1
|
Moura YAS, Marques da Silva M, Cadete da Silva S, Nascimento TP, Lima Leite AC, Torres do Couto MT, Cajubá de Britto Lira-Nogueira M, Rocha TA, Figueiredo Porto AL, Bezerra RP. Fibrinolytic enzyme from Arthrospira platensis and its effects on breast cancer cells: Exploring its potential as an innovative therapy. Biochimie 2025; 231:137-145. [PMID: 39746439 DOI: 10.1016/j.biochi.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Fibrinolytic enzymes are promising in treating cardiovascular diseases due to their capacity to dissolve blood clots. The fibrinolytic enzyme from Arthrospira platensis (FEAP) was purified by ion exchange chromatography to investigate its ability to activate plasminogen, as well as its thrombolytic and fibrinogenolytic potential. Subsequently, two different cytotoxic assays (MTT and NR) and hemolysis test were performed to evaluate FEAP's safety. Furthermore, cell migration and the genotoxic and hemolytic potential were also investigated. The purified enzyme showed thrombus degradation of 43 % and thrombolytic action directly on fibrin, which can reduce possible side effects, such as hemorrhage. MTT assay was more sensitive to determine the enzyme cytotoxicity, which decreased the viability of breast cancer tumor cells (Sarcoma-180 and MDA-MB-231) and macrophages (J774A.1). In addition, the enzyme also exhibited non-hemolytic, antimetastatic, and non-genotoxic characteristics. These findings are innovative for a fibrinolytic protease and may indicate that it is safe for people undergoing cancer treatment, reducing side effects such as hemorrhage, in addition to inhibiting tumor cells and preventing metastasis, which can help with chemotherapy treatment.
Collapse
Affiliation(s)
- Yanara Alessandra Santana Moura
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, Recife, PE, 52171-900, Brazil
| | - Marllyn Marques da Silva
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, Recife, PE, 52171-900, Brazil.
| | - Sara Cadete da Silva
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, Recife, PE, 52171-900, Brazil
| | - Thiago Pajeú Nascimento
- Department of Biological Sciences, Federal University of Piaui (UFPI), Bom Jesus, PI, 64900-000, Brazil
| | - Ana Cristina Lima Leite
- Biotechnology and Blood Products Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Avenida Artur de Sá, Recife, PE, 50740-520, Brazil
| | - Milena Tereza Torres do Couto
- Biotechnology and Blood Products Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Avenida Artur de Sá, Recife, PE, 50740-520, Brazil
| | - Mariane Cajubá de Britto Lira-Nogueira
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Tamiris Alves Rocha
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, Recife, PE, 52171-900, Brazil
| | - Raquel Pedrosa Bezerra
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, Recife, PE, 52171-900, Brazil
| |
Collapse
|
2
|
Gismene C, Ruggiero Bachega JF, Doherty DZ, Veiga SS, Arni RK, Hernández González JE. Structural and Energetic Evidence Supports the Non-Covalent Phosphate Cyclization by the Class II Phospholipase D from Loxosceles intermedia. Toxins (Basel) 2025; 17:111. [PMID: 40137884 PMCID: PMC11945750 DOI: 10.3390/toxins17030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Phospholipase D (PLD) enzymes from Loxosceles spider venom mediate envenomation pathology by cleaving phospholipid headgroups. We revisited the crystal structure of Loxosceles intermedia PLD (PDB: 3RLH) to evaluate two alternative mechanisms-covalent and non-covalent-for headgroup cleavage. The covalent mechanism involves a nucleophilic attack on the substrate's P atom by catalytic histidine, forming a phosphohistidine intermediate. It was originally suggested that this intermediate hydrolyzes, leading to linear phosphates. The non-covalent mechanism relies on the substrate's hydroxyl group performing an intramolecular attack on the P atom, thereby generating a cyclic phosphate. Structural refinement of the crystal structure revealed a cyclic phosphate bound at the active site, replacing previously assigned PEG molecules. This cyclic product, stabilized by His12, His47, and Mg2+, provides structural evidence that supports phosphate cyclization. The results of computational analyses, including molecular dynamics and quantum mechanics/molecular mechanics simulations, further support the non-covalent mechanism as the energetically preferred pathway, with a significantly lower activation barrier. Our findings highlight the role of substrate orientation and of the catalytic His residues in transphosphatidylation, advancing our understanding of PLD enzymology and providing insights for the design of inhibitors against Loxosceles envenomation.
