1
|
Blanco R, Quezada-Romegialli C, Muñoz JP. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses 2025; 17:324. [PMID: 40143252 PMCID: PMC11946124 DOI: 10.3390/v17030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Despite significant advancements in early diagnosis and treatment, breast cancer (BC) remains a major global health challenge. Ongoing research is essential to identify novel risk factors, implement innovative screening programs, and develop personalized treatment approaches. Among the various risk factors, infection with certain oncogenic viruses has emerged as a potential contributor to BC development. Increasing evidence suggests that bovine leukemia virus (BLV) may contribute to zoonotic infections in humans, with a potential role in BC initiation and progression. This review evaluates clinical and experimental data on BLV presence in both malignant and non-malignant breast tissues, exploring potential mechanisms through which BLV may access human breast tissue and contribute to carcinogenesis. Current data reveal a higher prevalence of BLV infection in BC tissues compared to non-tumor tissues, correlating with an increased risk of BC development. In this context, dairy and meat products from BLV-infected animals have been proposed as potential transmission sources. BLV-encoded proteins disrupt key oncogenic pathways, which support their possible role in breast carcinogenesis. However, the interpretation of these findings is limited by potential confounding factors such as genetic predisposition, environmental exposures, and dietary influences. Further research, including well-controlled epidemiological studies, longitudinal cohorts, and mechanistic investigations into BLV proteins in human breast cells, is necessary to determine its role in BC development.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile;
| | - Claudio Quezada-Romegialli
- Plataforma de Monitoreo Genómico y Ambiental, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
2
|
Armenta-Guirado BI, Mérida-Ortega Á, López-Carrillo L, Denova-Gutiérrez E. Diet quality indices are associated with breast cancer by molecular subtypes in Mexican women. Eur J Nutr 2024; 63:3223-3233. [PMID: 39325098 DOI: 10.1007/s00394-024-03502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Inconclusive epidemiological evidence suggests that diet quality indices may influence breast cancer (BC) risk; however, the evidence does not consider the molecular expression of this cancer. PURPOSE We aimed to evaluate if diet quality is related to molecular subtypes of BC, in women residing in Northern Mexico. METHODS This is a secondary analysis of 1,045 incident cases and 1,030 population controls from a previous case-control study, conducted between 2007 and 2011 in Northern Mexico. Information about the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) was obtained from medical records to classify BC as luminal (ER + and/or PR+/HER2-), HER2+ (ER+/-and/or PR+/-/HER2+), or triple-negative (TN) (ER- and PR-/HER2-) cases. Food consumption was assessed with a semi-quantitative food frequency questionnaire. Diet quality was evaluated using the Mexican Diet Quality Index (MxDQI) and the Mexican Alternative Healthy Eating Index (MxAHEI). We used unconditional logistic regression models to estimate the association between Mexican diet quality indices and BC molecular subtypes. RESULTS The MxDQI was related to lower odds of BC (ORT3vsT1=0.24; 95%CI: 0.18, 0.31). Similarly, MxAHEI was negatively associated with BC (ORT3vsT1=0.43; 95%CI: 0.34, 0.54). The associations of both indices remained significant in the ER + and ER- tumors, and in the BC luminal and HER2 + molecular subtypes, except in the TN molecular subtype for MxAHEI, which was not statistically significant. CONCLUSIONS Our findings showed that MxDQI and MxAHEI were negatively associated with BC risk regardless of its molecular subtype.
