1
|
Peterson R, Crawford RB, Blevins LK, Kaminski NE, Clark AJ, Malinczak CA. Four-Week GLP Immunotoxicity Assessment of Lactoferrin Alpha Produced by Komagataella phaffii in Sprague-Dawley Rats. Int J Toxicol 2025; 44:125-140. [PMID: 39537148 PMCID: PMC11969892 DOI: 10.1177/10915818241299344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral toxicity and toxicokinetic properties of human lactoferrin (LF) alpha produced in Komagataella phaffii (effera™) were investigated in adult Sprague-Dawley rats over a 28-day period under good laboratory practice conditions. Main study dosing used groups of 10 rats/sex/dose, and a secondary study evaluating toxicokinetic parameters used 6 rats/sex/dose. The vehicle control group received sodium citrate buffer, test groups received daily doses of 200, 600, and 2000 mg of effera™ per kg body weight, and the comparative control group received 2000 mg bovine LF (bLF)/kg body weight per day. T-cell-dependent antibody response against keyhole limpet hemocyanin and immunophenotyping of the spleen were performed as measures of immunotoxicity. Clinical observations, body weight, hematology, coagulation, clinical chemistry, urinalysis, immunotoxicity, gross necropsy, and histopathology were assessed. Toxicokinetic parameters were analyzed as an indication of LF bioavailability, and anti-LF antibody assays were conducted to detect antibodies produced against LF to measure immunogenicity. No treatment related toxicologically significant changes were observed. Based on the absence of toxicologically relevant changes, effera™ is well tolerated in rats at doses up to 2000 mg rhLF/kg/day, an amount ∼400 times that of the estimated daily intake at the 90th percentile proposed for human adult use.
Collapse
|
2
|
Buoso E, Masi M, Limosani RV, Oliviero C, Saeed S, Iulini M, Passoni FC, Racchi M, Corsini E. Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu. J Xenobiot 2025; 15:13. [PMID: 39846545 PMCID: PMC11755641 DOI: 10.3390/jox15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Roberta Valeria Limosani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Chiara Oliviero
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Sabrina Saeed
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Francesca Carlotta Passoni
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| |
Collapse
|
3
|
Rajaura S, Bhardwaj N, Singh A, Babu R, Gupta N, Ahmed MZ. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol 2024; 130:108724. [PMID: 39322090 DOI: 10.1016/j.reprotox.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Bisphenol A (BPA) belongs to the endocrine disruptor chemicals (EDCs) causing various reproductive disorders in females. We analysed the toxic effects of BPA in the uterus and ovaries. The BPA was administered orally with the repeated low dose (LD, 1 mg/kg) and high dose (HD, 5 mg/kg) of body weight on alternate days for 4 months via oral gavage to Swiss mice. BPA administration decreases body weight, ovarian weight and size at LD, but increases ovarian weight and size at HD. The uterus weight, length, and diameter were increased in both the treated groups. The histopathological data show decreased ovarian follicle size, epithelial hyperplasia, and lymphocytic infiltration in the ovary. The BPA-treated uterus shows increased vascularization, atrophied endometrium and myometrium, and endometrial hyperplasia (EH) with aberrant glandular growth. The cancer stem cells (CSCs) in the ovaries were identified based on staining with anti-mouse CD44 and anti-mouse CD133 antibodies and analysed by flow cytometry. Three different populations of ovarian CSCs: CD44+CD133-, CD44+CD133+, and CD44-CD133+, can be recognised based on the intensity of these receptors. CD44+CD133- and CD44+CD133+ cell percentages were increased in BPA-treated groups. CD44-CD133+ were increased in LD but decreased in HD. The BPA administration also induces ROS production, which decreases the expression of antioxidant genes Superoxide dismutase 1 (SOD1), Superoxide dismutase 2 (SOD2), Catalase (CAT), Glutathione peroxidase 1 (GPX1), and Forkhead box O3 (FOXO3) in ovarian cells. In conclusion, BPA exposure induced an inflammatory response, increased CSC proportions, induced ROS, and decreased antioxidant responses in the ovaries.
Collapse
Affiliation(s)
- Sumit Rajaura
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India.
| | - Ashutosh Singh
- Department of Biochemistry, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, New Delhi, India
| | - Neelujain Gupta
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Peterson R, Crawford RB, Blevins LK, Kaminski NE, Sass JS, Ferraro B, Vishwanath-Deutsch R, Clark AJ, Malinczak CA. Dose Range-Finding Toxicity Study in Rats With Recombinant Human Lactoferrin Produced in Komagataella phaffii. Int J Toxicol 2024; 43:407-420. [PMID: 38647416 DOI: 10.1177/10915818241247013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The oral toxicity of recombinant human lactoferrin (rhLF, Helaina rhLF, Effera™) produced in Komagataella phaffii was investigated in adult Sprague Dawley rats by once daily oral gavage for 14 consecutive days. The study used groups of 3-6 rats/sex/dose. The vehicle control group received sodium citrate buffer, and the test groups received daily doses of 200, 1000, and 2000 mg of rhLF in sodium citrate buffer per kg body weight. Bovine LF at 2000 mg/kg body weight per day was used as a comparative control. Clinical observations, body weight, hematology, clinical chemistry, iron parameters, immunophenotyping, and gross examination at necropsy were used as criteria for detecting the effects of treatment in all groups and to help select dose levels for future toxicology studies. Quantitative LF levels were also analyzed as an indication of bioavailability. Overall, administration of Helaina rhLF by once daily oral gavage for 14 days was well tolerated in rats at levels up to 2000 mg/kg/day, or 57 × Helaina's intended commercial use in adults, and indicating that a high dose of 2000 mg/kg/day is appropriate for future definitive toxicology studies.