Collapse
Affiliation(s)
- Carolina Gismene
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - José Fernando Ruggiero Bachega
- Graduate Program in Molecular and Cellular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre CEP 90050-170, RS, Brazil;
- Departament of Farmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Ale-gre, CEP 90050-170, RS, Brazil
| | - Daniel Z. Doherty
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba CEP 81531-980, PR, Brazil;
| | - Raghuvir K. Arni
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - Jorge Enrique Hernández González
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| |
Collapse
|
3
|
Hart SA, Gailani D, Bibb LA, Zwerner JP, Booth GS, Jacobs JW. Coagulation abnormalities following brown recluse spider (Loxosceles reclusa) envenomation: A description of 2 cases and review of the literature. Am J Clin Pathol 2025:aqaf001. [PMID: 39883062 DOI: 10.1093/ajcp/aqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVE Hemostatic abnormalities, including disseminated intravascular coagulation (DIC), are often cited as a common finding in patients following Loxosceles spider envenomation (ie, loxoscelism). The prevalence and severity of coagulopathy, however, particularly following L reclusa (ie, brown recluse) envenomation, is not well described. This study aimed to characterize coagulation laboratory parameters and coagulopathy in patients following L reclusa envenomation. METHODS We evaluated the coagulation laboratory parameters (eg, prothrombin time, partial thromboplastin time, coagulation factor activity levels, lupus anticoagulant [LA] testing) of 2 patients seen at our institution following brown recluse spider envenomation. We also comprehensively reviewed the literature for all reported cases of brown recluse spider envenomation and assessed patient demographics, clinical presentations, coagulation laboratory parameters, and outcomes. RESULTS We identified 2 patients with loxoscelism (1 cutaneous only, 1 systemic with hemolysis) with prolonged partial thromboplastin times but with normal clotting factor levels following envenomation. Literature review identified 263 patients: 12 patients had at least 1 prolonged clotting time, 31 reported a platelet count below 150 × 109/L, and there was clinical concern for DIC in 12 cases. The odds of death were statistically significantly higher in patients with clinical concern for DIC than in cases without concern for DIC or coagulopathy (odds ratio, 82.9 [95% CI, 12.6-433.8]; P < .001). CONCLUSIONS Following brown recluse spider envenomation, hemostatic perturbations are infrequent and clinical coagulopathy is uncommon, but the odds of death following a brown recluse spider bite are statistically significantly greater if DIC develops, even when compared to individuals with hemolysis without DIC.
Collapse
Affiliation(s)
- Stephanie A Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Lorin A Bibb
- Division of Pediatric Dermatology, Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Jeffrey P Zwerner
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Garrett S Booth
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| | - Jeremy W Jacobs
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, US
| |
Collapse
|
4
|
Okamoto CK, van den Berg CW, Pohl PC, Tambourgi DV. Role of the complement system in kidney cell death induced by Loxosceles venom Sphingomyelinases D. Arch Toxicol 2024; 98:1561-1572. [PMID: 38498159 DOI: 10.1007/s00204-024-03711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.
Collapse
Affiliation(s)
| | - Carmen W van den Berg
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Cardiff University, Cardiff, UK
| | - Paula C Pohl
- Immunochemistry Laboratory, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
5
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Pinto BF, Lopes PH, Trufen CEM, Ching ATC, De Azevedo IDLMJ, Nishiyama MY, Pohl PC, Tambourgi DV. Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D. Arch Toxicol 2023; 97:3285-3301. [PMID: 37707622 DOI: 10.1007/s00204-023-03602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Collapse
|
7
|
Alves-Mondini C, Beltramino M, Jiacomini IG, Karim-Silva S, Dos Santos Antunes N, de Moura J, Aubrey N, Billiald P, Machado-de-Ávila RA, Alvarenga LM, Becker-Finco A. Identification of a common epitope in knottins and phospholipases D present in Loxosceles sp venom by a monoclonal antibody. Int J Biol Macromol 2023; 246:125588. [PMID: 37399872 DOI: 10.1016/j.ijbiomac.2023.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.
Collapse
Affiliation(s)
- Camila Alves-Mondini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Martina Beltramino
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Isabella Gizzi Jiacomini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil; Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Sabrina Karim-Silva
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolle Dos Santos Antunes
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Juliana de Moura
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolas Aubrey
- Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Philippe Billiald
- LVTS, INSERM UMR S1148, Paris & Université Paris-Saclay, School of Pharmacy, 91400 Orsay, France
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000 Criciúma, Santa Catarina, Brazil
| | - Larissa M Alvarenga
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil.
| | - Alessandra Becker-Finco
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Gómez-Muñoz E, Pérez-Úbeda MJ, Garríguez-Pérez D, Echevarría-Marín M, Gimeno MD, Marco F. Suspected Brown Recluse Spider Envenomation: Missed Diagnosis and Delayed Treatment of Loxoscelism: A Case Report. JBJS Case Connect 2022; 12:01709767-202212000-00025. [PMID: 36820835 DOI: 10.2106/jbjs.cc.22.00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/14/2022] [Indexed: 02/24/2023]
Abstract
CASE We report the case of a previously healthy 51-year-old man who presented to our hospital after worsening clinical appearance of his left ring finger, despite antibiotics and previous surgical drainage for suspected abscess at an outside institution 3 weeks ago. He was admitted to our hospital for surgical debridement and decompression. After suspicion of cutaneous loxoscelism based on the clinical record and corticosteroid administration, the patient presented a favorable evolution. CONCLUSION Cutaneous loxoscelism caused by a spider bite is present in Europe, mainly in the Mediterranean area, and should be considered in cases of skin infections which do not respond to antibiotics.