Collapse
Affiliation(s)
- Brianda Ioanna Armenta-Guirado
- Department of Health Sciences, University of Sonora Blvd, Bordo Nuevo S/N, Blvd. Antiguo Ejido Providencia. CP. Cajeme, Sonora, 85010, México
| | - Ángel Mérida-Ortega
- The Center for Population Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México
| | - Lizbeth López-Carrillo
- The Center for Population Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México
| | - Edgar Denova-Gutiérrez
- Center for Nutrition and Health Research, National Institute of Public Health, Avenida Universidad #655, Col. Santa María Ahuacatitlán, Cuernavaca, México.
| |
Collapse
|
3
|
Abolhasanzadeh N, Sarabandi S, Dehghan B, Karamad V, Avci CB, Shademan B, Nourazarian A. Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Front Immunol 2024; 15:1333563. [PMID: 38807590 PMCID: PMC11130376 DOI: 10.3389/fimmu.2024.1333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer stands as the most prevalent form of cancer among women globally, influenced by a combination of genetic and environmental factors. Recent studies have investigated changes in microRNAs (miRNAs) during breast cancer progression and the potential impact of environmental chemicals on miRNA expression. This review aims to provide an updated overview of miRNA alterations in breast cancer and to explore their potential association with environmental chemicals. We will discuss the current knowledge on dysregulated miRNAs in breast cancer, including both upregulated and downregulated miRNAs. Additionally, we will review the influence of environmental chemicals, such as endocrine-disrupting compounds, heavy metals, and air pollutants, on miRNA expression and their potential contribution to breast cancer development. This review aims to advance our understanding of the complex molecular mechanisms underlying miRNA dysregulation in breast cancer by comprehensively examining miRNA alterations and their association with environmental chemicals. This knowledge is crucial for the development of targeted therapies and preventive measures. Furthermore, identifying specific miRNAs affected by environmental chemicals may allow the prediction of individual susceptibility to breast cancer and the design of personalized intervention strategies.
Collapse
Affiliation(s)
- Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sajed Sarabandi
- Department of Computer Science Leiden University, Leiden, Netherlands
| | - Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Amato S, Ramsey J, Ahern TP, Rovnak J, Barlow J, Weaver D, Eyasu L, Singh R, Cintolo-Gonzalez J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res Treat 2023; 202:325-334. [PMID: 37517027 DOI: 10.1007/s10549-023-07061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.
Collapse
Affiliation(s)
- Stas Amato
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Jon Ramsey
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Donald Weaver
- Department of Pathology, University of Vermont Medical Center, Burlington, VT, USA
| | - Lud Eyasu
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Rohit Singh
- Division of Hematology/Oncology, Department of Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Jessica Cintolo-Gonzalez
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA.
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA.
| |
Collapse
|
5
|
Farvid MS, Sidahmed E, Spence ND, Mante Angua K, Rosner BA, Barnett JB. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2021; 36:937-951. [PMID: 34455534 DOI: 10.1007/s10654-021-00741-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Red meat and processed meat consumption has been hypothesized to increase risk of cancer, but the evidence is inconsistent. We performed a systematic review and meta-analysis of prospective studies to summarize the evidence of associations between consumption of red meat (unprocessed), processed meat, and total red and processed meat with the incidence of various cancer types. We searched in MEDLINE and EMBASE databases through December 2020. Using a random-effect meta-analysis, we calculated the pooled relative risk (RR) and 95% confidence intervals (CI) of the highest versus the lowest category of red meat, processed meat, and total red and processed meat consumption in relation to incidence of various cancers. We identified 148 published articles. Red meat consumption was significantly associated with greater risk of breast cancer (RR = 1.09; 95% CI = 1.03-1.15), endometrial cancer (RR = 1.25; 95% CI = 1.01-1.56), colorectal cancer (RR = 1.10; 95% CI = 1.03-1.17), colon cancer (RR = 1.17; 95% CI = 1.09-1.25), rectal cancer (RR = 1.22; 95% CI = 1.01-1.46), lung cancer (RR = 1.26; 95% CI = 1.09-1.44), and hepatocellular carcinoma (RR = 1.22; 95% CI = 1.01-1.46). Processed meat consumption was significantly associated with a 6% greater breast cancer risk, an 18% greater colorectal cancer risk, a 21% greater colon cancer risk, a 22% greater rectal cancer risk, and a 12% greater lung cancer risk. Total red and processed meat consumption was significantly associated with greater risk of colorectal cancer (RR = 1.17; 95% CI = 1.08-1.26), colon cancer (RR = 1.21; 95% CI = 1.09-1.34), rectal cancer (RR = 1.26; 95% CI = 1.09-1.45), lung cancer (RR = 1.20; 95% CI = 1.09-1.33), and renal cell cancer (RR = 1.19; 95% CI = 1.04-1.37). This comprehensive systematic review and meta-analysis study showed that high red meat intake was positively associated with risk of breast cancer, endometrial cancer, colorectal cancer, colon cancer, rectal cancer, lung cancer, and hepatocellular carcinoma, and high processed meat intake was positively associated with risk of breast, colorectal, colon, rectal, and lung cancers. Higher risk of colorectal, colon, rectal, lung, and renal cell cancers were also observed with high total red and processed meat consumption.