Collapse
|
5
|
Wang S, Dong Y, Zhai L, Bai Y, Yang Y, Jia L. Decreased Treg cells induced by bisphenol A is associated with up-regulation of PI3K/Akt/mTOR signaling pathway and Foxp3 DNA methylation in spleen of adolescent mice. CHEMOSPHERE 2024; 357:141957. [PMID: 38641296 DOI: 10.1016/j.chemosphere.2024.141957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 μg mL-1) group, OVA + BPA (0.2 μg mL-1) group, and OVA + BPA (0.4 μg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.
Collapse
Affiliation(s)
- Simeng Wang
- Institute for International Health Professions Education and Research, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Health Policy and Management, School of Public Health, Hangzhou Normal University, NO. 2318 Yuhangtang Road, Yuhang District, Hangzhou, Zhejiang, 311121, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
6
|
vom Saal FS, Antoniou M, Belcher SM, Bergman A, Bhandari RK, Birnbaum LS, Cohen A, Collins TJ, Demeneix B, Fine AM, Flaws JA, Gayrard V, Goodson WH, Gore AC, Heindel JJ, Hunt PA, Iguchi T, Kassotis CD, Kortenkamp A, Mesnage R, Muncke J, Myers JP, Nadal A, Newbold RR, Padmanabhan V, Palanza P, Palma Z, Parmigiani S, Patrick L, Prins GS, Rosenfeld CS, Skakkebaek NE, Sonnenschein C, Soto AM, Swan SH, Taylor JA, Toutain PL, von Hippel FA, Welshons WV, Zalko D, Zoeller RT. The Conflict between Regulatory Agencies over the 20,000-Fold Lowering of the Tolerable Daily Intake (TDI) for Bisphenol A (BPA) by the European Food Safety Authority (EFSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45001. [PMID: 38592230 PMCID: PMC11003459 DOI: 10.1289/ehp13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng / kg body weight ( BW ) / day . BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ake Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Linda S. Birnbaum
- Scientist Emeritus and Former Director, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- Scholar in Residence, Duke University, Durham, North Carolina, USA
| | - Aly Cohen
- Integrative Rheumatology Associates, Princeton, New Jersey, USA
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Barbara Demeneix
- Comparative Physiology Laboratory, Natural History Museum, Paris, France
| | - Anne Marie Fine
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana—Champaign, Urbana-Champaign, Illinois, USA
| | - Veronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - Jerrold J. Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Raleigh, North Carolina, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | | | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Retha R. Newbold
- Scientist Emeritus, NTP, NIEHS, Research Triangle Park, North Carolina, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lyn Patrick
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri—Columbia, Columbia, Missouri, USA
- MU Institute of Data Science and Informatics, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Niels E. Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK
- NTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, Arizona, USA
| | - Wade V. Welshons
- Department of Biomedical Sciences, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Prueitt RL, Goodman JE. Evidence evaluated by European Food Safety Authority does not support lowering the temporary tolerable daily intake for bisphenol A. Toxicol Sci 2024; 198:185-190. [PMID: 38265237 DOI: 10.1093/toxsci/kfad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The European Food Safety Authority (EFSA) recently derived a tolerable daily intake (TDI) for bisphenol A (BPA) of 0.2 ng/kg bw/day. There are several issues with EFSA's hazard assessment review process, including that it was based on a limited subset of relevant studies. Multiple public commenters on EFSA's draft evaluation of BPA, including several European regulatory agencies, noted these issues, yet they were not adequately addressed by EFSA in the final evaluation. The TDI for BPA was based on an intermediate immunotoxicity endpoint in mice that has not been observed in other species; there is no evidence that it is a precursor event to any downstream pathological outcome. The TDI is several orders of magnitude lower than estimates of safe doses of BPA established by agencies worldwide, including EFSA's temporary TDI (t-TDI) for BPA established in 2015. Overall, the EFSA hazard assessment review process has led to a conclusion that there are low-dose effects of BPA based on very few, lower quality experimental animal studies. This conclusion is not supported by the totality of the available evidence, which includes multiple high-quality studies not considered by EFSA and indicates that the t-TDI established in 2015 is protective of human health.
Collapse
|
8
|
Prueitt RL, Goodman JE. WITHDRAWN: Letter to editor: Evidence evaluated by EFSA does not support lowering the temporary tolerable daily intake for bisphenol A. Food Chem Toxicol 2023:114057. [PMID: 37739055 DOI: 10.1016/j.fct.2023.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA
| | | |
Collapse
|
9
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
10
|
Kodila A, Franko N, Sollner Dolenc M. A review on immunomodulatory effects of BPA analogues. Arch Toxicol 2023; 97:1831-1846. [PMID: 37204436 PMCID: PMC10256647 DOI: 10.1007/s00204-023-03519-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor found in many consumer products that humans come into contact with on a daily basis. Due to increasing concerns about the safety of BPA and the introduction of new legislation restricting its use, industry has responded by adopting new, less studied BPA analogues that have similar polymer-forming properties. Some BPA analogues have already been shown to exhibit effects similar to BPA, for example, contributing to endocrine disruption through agonistic or antagonistic behaviour at various nuclear receptors such as estrogen (ER), androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR), and pregnane X receptor (PXR). Since the European Food Safety Authority (EFSA) issued a draft re-evaluation of BPA and drastically reduced the temporary tolerable daily intake (t-TDI) of BPA from 4 mg/kg body weight/day to 0.2 ng/kg body weight/day due to increasing concern about the toxic properties of BPA, including its potential to disrupt immune system processes, we conducted a comprehensive review of the immunomodulatory activity of environmentally abundant BPA analogues. The results of the review suggest that BPA analogues may affect both the innate and acquired immune systems and can contribute to various immune-mediated conditions such as hypersensitivity reactions, allergies, and disruption of the human microbiome.