Collapse
Affiliation(s)
- Eduardo Gómez-Muñoz
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain
| | - María José Pérez-Úbeda
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain
| | - Daniel Garríguez-Pérez
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain
| | - Marta Echevarría-Marín
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain
| | - María Dolores Gimeno
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain
| | - Fernando Marco
- Department of Orthopaedic Surgery and Traumatology, Clínico San Carlos Hospital, Madrid, Spain.,Department of Surgery, Complutense University, Madrid, Spain
| |
Collapse
|
9
|
Recker A, Patel S, Baus C, Wittler R, Jefferson M, Teran P, McClure A. A 14-Year-Old Boy With Neck Pain, Fevers, and Diffuse Erythematous Rash. Pediatrics 2022; 150:189552. [PMID: 36137984 DOI: 10.1542/peds.2022-056508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
A previously healthy 14-year-old boy developed right-sided neck pain, tachycardia, a diffuse erythematous rash, and subjective fevers over 2 days. He sought medical attention in a local urgent care clinic, where he had a negative Sars-CoV-2 antigen test and was referred to the local emergency department (ED) for persistent tachycardia and further workup. After fluid resuscitation, his tachycardia was not improved, so he was admitted to the Pediatric Hospital Medicine Service. Physical examination showed large areas of erythema and erythroderma of multiple body sites, perioral sparing, increased erythema in flexor skin folds, posterior soft palate petechiae, and a white strawberry tongue. There was a small, tender lesion with surrounding erythema without discharge on his right neck thought to be a possible entry point for infection. Laboratory results showed thrombocytopenia, normal white blood cell count, normal hemoglobin concentration, absolute lymphopenia, and an elevated C-reactive protein (CRP) to 130 mg/L. He was started on intravenous fluids and antibiotics for a presumed infectious cause of the rash and laboratory findings. The next morning, an expanded diagnostic workup was undertaken including electrocardiogram, echocardiogram, ferritin, triglycerides, liver enzymes, lactate dehydrogenase (LDH), brain natriuretic peptide, coagulation studies, and fibrinogen. With treatment and supportive care, his tachycardia and energy improved, so he was discharged with oral antibiotics and follow-up with the Infectious Disease Clinic in 2 days. When seen in follow-up, he was immediately admitted to the hospital for worsening fatigue, tachycardia, and new findings that prompted multiple consultations, and transfer to pediatric critical care services.
Collapse
Affiliation(s)
- Anne Recker
- University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | - Shivani Patel
- University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | - Conner Baus
- University of Kansas School of Medicine - Wichita, Wichita, Kansas.,Wesley Children's Hospital, Wichita, Kansas
| | - Robert Wittler
- University of Kansas School of Medicine - Wichita, Wichita, Kansas.,Wesley Children's Hospital, Wichita, Kansas
| | - Melissa Jefferson
- University of Kansas School of Medicine - Wichita, Wichita, Kansas.,Wesley Children's Hospital, Wichita, Kansas
| | - Paul Teran
- University of Kansas School of Medicine - Wichita, Wichita, Kansas.,Wesley Children's Hospital, Wichita, Kansas
| | - Adam McClure
- University of Kansas School of Medicine - Wichita, Wichita, Kansas.,Wesley Children's Hospital, Wichita, Kansas
| |
Collapse
|
10
|
Quispe RL, Jaramillo ML, Torres-Huaco F, Bonilla C, Isasi J, Guerra-Duarte C, Chávez-Olórtegui C. Partial in vivo protection against Peruvian spider Loxosceles laeta venom by immunization with a multiepitopic protein (rMEPLox). Toxicon 2022; 215:1-5. [PMID: 35660625 DOI: 10.1016/j.toxicon.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Loxoscelism is a serious public health problem in Peru, with approximately 2500 accidents reported per year. To envision alternatives to cope with this health problem, the neutralizing humoral immune response against the lethal effects of Peruvian spider Loxosceles laeta venom was evaluated in a mouse model by immunization with a non-toxic multiepitopic protein (rMEPLox). This immunogen contains epitopes from an astacin-like metalloprotease, a hyaluronidase and a sphingomyelinase-D from Loxosceles intermedia and from SMase-I from L. laeta venoms. In vivo protection assays showed that five out of six mice immunized with rMEPLox (after six injections) resisted to 1.4 LD50 of L. laeta venom, whereas only two animals from a control group survived. The present results indicates that this multiepitopic protein can be a promising candidate for anti-loxoscelic antivenom production and experimental vaccination approaches.