Collapse
Affiliation(s)
- Maryam S Farvid
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Elkhansa Sidahmed
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicholas D Spence
- Department of Sociology and Department of Health and Society, University of Toronto, Toronto, ON, Canada
| | | | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Junaidah B Barnett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Flores-García MK, Mérida-Ortega Á, Denova-Gutiérrez E, López-Carrillo L. Dietary Patterns and Breast Cancer Risk in Women from Northern Mexico. Nutr Cancer 2020; 73:2763-2773. [PMID: 33356597 DOI: 10.1080/01635581.2020.1860241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the association between dietary patterns and breast cancer (BC) subtypes among women from Northern Mexico. From a study of incident cases and population controls that was carried out from 2007 to 2011, a subsample of 509 cases matched 1:1 by age with 509 controls was selected. Information about expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) was available from medical records to classify BC on luminal (ER + and/or PR+/HER2-), HER2+ (ER+/- and/or PR+/-/HER2+), or triple negative (ER- and PR-/HER2-). Dietary information was gathered using a semiquantitative food frequency questionnaire and a factor analysis was used to obtain dietary patterns. The association between each dietary pattern and BC molecular subtypes was assessed through conditional logistic regression models. Two dietary patterns were identified. The first (mainly characterized by meat, high fat, and sugary cereals) was positively associated with BC (odds ratio, OR = 12.62; 95% CI: 7.42, 21.45); the second (consisting of corn, legumes, and other vegetables) was inversely associated with BC (OR = 0.50; 95% CI: 0.40, 0.62). Both associations remained significant by BC molecular subtypes. These findings could contribute to the development of public health strategies for BC prevention.
Collapse
Affiliation(s)
- M Karen Flores-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Ángel Mérida-Ortega
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Edgar Denova-Gutiérrez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Lizbeth López-Carrillo
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Krisanits B, Randise JF, Burton CE, Findlay VJ, Turner DP. Pubertal mammary development as a "susceptibility window" for breast cancer disparity. Adv Cancer Res 2020; 146:57-82. [PMID: 32241392 PMCID: PMC10084741 DOI: 10.1016/bs.acr.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Factors such as socioeconomic status, age at menarche and childbearing patterns are components that have been shown to influence mammary gland development and establish breast cancer disparity. Pubertal mammary gland development is selected as the focus of this review, as it is identified as a "window of susceptibility" for breast cancer risk and disparity. Here we recognize non-Hispanic White, African American, and Asian American women as the focus of breast cancer disparity, in conjunction with diets associated with changes in breast cancer risk. Diets consisting of high fat, N-3 polyunsaturated fatty acids, N-6 polyunsaturated fatty acids, as well as obesity and the Western diet have shown to lead to changes in pubertal mammary gland development in mammalian models, therefore increasing the risk of breast cancer and breast cancer disparity. While limited intervention strategies are offered to adolescents to mitigate development changes and breast cancer risk, the prominent solution to closing the disparity among the selected population is to foster lifestyle changes that avoid the deleterious effects of unhealthy diets.
