.12722] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse.
Collapse
Affiliation(s)
- A N Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| | - M A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| |
Collapse
|
46
|
Jiang C, Jia J, Zhai S. Mechanistic understanding of toxicity from nanocatalysts. Int J Mol Sci 2014; 15:13967-92. [PMID: 25119861 PMCID: PMC4159834 DOI: 10.3390/ijms150813967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 01/30/2023] Open
Abstract
Nanoparticle-based catalysts, or nanocatalysts, have been applied in various industrial sectors, including refineries, petrochemical plants, the pharmaceutical industry, the chemical industry, food processing, and environmental remediation. As a result, there is an increasing risk of human exposure to nanocatalysts. This review evaluates the toxicity of popular nanocatalysts applied in industrial processes in cell and animal models. The molecular mechanisms associated with such nanotoxicity are emphasized to reveal common toxicity-inducing pathways from various nanocatalysts and the uniqueness of each specific nanocatalyst.
Collapse
Affiliation(s)
- Cuijuan Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
47
|
Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C. Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. ENVIRONMENTAL RESEARCH 2014; 133:185-94. [PMID: 24959986 DOI: 10.1016/j.envres.2014.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 05/20/2023]
Abstract
This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO(4), Sb(2)O(3), and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl2~CdO>CuO>PbO>ZnO>PbSO(4)>Sb(2)O(3). Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb(2)O(3) threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management.
Collapse
Affiliation(s)
- Sylvaine Goix
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d׳écologie fonctionnelle), Avenue de l׳Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France
| | - Thibaut Lévêque
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d׳écologie fonctionnelle), Avenue de l׳Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France; ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | - Tian-Tian Xiong
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d׳écologie fonctionnelle), Avenue de l׳Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Armelle Baeza-Squiban
- Laboratoire des Réponses Moléculaires et Cellulaires aux Xénobiotiques, Unité Biologie Fonctionnelle et Adaptative, EAC4413, Université Paris Diderot, Sorbonne Paris Cité, 5 Rue Thomas Mann, 75205 Paris cedex 13, France
| | - Florence Geret
- GEODE, UMR CNRS 5602, University of Toulouse, Centre universitaire d׳Albi, Place de Verdun, 81012 Albi, France
| | - Gaëlle Uzu
- Université de Grenoble Alpes, CNRS, IRD, LTHE, F-38000 Grenoble, France
| | - Annabelle Austruy
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d׳écologie fonctionnelle), Avenue de l׳Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France; Institut Ecocitoyen, Centre de vie la Fossette RD 268, 13270 Fos-sur-Mer, France
| | - Camille Dumat
- Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan, France; UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d׳écologie fonctionnelle), Avenue de l׳Agrobiopôle, BP 32607, 31326 Castanet-Tolosan, France.
| |
Collapse
|
48
|
Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014; 43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 2013; 172:456-66. [PMID: 23742883 PMCID: PMC5831149 DOI: 10.1016/j.jconrel.2013.05.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/10/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
Abstract
Preclinical characterization of novel nanotechnology-based formulations is often challenged by physicochemical characteristics, sterility/sterilization issues, safety and efficacy. Such challenges are not unique to nanomedicine, as they are common in the development of small and macromolecular drugs. However, due to the lack of a general consensus on critical characterization parameters, a shortage of harmonized protocols to support testing, and the vast variety of engineered nanomaterials, the translation of nanomedicines into clinic is particularly complex. Understanding the immune compatibility of nanoformulations has been identified as one of the important factors in (pre)clinical development and requires reliable in vitro and in vivo immunotoxicity tests. The generally low sensitivity of standard in vivo toxicity tests to immunotoxicities, inter-species variability in the structure and function of the immune system, high costs and relatively low throughput of in vivo tests, and ethical concerns about animal use underscore the need for trustworthy in vitro assays. Here, we consider the correlation (or lack thereof) between in vitro and in vivo immunotoxicity tests as a mean to identify useful in vitro assays. We review literature examples and case studies from the experience of the NCI Nanotechnology Characterization Lab, and highlight assays where predictability has been demonstrated for a variety of nanomaterials and assays with high potential for predictability in vivo.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702
| | - Scott E. McNeil
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
50
|
Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, Cansolino L, Tomasi C, Balduini A, Fagnoni M, Merli D, Mustarelli P, Canobbio I, Balduini C, Minetti G. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:589-97. [PMID: 24161383 DOI: 10.1016/j.nano.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/23/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. FROM THE CLINICAL EDITOR Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies.
Collapse
Affiliation(s)
- Cesare Achilli
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Annarita Ciana
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | - Laura Cansolino
- Department of Clinico-Surgical Sciences, University of Pavia, Pavia, Italy; I.R.C.C.S. S.Matteo Hospital, Pavia, Italy
| | - Corrado Tomasi
- Department of Chemistry, University of Pavia, Pavia, Italy; fI.E.N.I. C.N.R. Unit of Lecco, C.So Promessi Sposi n°29, 23900 Lecco, Italy
| | | | | | - Daniele Merli
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Cesare Balduini
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampaolo Minetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|