Collapse
Affiliation(s)
- Ruth L Quispe
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Michael L Jaramillo
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Frank Torres-Huaco
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Coordinación de Investigación, Universidad Continental, Avenida Los Incas S/n, Arequipa, Peru
| | - Cesar Bonilla
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Facultad de Odontologia, Universidad Nacional Mayor de San Marcos, Peru
| | - Jacqueline Isasi
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Laboratorio de Toxinología, Centro Nacional de Productos Biológicos (CNPB), Instituto Nacional de Salud, Lima, Peru; Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Martins GDC, Barreto MSO, Botelho AFM, Gamba C, Duarte CG, Soto-Blanco B, Bicalho APCV, Cassali GD, Goes AMD, Olórtegui CDC, Melo MM. Evaluation of mesenchymal cells and dapsone for the treatment of dermonecrotic wounds caused by Loxosceles laeta venom in rabbits. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to evaluate the efficacy of mesenchymal stem cells (MSC), alone or associated with dapsone (DAP), in treating dermonecrotic wounds caused by Loxosceles laeta venom. Twenty-five male rabbits were distributed into five groups. Negative control received ultrapure water (C-), whilst all other groups were injected with 20 μg of L. laeta venom. After 4 hours, each group received one of the following treatments: PBS (C+), DAP, MSC, and DAP+MSC. Animals were evaluated daily and photographic records made for analysis of wound area. Twelve days after, animals were euthanized and skin samples removed for histological analysis. We observed that DAP showed the best percentage of wound contraction at day 3. In the treatments using MSCs, a negative value of wound contraction was observed for the isolated MSCs, as well as a lower contraction value for the association of the MSC + DAP when compared to PBS, probably, by the increase in initial infammation after the application of stem cells, due to the fact that MSCs secrete a broad spectrum of bioactive molecules such as cytokines and growth factors that favor regeneration. Histologically, it was observed that animals of C+ showed extensive areas of necrosis, ulcers, neutrophilic infiltrate, and mineralization. Collagen deposition showed increase in MSC+DAP treatment, however vascularization remained unchanged. This is the first report using MSC and MSC+DAP as a treatment for cutaneous loxoscelism and more studies are needed to determine its use as an alternative therapy for dermonecrotic lesions caused by Loxosceles spider.
Collapse
|
12
|
Martins GDC, Barreto MSO, Botelho AFM, Gamba C, Duarte CG, Soto-Blanco B, Bicalho APCV, Cassali GD, Goes AMD, Olórtegui CDC, Melo MM. Avaliação de células mesenquimais e dapsona para o tratamento de feridas dermonecróticas causadas pelo veneno de Loxosceles laeta em coelhos. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72573p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Este estudo teve como objetivo avaliar a eficácia das células-tronco mesenquimais (CTMs), isoladas ou associadas à dapsona (DAP), no tratamento de feridas dermonecróticas causadas pelo veneno de Loxosceles laeta. Vinte e cinco coelhos machos foram distribuídos em cinco grupos. O controle negativo recebeu água ultrapura (C-), enquanto todos os outros grupos foram injetados com 20 μg de veneno de L. laeta. Após 4 horas, cada grupo recebeu um dos seguintes tratamentos: PBS (C+), DAP, CTMs e DAP + CTMs. Os animais foram avaliados diariamente durante 12 dias, e feitos registros fotográficos para análise da ferida e no 12º dia, foram eutanasiados e, retiradas amostras de pele para análise histológica. Observou-se que a DAP apresentou o melhor percentual de contração da ferida no terceiro dia. Nos tratamentos com CTMs, observou-se uma contração negativa da ferida tanto para as CTMs isoladas, bem como a associação CTMs + DAP em relação ao PBS, possivelmente, pelo aumento da infamação inicial após a aplicação de células-tronco. Isso é devido ao fato de que as CTMs secretam um amplo espectro de moléculas bioativas como citocinas e fatores de crescimento que favorecem a regeneração. Histologicamente, observou-se que os animais de C+ apresentaram extensas áreas de necrose, úlceras, infiltrado neutrofílico, além de mineralização. Houve aumento de deposição de colágeno no tratamento CTMs + DAP, no entanto, a vascularização permaneceu inalterada. Este é o primeiro relato usando CTMs e CTMs + DAP como tratamento para loxoscelismo cutâneo e mais estudos são necessários para determinar seu uso como terapia alternativa para lesões demonecróticas causadas pela aranha Loxosceles.