Collapse
Affiliation(s)
- Bradley Krisanits
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Jaime F Randise
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Clare E Burton
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria J Findlay
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - David P Turner
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
9
|
Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med 2020; 20:173-190. [PMID: 32016615 DOI: 10.1007/s10238-020-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Health-threatening consequences of carcinogen exposure are mediated via occurrence of electrophiles or reactive oxygen species. As a result, the accumulation of biomolecular damage leads to the cancer initiation, promotion or progression. Accordingly, there is an association between lifestyle factors including inappropriate diet or carcinogen formation during food processing, mainstream, second or third-hand tobacco smoke and other environmental or occupational carcinogens and malignant transformation. Nevertheless, increasing evidence supports the protective effects of naturally occurring phytochemicals against carcinogen exposure as well as carcinogenesis in general. Isolated phytochemicals or their mixtures present in the whole plant food demonstrate efficacy against malignancy induced by carcinogens widely spread in our environment. Phytochemicals also minimize the generation of carcinogenic substances during the processing of meat and meat products. Based on numerous data, selected phytochemicals or plant foods should be highly recommended to become a stable and regular part of the diet as the protectors against carcinogenesis.
Collapse
|
10
|
Malik DES, David RM, Gooderham NJ. Interleukin-6 selectively induces drug metabolism to potentiate the genotoxicity of dietary carcinogens in mammary cells. Arch Toxicol 2019; 93:3005-3020. [PMID: 31515600 DOI: 10.1007/s00204-019-02558-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy in females, the etiology being multifactorial and includes the role of lifestyle exposure to DNA-damaging chemicals such as dietary carcinogens benzo (a) pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP). Both compounds require cytochrome P450 (CYP)-mediated metabolic activation to DNA-damaging species, and both induce transcriptional responses through the nuclear receptors Aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα). BaP and PhIP are mammary carcinogens in rodents. Clinically, circulating IL-6 expression is linked with poor prognosis of cancer and 35% of the deaths in breast cancer are linked with inflammation. The objective of this work was to investigate the molecular toxicology and local activation of BaP and PhIP in the presence of IL-6. Our laboratory has previously reported that miR27b can regulate CYP1B1 expression in colorectal cells, here we have investigated if this mechanism is working in mammary cell models, MCF-7 and MDA-MB-231 cells. Treatment (24 h) of cells with BaP (10 nM-10 µM) and PhIP (100 nM-100 µM) significantly induced genetic damage (micronuclei formation) in a dose-dependent manner in both cell lines. This effect was potentiated in the presence of human IL-6 at concentrations reported to be expressed in clinical breast cancer. On its own, IL-6 treatment failed to induce micronuclei frequency above the control levels in these cells. Compared to BaP or PhIP treatment alone, IL-6 plus BaP or PhIP selectively induced CYP1B1 significantly in both cell lines. Additionally, miR27b expression was downregulated by IL-6 treatments and transfection with miR27b inhibitor confirmed that miR27b is a regulator of CYP1B1 in both cell lines. These data show that BaP- and PhIP-induced DNA damage in mammary cells is potentiated by the inflammatory cytokine IL-6 and that inflammation-induced CYP expression, specifically CYP1B1 via miR27b, is responsible for this effect.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
ABC transporters Mdr1a/1b, Bcrp1, Mrp2 and Mrp3 determine the sensitivity to PhIP/DSS-induced colon carcinogenesis and inflammation. Arch Toxicol 2019; 93:775-790. [DOI: 10.1007/s00204-019-02394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
|
12
|
Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer. Arch Toxicol 2018; 92:1639-1655. [PMID: 29362861 PMCID: PMC5882637 DOI: 10.1007/s00204-018-2160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10-7-10-4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10-3-10-1 M) with PhIP (10-7-10-4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Collapse