Collapse
Affiliation(s)
- Anja Kodila
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nina Franko
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
12
|
Pahović PŠ, Iulini M, Maddalon A, Galbiati V, Buoso E, Dolenc MS, Corsini E. In Vitro Effects of Bisphenol Analogs on Immune Cells Activation and Th Differentiation. Endocr Metab Immune Disord Drug Targets 2023; 23:1750-1761. [PMID: 36797609 DOI: 10.2174/1871530323666230216150614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
AIMS Investigate the immunomodulatory effects of bisphenols in the THP-1 cell line and peripheral blood mononuclear cells in response to lipopolysaccharide (LPS) activation or to phorbol 12-myristate 13-acetate (PMA) and ionomycin. BACKGROUND We have previously demonstrated the usefulness of the evaluation of RACK1 expression as a link between endocrine disrupting activity and the immunotoxic effect of xenobiotics. We demonstrated that while BPA and BPAF reduced RACK1 expression, BPS was able to increase it. OBJECTIVE Bisphenol A (BPA) is one of the most commonly used chemicals in the manufacturing of polycarbonate plastics and plastic consumer products. Its endocrine disrupting (ED) potential and changes in European regulations have led to replacing BPA in many uses with structurally similar chemicals, like bisphenol AF (BPAF) and bisphenol S (BPS). However, emerging data indicated that bisphenol analogues may not be safer than BPA both in toxic effects and ED potential. METHODS THP-1 cell line and peripheral blood mononuclear cells were activated with lipopolysaccharide (LPS) or with phorbol 12-myristate 13-acetate (PMA) and ionomycin. RESULTS BPA and BPAF decreased LPS-induced expression of surface markers and the release of pro-inflammatory cytokines, while BPS increased LPS-induced expression of CD86 and cytokines. BPA, BPAF, and BPS affected PMA/ionomycin-induced T helper differentiation and cytokine release with gender-related alterations in some parameters investigated. CONCLUSION Data confirm that bisphenols can modulate immune cell differentiation and activation, further supporting their immunotoxic effects.
Collapse
Affiliation(s)
- Pia Štrukelj Pahović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Erica Buoso
- Department of Drugs Sciences, University of Pavia, Pavia, Italy
| | | | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Abstract
There is a continuing interest in whether Bisphenol A (BPA) is able to cause adverse health effects through interaction with elements of the immune system. That interest has been fuelled further by the recent publication of a draft opinion on BPA prepared by the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). This draft opinion judged effects on the immune system to be the most sensitive health outcome, and identified BPA-induced changes in the frequency of T-helper (TH)-17 cells in the spleens of mice as being the critical effect based on an association of these cells with inflammation. Based on these evaluations the CEP Panel recommended that a revised Tolerable Daily Intake (TDI) for BPA of 0.04 ng/kg bw/day should be adopted; representing a very substantial reduction (100,000-fold) compared with the existing TDI. The purpose of this commentary is to summarize briefly the role of TH17 cells in immune responses, and to review relevant literature regarding the influence of BPA on these cells, and on inflammatory responses in the lung and respiratory allergy. The conclusion drawn is that based on uncertainties about the effects of BPA on TH17 cells and lung inflammation in mice, the absence of consistent or persuasive evidence from human studies that exposure of BPA is associated with inflammation or allergy, and unresolved questions regarding the species selectivity of immune effects induced by BPA, it is inappropriate to adopt the revised TDI. Additional research is required to explore further the influence of BPA on the immune system and immune responses.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
14
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
15
|
Ni M, Li X, Zhang L, Kumar V, Chen J. Bibliometric Analysis of the Toxicity of Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137886. [PMID: 35805543 PMCID: PMC9266187 DOI: 10.3390/ijerph19137886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) is used worldwide and research on the toxicity of BPA has advanced rapidly in the last few decades. This study aimed to evaluate the global scientific output of toxicity of BPA and explore the hot spots and research trends. All available articles related to the toxicity of BPA until 2022 were retrieved from the Web of Science Core Collection database. The VOSviewer, a bibliometric analysis software, was used to analyze the information of included articles, including countries/institutions, international cooperation, journals, citations, and keywords. Among 1644 retrieved articles, 1611 eligible studies were identified for analysis, and the annual publications increased with time in the past three decades. China and the United States were the most active contributors in this field. Chinese Academy of Sciences and the Dow chemical company conducted relatively more research than others about BPA toxicity. The journal “Chemosphere” published the most studies on “BPA toxicity”. Before 2015, most research focused on estrogenic activity and the test system mainly utilized animal experiments. However, in recent years, research related to toxic mechanisms of BPA at the cellular level and the toxicity of its analogs have received widespread attention. Considering some critical research gaps, future research on BPA toxicology should probably focus on the molecular biology of toxic mechanism, mixture toxicity, and co-exposure of BPA substitutes. This study will help researchers understand past and current research trends, hot spots, and trends of toxicity studies of BPA and, thus, contribute to further research and risk management of BPA.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Xiaomeng Li
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Lishi Zhang
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43201 Reus, Spain
- Correspondence: (V.K.); (J.C.)
| | - Jinyao Chen
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
- Correspondence: (V.K.); (J.C.)