Collapse
|
13
|
Borrasca-Fernandes CF, Prado CC, Capitani EMD, Hyslop S, Bucaretchi F. Temporal evolution of dermonecrosis in loxoscelism assessed by photodocumentation. Rev Soc Bras Med Trop 2022; 55:e0502. [PMID: 35239909 PMCID: PMC8909434 DOI: 10.1590/0037-8682-0502-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Although loxoscelism (bites by brown spiders of the genus Loxosceles) frequently results in dermonecrosis, no previous clinical reports have provided detailed temporal photodocumentation of the evolution of dermonecrotic lesions in a case series. Methods This was a retrospective cohort study involving a case series of loxoscelism. Only cases of dermonecrosis with photodocumentation of lesion evolution (from admission until complete or almost complete healing) were included. Results: Eight patients (six men, two women; median age, 38 years) fulfilled the inclusion criteria. The bite sites included the thigh (n = 4), forearm (n = 2), abdomen (n = 1), and trunk (n = 1). Time interval between the bite and first contact with our service ranged from 15 to 216 h (median = 29 h). The main clinical manifestations included local erythematous and ischemic violaceous lesions overlying a base of indurated edema (livedoid plaque, 8), local pain (8), exanthema (6), serohemorrhagic vesicles/blisters (5), fever (5), and jaundice (1). Based on a previously established classification, the cases were classified as probable cutaneous-necrotic loxoscelism (CNL, n = 4), presumptive CNL (n = 3), and presumptive cutaneous-hemolytic loxoscelism (n = 1). Seven patients were treated with anti-arachnidic antivenom (AV; median time post-bite = 46 h). Complete lesion healing ranged from 34 to 98 days post-bite (median, 68 days; six patients). None of the patients required reconstructive plastic surgery. Conclusions The sequential photographic documentation showed considerable variation in the process of wound healing, with complete epithelialization requiring up to 3 months after the bite.
Collapse
Affiliation(s)
| | | | | | - Stephen Hyslop
- Universidade Estadual de Campinas, Brasil; Universidade Estadual de Campinas, Brasil
| | - Fábio Bucaretchi
- Universidade Estadual de Campinas, Brasil; Universidade Estadual de Campinas, Brasil
| |
Collapse
|
14
|
Jenkins TP, Ahmadi S, Bittenbinder MA, Stewart TK, Akgun DE, Hale M, Nasrabadi NN, Wolff DS, Vonk FJ, Kool J, Laustsen AH. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Negl Trop Dis 2021; 15:e0009880. [PMID: 34855751 PMCID: PMC8638997 DOI: 10.1371/journal.pntd.0009880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Trenton K. Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dilber E. Akgun
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melissa Hale
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nafiseh N. Nasrabadi
- Pharmaceutical Sciences Research Centre, Student Research Commitee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Venomous Animals and Antivenom Production, Razi Vaccine, and Serum Research Institute, Karaj, Iran
| | - Darian S. Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Laude M, Lima S, Corsini T, Dussot A, Moniod L, Barjat T, Chauleur C. Cutaneous mammary loxoscelism: An unknown cause of breast inflammation: A case report and review of the literature. ANN CHIR PLAST ESTH 2021; 66:476-480. [PMID: 34686399 DOI: 10.1016/j.anplas.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Envenomation due to a Loxosceles spider bite is a rare event in France and no case concerning the breast has yet been reported. We report the case of a 48-year-old woman who presented at Saint-Etienne University Hospital with a pulsatile pain in her left breast two days after feeling a fleeting bite. An abscess was diagnosed and antibiotics were prescribed. A few days later, a necrotic zone appeared around the areola and 75 percent of the surrounding skin was inflamed. The patient reported a persistent fever and a burning pain in her breast. Loxoscelism was finally concluded and surgical debridement was undertaken, followed by supervised wound therapy and local skin care. Complete healing was achieved after 4 weeks of treatment. The diagnosis of loxoscelism is generally presumptive, as the bite is usually painless and the spider rarely captured. Its diagnosis should be considered when an abscess responds poorly to antibiotics.
Collapse
Affiliation(s)
- M Laude
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - S Lima
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - T Corsini
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - A Dussot
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - L Moniod
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - T Barjat
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| | - C Chauleur
- Department of Obstetrics and Gynaecology, Hôpital Nord, Saint-Etienne University, Saint-Etienne, France.
| |
Collapse
|
16
|
Alvarenga LM, Cardenas GAC, Jiacomini IG, Ramírez MI. A new insight into the cellular mechanisms of envenomation: Elucidating the role of extracellular vesicles in Loxoscelism. Toxicol Lett 2021; 350:202-212. [PMID: 34314803 DOI: 10.1016/j.toxlet.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023]
Abstract
Envenomation by the Loxosceles genus spiders is a recurring health issue worldwide and specially in the Americas. The physiopathology of the envenomation is tightly associated to the venom's rich toxin composition, able to produce a local dermonecrotic lesion that can evolve systemically and if worsened, might result in multiple organ failure and lethality. The cellular and molecular mechanisms involved with the physiopathology of Loxoscelism are not completely understood, however, the venom's Phospholipases D (PLDs) are known to trigger membrane injury in various cell types. Here, we report for the first time the Loxosceles venom's ability to stimulate the production of extracellular vesicles (EVs) in various human cell lineages. Components of the Loxosceles venom were also detectable in the cargo of these vesicles, suggesting that they may be implicated in the process of extracellular venom release. EVs from venom treated cells exhibited phospholipase D activity and were able to induce in vitro hemolysis in human red blood cells and alter the HEK cell membranes' permeability. Nonetheless, the PLD activity was inhibited when an anti-venom PLDs monoclonal antibody was co-administered with the whole venom. In summary, our findings shed new light on the mechanisms underlying cellular events in the context of loxoscelism and suggest a crucial role of EVs in the process of envenomation.