|
13
|
Heitz AE, Baumgartner RN, Baumgartner KB, Boone SD. Healthy lifestyle impact on breast cancer-specific and all-cause mortality. Breast Cancer Res Treat 2017; 167:171-181. [PMID: 28861753 DOI: 10.1007/s10549-017-4467-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE While several studies have evaluated the association of combined lifestyle factors on breast cancer-specific mortality, few have included Hispanic women. We constructed a "healthy behavior index" (HBI) and evaluated its associations with mortality in non-Hispanic White (NHW) and Hispanic women diagnosed with breast cancer from the southwestern U.S. METHODS Diet and lifestyle questionnaires were analyzed for 837 women diagnosed with invasive breast cancer (1999-2004) in New Mexico as part of the 4-Corners Women's Health Study. An HBI score ranging from 0 to 12 was based on dietary pattern, physical activity, smoking, alcohol consumption, and body size and shape, with increasing scores representing less healthy characteristics. Hazard ratios for mortality over 14 years of follow-up were estimated for HBI quartiles using Cox proportional hazards models adjusting for education and stratified by ethnicity and stage at diagnosis. RESULTS A significant increasing trend was observed across HBI quartiles among all women, NHW women, and those diagnosed with localized or regional/distant stage of disease for all-cause (AC) mortality (p-trend = 0.006, 0.002, 0.03, respectively). AC mortality was increased >2-fold for all women and NHW women in HBI Q4 versus Q1 (HR = 2.18, 2.65, respectively). The association was stronger in women with regional/distant than localized stage of disease (HR = 2.62, 1.94, respectively). Associations for Hispanics or breast cancer-specific mortality were not significant. CONCLUSIONS These findings indicate the associations between the HBI and AC mortality, which appear to differ by ethnicity and stage at diagnosis. Interventions for breast cancer survivors should address the combination of lifestyle factors on prognosis.
Collapse
Affiliation(s)
- Adaline E Heitz
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, James Graham Brown Cancer Center, University of Louisville, 485 E. Gray St., Louisville, KY, 40202, USA
| | - Richard N Baumgartner
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, James Graham Brown Cancer Center, University of Louisville, 485 E. Gray St., Louisville, KY, 40202, USA
| | - Kathy B Baumgartner
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, James Graham Brown Cancer Center, University of Louisville, 485 E. Gray St., Louisville, KY, 40202, USA
| | - Stephanie D Boone
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, James Graham Brown Cancer Center, University of Louisville, 485 E. Gray St., Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Papaioannou MD, Koufaris C, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) elicits estrogenic-like microRNA responses in breast cancer cells. Toxicol Lett 2014; 229:9-16. [PMID: 24877718 DOI: 10.1016/j.toxlet.2014.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
The cooking of meat results in the generation of heterocyclic amines (HCA), the most abundant of which is 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Data from epidemiological, mechanistic, and animal studies indicate that PhIP could be causally linked to breast cancer incidence. Besides the established DNA damaging and mutagenic activities of PhIP, the chemical is reported to have oestrogenic activity that could contribute to its tissue specific carcinogenicity. In this study we investigated the effect of treatment with PhIP and 17-β-estradiol (E2) on global microRNA (miRNA) expression of the oestrogen responsive MCF-7 human breast adenocarcinoma cell line. PhIP and E2 caused widespread and largely over-lapping effects on miRNA expression, with many of the commonly affected miRNA reported to be regulated by oestrogen and have been implicated in the initiation and progression of breast cancer. The regulatory activity of the miRNAs we show here to be responsive to PhIP treatment, are also predicted to mediate cellular phenotypes that are associated with PhIP exposure. Consequently, this study offers further support to the ability of PhIP to induce widespread effects via activation of oestrogen receptor alpha (ERα). Moreover, this study indicates that deregulation of miRNA by PhIP could potentially be an important non-DNA-damaging carcinogenic mechanism in breast cancer.