| |
Collapse
|
16
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
17
|
Kim WS, Kwak IS. EDCs trigger immune-neurotransmitter related gene expression, and cause histological damage in sensitive mud crab Macrophthalmus japonicus gills and hepatopancreas. FISH & SHELLFISH IMMUNOLOGY 2022; 122:484-494. [PMID: 35150829 DOI: 10.1016/j.fsi.2022.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), distributed at various concentrations in freshwater and marine ecosystems, affect the survival, reproduction, and behavior of wide ranges organisms. Most toxicology studies on EDCs have focused on the endocrine system of invertebrates, and research on invertebrate neurotransmitters is limited. In the present study, we investigated the expression of Macrophthalmus japonicus genes encoding γ-aminobutyric acid transporter subtype 2 (GAT-2) and glutamine synthetase (GS), which play important roles as neurotransmitters at synapses. We observed differences in the mRNA expression levels of GAT-2 and GS as well as histological changes in various tissues after exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP). The amino acid sequences of M. japonicus GAT-2 and GS formed separate branches in crustaceans, fish, insects, and mammals. M. japonicus GAT-2 and GS expression levels were highest in the gills, hepatopancreas, and stomach, and showed different between DEHP or BPA treatments. In particular, hepatopancreas GS expression on Day 1, the first step in the presynaptic process, was upregulated after BPA and DEHP exposure, while GAT-2, sequential step in the presynaptic process, was significantly elevated only in DEHP. After BPA treatments, gill GS expression was increased at all concentrations, whereas GAT-2 expression was overall down regulations. In contrast, in DEHP treatment groups hepatopancreatic GS and GAT-2 expression at Day 1 was only significantly higher and all groups including gill GS and GAT-2 expression were downregulation. Histological changes in the gills and hepatopancreas were observed in a concentration-dependent manner. Accordingly, BPA and DEHP exposure in crabs could be stimulate neurotransmitter gene expression and alter the morphological structure of gill and hepatopancreas.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
18
|
Buoso E, Kenda M, Masi M, Linciano P, Galbiati V, Racchi M, Dolenc MS, Corsini E. Effects of Bisphenols on RACK1 Expression and Their Immunological Implications in THP-1 Cells. Front Pharmacol 2021; 12:743991. [PMID: 34621174 PMCID: PMC8490885 DOI: 10.3389/fphar.2021.743991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has an important role in immune activation, and is regulated through a balance between glucocorticoid and androgen levels. We have previously demonstrated that RACK1 expression can serve as a marker for evaluation of immunotoxic profiles of hormone-active substances, such as endocrine-disrupting chemicals (EDCs). In this study, we investigated the effects of three bisphenols (BPA, BPAF, BPS) on RACK1 expression and on the innate immune responses in the THP-1 human promyelocytic cell line, a validated model for this investigation. BPA and BPAF reduced RACK1 promoter transcriptional activity, mRNA expression, and protein levels. However, BPS had the opposite effect. As expected, these results on RACK1 were paralleled by lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) production. Since BPA and BPAF induced RACK1 expression in the presence of glucocorticoid receptor (GR) antagonist mifepristone, a role of G-protein-coupled estrogen receptor (GPER) has been considered due to their known estrogenic profile. Therefore, additional molecular effects of BPA and BPAF were unmasked after treatment with different inhibitors of well-known pivotal players of GPER-mediated signaling. BPA exerted its effects on RACK1 via NF-κB, as shown using the NF-κB inhibitor BAY11-7085 and NF-κB-specific luciferase reporter assay. Conversely, BPAF induced RACK1 up-regulation via androgen receptor (AR) activation, as confirmed by treatment with AR antagonist flutamide. Indeed, a biased agonism profile for BPA and BPAF for GPER was suggested based on their different binding modes revealed by our molecular docking. Altogether, our data suggest that RACK1 could represent an important target of EDCs and serves as a screening tool for their immunotoxic potential. Furthermore, RACK1 can be exploited to unmask multiple molecular interactions of hormone-active substances to better dissect out their mechanisms of action.
Collapse
Affiliation(s)
- Erica Buoso
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mirco Masi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Pasquale Linciano
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Valentina Galbiati
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| | - Marco Racchi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | | | - Emanuela Corsini
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| |
Collapse
|
19
|
Çetin S, Özaydın T. The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41688-41697. [PMID: 33791960 DOI: 10.1007/s11356-021-13640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), one of the endocrine disrupting chemicals, is the object of great concern because of its widespread use throughout the world. In this study, it was aimed to determine the effects of in ovo administrated BPA on the bursa of Fabricius and percentage of acid phosphatase positive lymphocyte in peripheral blood by means of histological and enzyme histochemical methods. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were used. The eggs were divided into 5 groups as control, vehicle control, 50, 100, and 250μg/egg BPA. At days 13, 18, and 21 of incubation, eggs were opened until 10 living embryos were obtained from each group. Tissue samples were taken from the obtained embryos and processed for enzyme histochemical methods in addition to routine histological techniques. It was observed that, in BPA-treated groups, embryonic development of bursa of Fabricius was retarded. It was also indicated that the percentage of peripheral blood ACP-ase positive lymphocytes was significantly decreased. These results suggested that a limited maternal transfer of BPA into the eggs might be lead to immunosuppression in chicks.