Collapse
Affiliation(s)
- Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcel Ivan Ramírez
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de Tripanossomatideos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brazil
| |
Collapse
|
17
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins (Basel) 2021; 13:256. [PMID: 33916208 PMCID: PMC8066738 DOI: 10.3390/toxins13040256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
- Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| |
Collapse
|
18
|
Miranda ALSD, Guerra-Duarte C, Lima SDA, Chávez-Olórtegui C, Soto-Blanco B. History, challenges and perspectives on Loxosceles (brown spiders) antivenom production in Brazil. Toxicon 2021; 192:40-45. [PMID: 33465358 DOI: 10.1016/j.toxicon.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antivenom is the only effective therapy for treating any envenomation. Despite its obvious public health importance, the laborious process of procuring, distributing and controlling the quality of such immunobiologicals is being neglected. Brazil is fully self-sufficient in the production of antivenoms. Since the 1950s, Loxoscelism, a syndrome with an onset after a spider bite from specimens of the Loxosceles genus occurs, is considered a public health issue. The Brazilian history in developing antivenom therapy, its production hindrances, and other challenges are discussed in this paper, as well as some promising novelties that can improve production and processing of Loxosceles antivenom.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Searching for the toxic potential of Loxosceles amazonica and Loxosceles willianilsoni spiders' venoms. Toxicon 2020; 191:1-8. [PMID: 33347860 DOI: 10.1016/j.toxicon.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.
Collapse
Affiliation(s)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
20
|
Cytotoxic and genotoxic effects on human keratinocytes triggered by sphingomyelinase D from Loxosceles venom. Arch Toxicol 2020; 94:3563-3577. [DOI: 10.1007/s00204-020-02830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
21
|
Hogan JC, Keifer A, Murphy AE, Beeman G, Hysmith N. Diffuse Erythematous Rash in a Child: A Journey to Diagnosis. Clin Pediatr (Phila) 2020; 59:730-735. [PMID: 32075425 DOI: 10.1177/0009922820905856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jared Clay Hogan
- Le Bonheur Children's Hospital, Memphis, TN, USA.,The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley Keifer
- Le Bonheur Children's Hospital, Memphis, TN, USA.,The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ann Elizabeth Murphy
- Le Bonheur Children's Hospital, Memphis, TN, USA.,The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gail Beeman
- Le Bonheur Children's Hospital, Memphis, TN, USA
| | | |
Collapse
|
22
|
Lopes PH, van den Berg CW, Tambourgi DV. Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front Pharmacol 2020; 11:636. [PMID: 32477123 PMCID: PMC7237637 DOI: 10.3389/fphar.2020.00636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.
Collapse
Affiliation(s)
| | - Carmen W. van den Berg
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
23
|
Fingermann M, de Roodt AR, Cascone O, Miranda MV. Biotechnological potential of Phospholipase D for Loxosceles antivenom development. Toxicon X 2020; 6:100036. [PMID: 32550591 PMCID: PMC7286061 DOI: 10.1016/j.toxcx.2020.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Loxoscelism is one of the most important forms of araneism in South America. The Health Authorities from countries with the highest incidence and longer history in registering loxoscelism cases indicate that specific antivenom should be administered during the first hours after the accident, especially in the presence or at risk of the most severe clinical outcome. Current antivenoms are based on immunoglobulins or their fragments, obtained from plasma of hyperimmunized horses. Antivenom has been produced using the same traditional techniques for more than 120 years. Although the whole composition of the spider venom remains unknown, the discovery and biotechnological production of the phospholipase D enzymes represented a milestone for the knowledge of the physiopathology of envenomation and for the introduction of new innovative tools in antivenom production. The fact that this protein is a principal toxin of the venom opens the possibility of replacing the use of whole venom as an immunogen, an attractive alternative considering the laborious techniques and low yields associated with venom extraction. This challenge warrants technological innovation to facilitate production and obtain more effective antidotes. In this review, we compile the reported studies, examining the advances in the expression and application of phospholipase D as a new immunogen and how the new biotechnological tools have introduced some degree of innovation in this field.
Collapse
Affiliation(s)
- Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Área de Zootoxicología, Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, 2155, (1113) Buenos Aires, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | - María Victoria Miranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
24
|
Loxoscelism: Advances and Challenges in the Design of Antibody Fragments with Therapeutic Potential. Toxins (Basel) 2020; 12:toxins12040256. [PMID: 32316084 PMCID: PMC7232456 DOI: 10.3390/toxins12040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30–35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody’s neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.