Collapse
Affiliation(s)
- M D Papaioannou
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - C Koufaris
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - N J Gooderham
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK.
| |
Collapse
|
15
|
Vlaming MLH, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L, de Greef TFA, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and its genotoxic metabolites. Mol Pharmacol 2014; 85:520-30. [PMID: 24334255 DOI: 10.1124/mol.113.088823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The multidrug transporters breast cancer resistance protein (BCRP), multidrug-resistance protein 1 (MDR1), and multidrug-resistance-associated protein (MRP) 2 and 3 eliminate toxic compounds from tissues and the body and affect the pharmacokinetics of many drugs and other potentially toxic compounds. The food-derived carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) is transported by BCRP, MDR1, and MRP2. To investigate the overlapping functions of Bcrp1, Mdr1a/b, and Mrp2 in vivo, we generated Bcrp1;Mdr1a/b;Mrp2(-/-) mice, which are viable and fertile. These mice, together with Bcrp1;Mrp2;Mrp3(-/-) mice, were used to study the effects of the multidrug transporters on the pharmacokinetics of PhIP and its metabolites. Thirty minutes after oral or intravenous administration of PhIP (1 mg/kg), the PhIP levels in the small intestine were reduced 4- to 6-fold in Bcrp1;Mdr1a/b;Mrp2(-/) (-) and Bcrp1;Mrp2;Mrp3(-/-) mice compared with wild-type mice. Fecal excretion of PhIP was reduced 8- to 20-fold in knockouts. Biliary PhIP excretion was reduced 41-fold in Bcrp1;Mdr1a/b;Mrp2(-/-) mice. Biliary and small intestine levels of PhIP metabolites were reduced in Bcrp1;Mrp2-deficient mice. Furthermore, in both knockout strains, kidney levels and urinary excretion of genotoxic PhIP-metabolites were significantly increased, suggesting that reduced biliary excretion of PhIP and PhIP metabolites leads to increased urinary excretion of these metabolites and increased systemic exposure. Bcrp1 and Mdr1a limited PhIP brain accumulation. In Bcrp1;Mrp2;Mrp3(-/-), but not Bcrp1;Mdr1a/b;Mrp(-/-) mice, the carcinogenic metabolites N2-OH-PhIP (2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and PhIP-5-sulfate (a genotoxicity marker) accumulated in liver tissue, indicating that Mrp3 is involved in the sinusoidal secretion of these compounds. We conclude that Bcrp1, Mdr1a/b, Mrp2, and Mrp3 significantly affect tissue disposition and biliary and fecal elimination of PhIP and its carcinogenic metabolites and may affect PhIP-induced carcinogenesis as a result.
Collapse
Affiliation(s)
- Maria L H Vlaming
- Divisions of Molecular Oncology (M.L.H.V., E.v.d.S., A.v.E., E.W., A.H.S.) and Clinical Pharmacology (J.H.M.S.), The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Pharmacy & Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands (S.F.T., H.R., J.H.B.); Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (L.B., T.F.A.d.G.); and Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands (J.H.M.S., J.H.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Concentration-dependent inhibition of Escherichia coli O157:H7 and heterocyclic amines in heated ground beef patties by apple and olive extracts, onion powder and clove bud oil. Meat Sci 2013; 94:461-7. [DOI: 10.1016/j.meatsci.2013.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/08/2013] [Accepted: 03/10/2013] [Indexed: 02/02/2023]
|
17
|
Rounds L, Havens CM, Feinstein Y, Friedman M, Ravishankar S. Plant extracts, spices, and essential oils inactivate Escherichia coli O157:H7 and reduce formation of potentially carcinogenic heterocyclic amines in cooked beef patties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3792-3799. [PMID: 22397498 DOI: 10.1021/jf204062p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Meats need to be heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature treatment used to prepare well-done meats increases the formation of carcinogenic heterocyclic amines (HCAs). We evaluated the ability of plant extracts, spices, and essential oils to simultaneously inactivate E. coli O157:H7 and suppress HCA formation in heated hamburger patties. Ground beef with added antimicrobials was inoculated with E. coli O157:H7 (10(7) CFU/g). Patties were cooked to reach 45 °C at the geometric center, flipped, and cooked for 5 min. Samples were then taken for microbiological and mass spectrometry analysis of HCAs. Some compounds were inhibitory only against E. coli or HCA formation, while some others inhibited both. Addition of 5% olive or apple skin extracts reduced E. coli O157:H7 populations to below the detection limit and by 1.6 log CFU/g, respectively. Similarly, 1% lemongrass oil reduced E. coli O157:H7 to below detection limits, while clove bud oil reduced the pathogen by 1.6 log CFU/g. The major heterocyclic amines 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were concurrently reduced with the addition of olive extract by 79.5% and 84.3% and with apple extract by 76.1% and 82.1%, respectively. Similar results were observed with clove bud oil: MeIQx and PhIP were reduced by 35% and 52.1%, respectively. Addition of onion powder decreased formation of PhIP by 94.3%. These results suggest that edible natural plant compounds have the potential to prevent foodborne infections as well as carcinogenesis in humans consuming heat-processed meat products.