Collapse
Affiliation(s)
- Selvinaz Çetin
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey.
| |
Collapse
|
20
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Physiological and metabolic approach of plastic additive effects: Immune cells responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124114. [PMID: 33035909 DOI: 10.1016/j.jhazmat.2020.124114] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 05/24/2023]
Abstract
Human and wildlife are continually exposed to a wide range of compounds and substances, which reach the body through the air, water, food, or personal care products. Plasticizers are compounds added to plastics and can be released to the environment under certain conditions. Toxicological studies have concluded that plasticizers, phthalates, and bisphenols are endocrine disruptors, alter the endocrine system and functioning of the immune system and metabolic process. A functional immune response indicates favourable living conditions for an organism; conversely, a weak immune response could reveal a degraded environment that requires organisms to adapt. There is growing concern about the presence of plastic debris in the environment. In this review, the current knowledge of the action of plasticizers on leukocyte cells will be itemized. We also point out critically the role of some nuclear and membrane receptors as key players in the action of plasticizers on cells possess immune function. We discuss the role of erythrocytes within the immune responses and the alteration caused by plasticizers. Finally, we highlight data evidencing mitochondrial dysfunctions triggered by plasticizing toxic action, which can lead to immunosuppression.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
21
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
22
|
Xu Z, Chen Y, Tang Y, Chen M, Chen W, Cheng Y. Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe 3O 4@SiO 2@aptamer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4479-4486. [PMID: 32869794 DOI: 10.1039/d0ay01124j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is used as a stabilizing agent in many food packaging plastics and is a known endocrine-disrupting chemical that can alter the development of mammary glands, affect egg cells, and cause chromosomal defects. However, the pretreatment of traditional assays for detecting BPA is difficult. In this work, a novel aptamer functionalized magnetic adsorbent was developed and combined with magnetic solid-phase extraction (MSPE) for the selective enrichment of BPA. First, magnetic silica-coated Fe3O4 microspheres (Fe3O4@SiO2) were synthesized by the sol-gel method, and functional magnetic nanoparticles (Fe3O4@SiO2@Apt) were formed by modifying with nucleic acids. In the presence of BPA in a MSPE system, the nucleic acid aptamer can specifically capture the target BPA. After magnetic separation, the Apt/BPA composite was eluted, and we observed enhanced fluorescence with the Apt/BPA composite that was formed. Our results showed that this method allowed a limit of detection of 0.05 ng mL-1.
Collapse
Affiliation(s)
- Zhou Xu
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | | | | | | | | | | |
Collapse
|
23
|
Tran HTT, Herz C, Lamy E. Long-term exposure to "low-dose" bisphenol A decreases mitochondrial DNA copy number, and accelerates telomere shortening in human CD8 + T cells. Sci Rep 2020; 10:15786. [PMID: 32978426 PMCID: PMC7519100 DOI: 10.1038/s41598-020-72546-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure to the endocrine disruptor bisphenol A (BPA) has been linked with immune disorders and increased tumour risk. Our previous work in activated human peripheral blood mononuclear cells demonstrated that exposure to "low-dose" BPA diminished telomerase activity via an ER/GPR30-ERK signalling pathway. Leukocyte telomerase activity and telomere maintenance are crucial for normal immune function and homeostasis. We thus here further studied the effects of BPA on human T cell subpopulations. Exposure to 0.3-3 nM BPA, i. e. at doses in the realm of human exposure, notably reduced telomerase activity in activated CD8 + T but not CD4 + T cells in a non-monotonic response pattern as determined by the TRAP-ELISA assay. Under long-term BPA exposure, significant telomere length shortening, reduction in mitochondrial DNA copy number, cell proliferation and IFN-γ as well as hTERT protein suppression could be observed in CD8 + lymphocytes, as analysed by qRT-PCR, flow cytometry and western blot analysis. This study extends our previous in vitro findings that "low-dose" BPA has potential negative effects on healthy human cytotoxic T cell response. These results might merit some special attention to further investigate chronic BPA exposure in the context of adaptive immune response dysfunction and early onset of cancer in man.
Collapse
Affiliation(s)
- Hoai Thi Thu Tran
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University, Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
24
|
Vandenberg LN, Prins GS, Patisaul HB, Zoeller RT. The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology 2020; 161:5613539. [PMID: 31690949 PMCID: PMC7182062 DOI: 10.1210/endocr/bqz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
For many endocrine-disrupting chemicals (EDCs) including Bisphenol A (BPA), animal studies show that environmentally relevant exposures cause harm; human studies are consistent with these findings. Yet, regulatory agencies charged with protecting public health continue to conclude that human exposures to these EDCs pose no risk. One reason for the disconnect between the scientific consensus on EDCs in the endocrinology community and the failure to act in the regulatory community is the dependence of the latter on so-called "guideline studies" to evaluate hazards, and the inability to incorporate independent scientific studies in risk assessment. The Consortium Linking Academic and Regulatory Insights on Toxicity (CLARITY) study was intended to bridge this gap, combining a "guideline" study with independent hypothesis-driven studies designed to be more appropriate to evaluate EDCs. Here we examined an aspect of "guideline" studies, the use of so-called "historical controls," which are essentially control data borrowed from prior studies to aid in the interpretation of current findings. The US Food and Drug Administration authors used historical controls to question the plausibility of statistically significant BPA-related effects in the CLARITY study. We examined the use of historical controls on 5 outcomes in the CLARITY "guideline" study: mammary neoplasms, pituitary neoplasms, kidney nephropathy, prostate inflammation and adenomas, and body weight. Using US Food and Drug Administration-proposed historical control data, our evaluation revealed that endpoints used in "guideline" studies are not as reproducible as previously held. Combined with other data comparing the effects of ethinyl estradiol in 2 "guideline" studies including CLARITY-BPA, we conclude that near-exclusive reliance on "guideline" studies can result in scientifically invalid conclusions.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts
- Correspondence: Laura N. Vandenberg, PhD, Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, 171C Goessmann, 686 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| | - Gail S Prins
- Department of Urology, School of Medicine; Division of Epidemiology & Biostatistics, School of Public Health University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts–Amherst, Amherst, Massachusetts
| |
Collapse
|
25
|
Jiao N, Xu D, Qiu K, Wang L, Wang L, Piao X, Yin J. Restoring mitochondrial function and normalizing ROS-JNK/MAPK pathway exert key roles in glutamine ameliorating bisphenol A-induced intestinal injury. FASEB J 2020; 34:7442-7461. [PMID: 32285985 DOI: 10.1096/fj.201902503r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
Bisphenol A (BPA) is toxic to the reproductive and nervous system, even carcinogenetic in humans and animals. However, few studies focused on effects of BPA on the intestinal tract. Here, we detected BPA-induced injuries on intestinal mucosa and explored a reliable approach to counteract BPA effects. C57BL/6J mice were gavage BPA or BPA accompanied with ingestion of 4% (w/w) of glutamine for 4-wks. In vitro, IEC-6 cells were treated with 0.4 mmol/L BPA for 6 hours mimicking acute injury and 0.2 mmol/L BPA for 12 hours followed with or without the inclusion of 4 mmol/L glutamine for 12 hours to determine cell renewal, mitochondrial function and ROS-JNK/MAPK pathway upon moderate BPA exposure. As results, BPA exposure caused severe intestinal injury, and disturbed intestinal epithelial cell proliferation and apoptosis, accompanied with mitochondrial malfunction and activated JNK/MAPK pathway as well. Notably, glutathione metabolism was implicated in BPA-induce injury. Glutamine could well rescue cell renewal and mitochondrial function from BPA exposure-induced injuries. In conclusion, we demonstrated impaired effect of BPA exposure on intestinal functions, which could be well counteracted by glutamine partly via restoring mitochondrial function and normalizing ROS-JNK/MAPK pathway. Thereby, we provided a novel application of glutamine to rescue intestinal injury.
Collapse
Affiliation(s)
- Ning Jiao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Qiu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liqi Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Camacho L, Lewis S, Vanlandingham M, Olson G, Davis K, Patton R, Twaddle N, Doerge D, Churchwell M, Bryant M, McLellen F, Woodling K, Felton R, Maisha M, Juliar B, Gamboa da Costa G, Delclos K. A two-year toxicology study of bisphenol A (BPA) in Sprague-Dawley rats: CLARITY-BPA core study results. Food Chem Toxicol 2019; 132:110728. [DOI: 10.1016/j.fct.2019.110728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
|
27
|
Ogungbesan A, Neal-Kluever A, Rice P. Exploring the use of current immunological assays for the developmental immunotoxicity assessment of food contact materials. Food Chem Toxicol 2019; 133:110801. [PMID: 31499121 DOI: 10.1016/j.fct.2019.110801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
The mammalian immune system is a highly complex, interactive network of cells that facilitates innate and adaptive immune responses. The neonatal immune system may be more susceptible to chemical perturbations than that of the adult. The effects of immunotoxicants during development may not be fully detected in toxicity studies performed on adult animals. Studies characterizing the ontogeny of the immune system in developing animals have shown that there are different critical windows of susceptibility to immunotoxicants. Developmental differences are evident among species compared to humans. Functional immune assays, such as the T-cell antibody dependent response assay, in rat models have been validated for use in the assessment of immunotoxicity with other assays. Recently, published studies have explored the feasibility of using additional techniques, such as in vitro studies using human whole blood cells or cell lines, mostly lacking either sensitivity or proper validation for regulatory purposes. However, some techniques may be developed further to enable translation of animal toxicity findings to human risk assessment of potential immunotoxicants. This paper summarizes the information on the developing immune system in humans versus rats and how the currently available assays might be used to contribute to the safety assessment of food contact substances.
Collapse
Affiliation(s)
- Adejoke Ogungbesan
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA.
| | - April Neal-Kluever
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | - Penny Rice
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| |
Collapse
|
28
|
Yin N, Liang X, Liang S, Liang S, Yang R, Hu B, Cheng Z, Liu S, Dong H, Liu S, Faiola F. Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:330-338. [PMID: 30951980 DOI: 10.1016/j.ecoenv.2019.03.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a very versatile industrial chemical. Many reports have associated BPA with several health effects. Some bisphenol alternatives have been introduced to replace BPA in its many applications. However, comprehensive toxicological evaluations for these replacements are still lacking. In this study, we examined the potential effects of BPA, bisphenol F (BPF) and bisphenol S (BPS), on embryonic development with an in vitro stem cell toxicology system and transcriptomics analyses. Mouse embryonic stem cells (mESCs) were differentiated via embryoid body formation, either globally towards the three primary germ layers and their lineages, or specifically into neuroectoderm/neural progenitor cells. During the differentiation, cells were treated with BPA, BPF, BPS, or DMSO control. Samples were collected at different time points, for qRT-PCR and RNA-seq analyses. BPA, BPF and BPS disrupted many processes, during mESC global and neural differentiations, in very similar manners. In fact, at each time point the three chemicals differentially regulated analogous gene categories, particularly the ones involved in cell-matrix and cell-cell adhesion, signal transduction pathways, and medical conditions such as cardiovascular diseases and cancer. Our findings demonstrate once more then BPA substitutes may not be very safe. They potentially have a very complex developmental toxicity, similarly to BPA, and seem more toxic than BPA itself. In addition, our results reveal that stem cell-based developmental toxicity assays can be very comprehensive.