Collapse
|
25
|
Soleimani Moez A, H. Sajedi R, Pooshang Bagheri K, Sabatier JM, Shahbazzadeh D. Novel Mutant Phospholipase D from Hemiscorpius lepturus Acts as A Highly Immunogen in BALB/c Mice Against the Lethality of Scorpion Venom. Molecules 2020; 25:E1673. [PMID: 32260428 PMCID: PMC7180795 DOI: 10.3390/molecules25071673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Hemiscorpius lepturus (H. lepturus) which belongs to the Scorpionidae family, is the deadliest scorpion in Iran. It causes pathological manifestations like dermonecrosis, hemolysis, renal failure, necrotic ulcers, and in some cases, even death. The venom of this scorpion is well-known for its cytotoxic effects in comparison with the other venomous scorpions which show significant neurotoxic effects. Due to the painless nature of the sting of this scorpion, the clinical symptoms occur in victims 24 to 72 h post-sting. In our previous studies during the last decade, we demonstrated that the medical complications are attributable to the presence of phospholipase D (PLD) as a major toxin in the venom. With the purpose of designing and constructing a vaccine against H. lepturus for humans, animal model experiments were performed. To achieve this goal, non-toxic PLD was developed by mutation of two critical catalytic residues-His12 and His48-into alanines and the product was then denominated mut-rPLD1. The in-vivo tests showed that the mice immunized with interval doses of 10 µg of mut-rPLD1, were completely protected against 10× the LD100 of the venom. In conclusion, this mutant may be an effective vaccine candidate against scorpion envenomation by H. lepturus in future clinical studies.
Collapse
Affiliation(s)
- Abouzar Soleimani Moez
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran;
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 13169-43351, Iran;
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran;
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 13169-43351, Iran;
| | - Jean-Marc Sabatier
- Institute of Neuro Physiopathology (INP), Université d’Aix-Marseille, UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex, France;
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 13169-43351, Iran;
| |
Collapse
|
26
|
Lopes PH, Squaiella-Baptistão CC, Marques MOT, Tambourgi DV. Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Arch Toxicol 2020; 94:1461-1477. [PMID: 32232511 DOI: 10.1007/s00204-020-02719-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023]
Abstract
The genus Loxosceles comprises 140 species widely distributed around the world. These spiders are nocturnal, sedentary and remarkably nonaggressive, although they cause accidents in humans with wide degrees of severity, generating signs and symptoms that define the clinical condition known as loxoscelism. Its local signs and symptoms were first reported in 1872, and over the years, a large medical literature has been accumulated; unfortunately, it is not always trustworthy. Assessing the reliability of such information, we reviewed 120 case reports of loxoscelism published in 84 articles over the past 20 years. This search allowed us to gather information on the clinical aspects, diagnosis and treatment of loxoscelism, showing that the severity of these accidents has multiple degrees and that it is influenced by many factors. Thus, coupled with epidemiological and species occurrence information, this study can be a useful tool for the clinical practice of loxoscelism. It may support and provide a multidisciplinary view that should be taken into consideration when establishing the therapeutic approach in cases of Loxosceles envenomation.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
27
|
Grashof D, Zdenek CN, Dobson JS, Youngman NJ, Coimbra F, Benard-Valle M, Alagon A, Fry BG. A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins (Basel) 2020; 12:toxins12020091. [PMID: 32019058 PMCID: PMC7076800 DOI: 10.3390/toxins12020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Envenomations are complex medical emergencies that can have a range of symptoms and sequelae. The only specific, scientifically-validated treatment for envenomation is antivenom administration, which is designed to alleviate venom effects. A paucity of efficacy testing exists for numerous antivenoms worldwide, and understanding venom effects and venom potency can help identify antivenom improvement options. Some spider venoms can produce debilitating injuries or even death, yet have been largely neglected in venom and antivenom studies because of the low venom yields. Coagulation disturbances have been particularly under studied due to difficulties in working with blood and the coagulation cascade. These circumstances have resulted in suboptimal spider bite treatment for medically significant spider genera such as Loxosceles and Sicarius. This study identifies and quantifies the anticoagulant effects produced by venoms of three Loxoscles species (L. reclusa, L. boneti, and L. laeta) and that of Sicarius terrosus. We showed that the venoms of all studied species are able to cleave the fibrinogen Aα-chain with varying degrees of potency, with L. reclusa and S. terrosus venom cleaving the Aα-chain most rapidly. Thromboelastography analysis revealed that only L. reclusa venom is able to reduce clot strength, thereby presumably causing anticoagulant effects in the patient. Using the same thromboelastography assays, antivenom efficacy tests revealed that the commonly used Loxoscles-specific SMase D recombinant based antivenom failed to neutralize the anticoagulant effects produced by Loxosceles venom. This study demonstrates the fibrinogenolytic activity of Loxosceles and Sicarius venom and the neutralization failure of Loxosceles antivenom, thus providing impetus for antivenom improvement.