Collapse
Affiliation(s)
- Liliana Rounds
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | |
Collapse
|
18
|
Walsh LA, Cepeda MA, Damjanovski S. Analysis of the MMP-dependent and independent functions of tissue inhibitor of metalloproteinase-2 on the invasiveness of breast cancer cells. J Cell Commun Signal 2012; 6:87-95. [PMID: 22227894 DOI: 10.1007/s12079-011-0157-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are secreted endopeptidases that play an essential role in remodeling the extracellular matrix (ECM). MMPs are primarily active during development, when the majority of ECM remodeling events occurs. In adults, elevated MMP activity has been observed in many pathological conditions such as cancer and osteoarthritis. The proteolytic activity of MMPs is controlled by their natural inhibitors - the tissue inhibitor of metalloproteinases (TIMPs). In addition to blocking MMP-mediated proteolysis, TIMPs have a number of MMP-independent functions including binding to cell surface proteins thereby stimulating signaling cascades. TIMP-2, the most studied member of the family, can both inhibit and activate MMPs directly, as well as inhibit MMP activity indirectly by upregulating expression of RECK, a membrane anchored MMP regulator. While TIMP-2 has been shown to play important roles in breast cancer, we describe how the MMP-independent effects of TIMP-2 can modulate the invasiveness of MCF-7, T47D and MDA-MB-231 breast cancer cells. Using an ALA + TIMP-2 mutant which is devoid of MMP inhibition, but still capable of initiating specific cell signaling cascades, we show that TIMP-2 can differentially affect MMP activity and cellular invasiveness in both an MMP dependent and independent manner. More specifically, MMP activity and invasiveness is increased with the addition of exogenous TIMP-2 in poorly invasive cell lines whereas it is decreased in highly invasive cells lines (MDA-MB-231). Conversely, the addition of ALA + TIMP-2 resulted in decreased invasiveness regardless of cell line.
Collapse
Affiliation(s)
- Logan A Walsh
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada,
| | | | | |
Collapse
|
19
|
Abstract
Nutrigenomics refers to the interaction between one's diet and his/her genes. These interactions can markedly influence digestion, absorption, and the elimination of bioactive food components, as well as influence their site of actions/molecular targets. Nutrigenomics comprises nutrigenetics, epigenetics, and transcriptomics, coupled with other "omic," such as proteomics and metabolomics, that apparently account for the wide variability in cancer risk among individuals with similar dietary habits. Multiple food components including essential nutrients, phytochemical, zoochemicals, fungochemical, and bacterochemicals have been implicated in cancer risk and tumor behavior, admittedly with mixed results. Such findings suggest that not all individuals respond identically to a diet. This chapter highlights the influence of single-nucleotide polymorphism, copy number, epigenetic events, and transcriptomic homeostasis as factors influencing the response to food components and ultimately health, including cancer risk. Both breast and colorectal cancers are reviewed as examples about how nutrigenomics may influence the response to dietary intakes. As the concept that "one size fits all" comes to an end and personalized approaches surface, additional research data will be required to identify those who will benefit most from dietary change and any who might be placed at risk because of an adjustment.
Collapse
|