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Hengzhi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Vandenberg LN, Hunt PA, Gore AC. Endocrine disruptors and the future of toxicology testing - lessons from CLARITY-BPA. Nat Rev Endocrinol 2019; 15:366-374. [PMID: 30842650 DOI: 10.1038/s41574-019-0173-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Five years ago, an ambitious collaboration, the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA; henceforth CLARITY), was launched by three US agencies. The goal was to provide a definitive evaluation of bisphenol A (BPA) and explain disparities between traditional regulatory studies and findings from independent investigators. BPA or vehicle-treated rats from an FDA facility were used in a guideline study and animals and/or tissues were provided to academic researchers for analysis. An interim summary released in February 2018 by the FDA concluded that currently authorized uses of BPA continue to be safe. We disagree. In this Perspectives, we summarize the goals, design and problems of CLARITY. We conclude that, despite its flaws, CLARITY provides important insight and, taken together, the data provide compelling evidence that low-dose BPA exposure induces marked adverse effects. Indeed, the greatest number of effects were observed at doses 20,000 times lower than the current 'safe' dose of BPA for humans.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Patricia A Hunt
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Lu X, Li M, Wu C, Zhou C, Zhang J, Zhu Q, Shen T. Bisphenol A promotes macrophage proinflammatory subtype polarization via upregulation of IRF5 expression in vitro. Toxicol In Vitro 2019; 60:97-106. [PMID: 31108126 DOI: 10.1016/j.tiv.2019.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is closely associated with an imbalance of immune homeostasis, but the underlying mechanisms are not fully understood. In the present study, the effects of BPA on the polarization of mouse peritoneal macrophages were investigated in vitro. Environmentally relevant low concentrations of BPA treatment under M1 type polarization conditions increased the number of M1 subtype macrophages, the gene expression of M1 phenotypic marker CD11c and the activity and gene expression of M1 functional marker iNOS, as well as the production of pro-inflammatory cytokines. However, The same dose BPA treatment under M2 type polarization conditions reduced the number of M2 subtype macrophages, the gene expression of M2 phenotypic marker CD206 and the activity and gene expression of M2 functional marker Arg-1, along with the production of anti-inflammatory cytokines. We also identified that the expression of transcription factor IRF5 was upregulated by BPA exposure in M1 macrophages under M1 type polarization conditions. Our results demonstrate that BPA promotes macrophage polarization toward proinflammatory M1 subtype and M1 activity, associated with upregulated expression of IRF5, while BPA inhibits macrophage toward anti-inflammatory M2 subtype polarization. These findings provide new insight into the link between exposure to BPA and impairment of immune functions.
Collapse
Affiliation(s)
- Xiaotong Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Meiling Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Changhao Wu
- Department of Biochemistry and Physiology,Faculty of Heath & Medical Sciences,University of Surrey,Surrey,Guildford, UK
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Qixing Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China; Institute of Dermatology, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China; Institute of Dermatology, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
31
|
Holásková I, Elliott M, Brundage K, Lukomska E, Schafer R, Barnett JB. Long-term Immunotoxic Effects of Oral Prenatal and Neonatal Atrazine Exposure. Toxicol Sci 2019; 168:497-507. [PMID: 30629250 PMCID: PMC6432865 DOI: 10.1093/toxsci/kfz005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atrazine and its metabolites are present at high concentrations in many water supplies in agro-intensive areas. Because residents in these areas drink water from sources fed from these contaminated supplies, we investigated the long-term immunotoxicity of combined prenatal and neonatal (perinatal) exposure to atrazine via drinking water, on the immune system in mice. At 6 months of age, upon immunization with heat-killed Streptococcus pneumoniae, the serum IgG antibody response against the T independent antigen phosphorylcholine was significantly higher in male, but not female, atrazine-exposed mice as compared with that in untreated controls. No alterations were present in all offspring in the serum antibody response against the T-dependent antigen pneumococcal surface protein A (PspA). ELISpot analysis showed only a small, insignificant reduction in PspA-specific IgG producing splenocytes in atrazine-treated male offspring. Interestingly, upon ex vivo stimulation with anti-CD3 and anti-CD28 antibodies, significant decreases in interleukin (IL)-2, tumor necrosis factor-α, interferon-γ, and IL-17A and a decreasing trend in IL-10 were observed in splenocytes from atrazine-exposed male, but not female mice. Analysis of thymic and splenic cell populations showed no effects of atrazine exposure in either sex. This is the first time that long-term changes in the immune response were observed after a perinatal exposure to atrazine and it demonstrates that these early life exposures can result in permanent changes to the immune system as well as a male bias in these effects.
Collapse
Affiliation(s)
- Ida Holásková
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Meenal Elliott
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Kathleen Brundage
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
- West Virginia University Cancer Institute, Morgantown, West Virginia 26506
| | - Ewa Lukomska
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Rosana Schafer
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - John B Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
- West Virginia University Cancer Institute, Morgantown, West Virginia 26506
| |
Collapse
|
32
|
Sun Y, Lu X, Du P, Xie P, Ullah R. Terahertz spectroscopy of Bisphenol "A", "AF", "S", "E" and the interrelationship between their molecular vibrations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:70-77. [PMID: 30359851 DOI: 10.1016/j.saa.2018.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/16/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol "A" is a widespread environmental hormone. After the prohibition on the use of BPA in some applications, it is progressively replaced by its variants. However, these variants of Bisphenol "A" are also noxious. It is therefore of the utmost importance to find the similarity among these materials and put all of them under restriction to avoid harmful effects. Therefore, Bisphenol "A", "AF", "E", and "S" are studied by Terahertz spectroscopy (0.5-2.5 THz). Various molecular vibrations are found and assigned based on density-functional-theory calculations. Refractive Indices are calculated as well. The principal component analysis reveals the critical vibrational frequencies for their detection and shows the correlation between them.
Collapse
Affiliation(s)
- Yiwen Sun
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xingxing Lu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Pengju Du
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Pengfei Xie
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ramzan Ullah
- Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan.
| |
Collapse
|
33
|
Vom Saal FS. Flaws in design, execution and interpretation limit CLARITY-BPA's value for risk assessments of bisphenol A. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:32-43. [PMID: 30589220 DOI: 10.1111/bcpt.13195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022]
Abstract
The Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) involved the Food and Drug Administration, the National Toxicology Program and 14 academic investigators funded by the National Institute of Environmental Health Sciences. Two key questions to be answered by CLARITY-BPA were as follows: (1) Would the academic investigator studies show effects at low doses of bisphenol A (BPA) while the core guideline study conducted by the FDA only showed toxic effects at high doses? (2) Would the academic investigators be able to replicate their numerous prior studies with animals raised and treated in the FDA's toxicology centre? Several flaws in the design and execution of CLARITY-BPA biased the experiment towards not finding significant results (Type 2 error): (1) use of the oestrogen-insensitive NCTR CD-SD rat, (2) use of a stressful daily gavage BPA administration procedure throughout life, (3) lack of inclusion of non-gavaged negative controls and (4) lack of a comprehensive examination of animals for BPA contamination. In spite of these flaws, in some of the experiments conducted by CLARITY-BPA academic investigators, and also in the FDA's core study, there were significant low-dose effects, but these were ignored by the FDA. Thus, immediately after releasing the results from their core portion of CLARITY-BPA, the FDA issued a statement concluding BPA was "safe," and they ignored non-monotonic dose-response relationships. The FDA should not base its BPA risk assessment only on outdated guideline studies, but instead on the vast (~8000) number of publications documenting the similar health hazards BPA poses to animals and humans.
Collapse
Affiliation(s)
- Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
34
|
Huang FM, Chang YC, Lee SS, Ho YC, Yang ML, Lin HW, Kuan YH. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food Chem Toxicol 2018; 122:215-224. [PMID: 30312649 DOI: 10.1016/j.fct.2018.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 01/28/2023]
Abstract
Bisphenol A (BPA) is primarily used in production of polycarbonate plastics and epoxy resins including plastic containers. BPA is an endocrine disruptor and supposes to induce asthma and cancer. However, so far only a few evidences have shown the BPA-induced toxic effect and its related mechanism in macrophages. BPA demonstrated cytotoxic effect on RAW264.7 macrophages in a concentration and time-dependent manner. BPA induces necrosis, apoptosis, and genotoxicity in a concentration-dependent manner. Phosphorylation of cytochrome C (cyto C) and p53 was due to mitochondrial disruption via BCL2 and BCL-XL downregulation and BAX, BID, and BAD upregulation. Both caspase-dependent, including caspase-9, caspase-3, and PARP-1 cleavage, and caspase-independent, such as nuclear translocation of AIF, pathways were activated by BPA. Furthermore, generation of reactive oxygen species (ROS) and reduction of antioxidative enzyme activities were induced by BPA. Parallel trends were observed in the effect of BPA on cytotoxicity, apoptosis, genotoxicity, p53 phosphorylation, BCL2 family expression exchange, caspase-dependent and independent apoptotic pathways, and ROS generation in RAW264.7 macrophages. Finally, BPA-exhibited cytotoxicity, apoptosis, and genotoxicity could be inhibited by N-acetylcysteine. These results indicated that the toxic effect of BPA was functioning via oxidative stress-associated mitochondrial apoptotic pathway in macrophages.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
35
|
Prins GS, Patisaul HB, Belcher SM, Vandenberg LN. CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems. Basic Clin Pharmacol Toxicol 2018; 125 Suppl 3:14-31. [PMID: 30207065 DOI: 10.1111/bcpt.13125] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a high-production chemical used in a variety of applications worldwide. While BPA has been documented as an endocrine-disrupting chemical (EDC) having adverse health-related outcomes in multiple studies, risk assessment for BPA has lagged due to reliance on guideline toxicology studies over academic ones with end-points considered more sensitive and appropriate. To address current controversies on BPA safety, the United States National Institute of Environmental Health Sciences (NIEHS), the National Toxicology Program (NTP) and the Food and Drug Administration (FDA) established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) using the NCTR Sprague-Dawley rats. The goal of CLARITY-BPA is to perform a traditional regulatory toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies by academic laboratories focused on previously identified BPA-sensitive organ systems (Academic studies). Combined analysis of the data from both study types will be undertaken by the NTP with the aim of resolving uncertainties on BPA toxicity. To date, the Core study has been completed and a draft report released. Most of the academic studies have also been finalized and published in peer-reviewed journals. In light of this important milestone, the PPTOX-VI meeting held in the Faroe Islands, 27-30 May 2018 devoted a plenary session to CLARITY-BPA with presentations by multiple investigators with the purpose of highlighting key outcome. This MiniReview synthesizes the results of three academic studies presented at this plenary session, evaluates recently published findings by other CLARITY-BPA academic studies to provide an early combined overview of this emerging data and places this in the context of the Core study findings. This co-ordinated effort revealed a plethora of significant BPA effects across multiple organ systems and BPA doses with non-monotonic responses across the dose range utilized. Remarkably consistent across most studies, including the Core study, are low-dose effects (2.5, 25 and 250 μg BPA/kg body-weight). Collectively, the findings highlighted herein corroborate a significant body of evidence that documents adverse effects of BPA at doses relevant to human exposures and emphasizes the need for updated risk assessment analysis.
Collapse
Affiliation(s)
- Gail S Prins
- Departments of Urology, Pathology, and Physiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Scott M Belcher
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, School of Public Health & Health Sciences, Amherst, Massachusetts
| |
Collapse
|