Collapse
Affiliation(s)
- Dwin Grashof
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Nicholas J. Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Francisco Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Melisa Benard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Alejandro Alagon
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
- Correspondence:
| |
Collapse
|
28
|
From taxonomy to molecular characterization of brown spider venom: An overview focused on Loxosceles similis. Toxicon 2020; 173:5-19. [DOI: 10.1016/j.toxicon.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
|
29
|
Lopes PH, Murakami MT, Portaro FCV, Mesquita Pasqualoto KF, van den Berg C, Tambourgi DV. Targeting Loxosceles spider Sphingomyelinase D with small-molecule inhibitors as a potential therapeutic approach for loxoscelism. J Enzyme Inhib Med Chem 2019; 34:310-321. [PMID: 30734604 PMCID: PMC6327989 DOI: 10.1080/14756366.2018.1546698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Loxosceles spiders’ venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 µM and 0.59 µM, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 µM. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.
Collapse
Affiliation(s)
| | - Mário T Murakami
- b Biosciences National Laboratory , National Centre for Research in Energy and Materials , Campinas , SP , Brazil
| | | | - Kerly Fernanda Mesquita Pasqualoto
- c Alchemy - Innovation, Research & Development Ltda., Center of Innovation, Entrepreneurship and Technology (CIETEC) , University of São Paulo , SP , Brazil
| | - Carmen van den Berg
- d Centre for Medical Education , Cardiff University, School of Medicine , Cardiff , United Kingdom
| | - Denise V Tambourgi
- a Immunochemistry Laboratory , Butantan Institute , São Paulo , SP , Brazil
| |
Collapse
|
30
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
31
|
Arán-Sekul T, Rojas JM, Subiabre M, Cruz V, Cortés W, Osorio L, González J, Araya JE, Catalán A. Heterophilic antibodies in sera from individuals without loxoscelism cross-react with phospholipase D from the venom of Loxosceles and Sicarius spiders. J Venom Anim Toxins Incl Trop Dis 2018; 24:18. [PMID: 30065755 PMCID: PMC6062995 DOI: 10.1186/s40409-018-0155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022] Open
Abstract
Background Loxoscelism is a severe human envenomation caused by Loxosceles spider venom. To the best of our knowledge, no study has evaluated the presence of antibodies against Loxosceles venom in loxoscelism patients without treatment with antivenom immunotherapy. We perform a comparative analysis for the presence of antibodies capable of recognizing Loxosceles venom in a group of patients diagnosed with loxoscelism and in a group of people without loxoscelism. Methods The detection of L. laeta venom, Sicarius venom and recombinant phospholipases D from Loxosceles (PLDs) in sera from people with loxoscelism (Group 1) and from healthy people with no history of loxoscelism (Group 2) was evaluated using immuno-dot blot, indirect ELISA, and Western blot. Results We found naturally heterophilic antibodies (IgG-type) in people without contact with Loxosceles spiders or any clinical history of loxoscelism. Either serum pools or single sera from Group 1 and Group 2 analyzed by dot blot tested positive for L. laeta venom. Indirect ELISA for venom recognition showed titles of 1:320 for Group 1 sera and 1:160 for Group 2 sera. Total IgG quantification showed no difference in sera from both groups. Pooled sera and purified IgG from sera of both groups revealed venom proteins between 25 and 32 kDa and the recombinant phospholipase D isoform 1 (rLlPLD1), specifically. Moreover, heterophile antibodies cross-react with PLDs from other Loxosceles species and the venom of Sicarius spider. Conclusions People without contact with the spider venom produced heterophilic antibodies capable of generating a cross-reaction against the venom of L. laeta and Sicarius spiders. Their presence and possible interference should be considered in the development of immunoassays for Loxosceles venom detection.
Collapse
Affiliation(s)
- Tomás Arán-Sekul
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - José M Rojas
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - Mario Subiabre
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile.,2Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, 8330024 Santiago, Chile
| | - Victoria Cruz
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - William Cortés
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - Luis Osorio
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - Jorge González
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - Jorge E Araya
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| | - Alejandro Catalán
- 1Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, 1270300 Antofagasta, Chile
| |
Collapse
|
32
|
Manzoni-de-Almeida D, Squaiella-Baptistão CC, Lopes PH, van den Berg CW, Tambourgi DV. Loxosceles venom Sphingomyelinase D activates human blood leukocytes: Role of the complement system. Mol Immunol 2017; 94:45-53. [PMID: 29257998 DOI: 10.1016/j.molimm.2017.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
Envenomation by Loxosceles spiders can result in severe systemic and local reactions, which are mainly triggered by Sphingomyelinase D (SMase D), a toxic component of Loxosceles venom. SMase D induces a systemic inflammatory condition similar to the reaction observed during an endotoxic shock. Considering the potent pro-inflammatory potential of Loxosceles venom and the SMase D, in this study we have used the whole human blood model to study the endotoxic-like shock triggered by SMase D. Recombinant purified SMase D from L. intermedia venom, similarly to LPS, induced activation of blood leukocytes, as observed by the increase in the expression of CD11b and TLR4, production of reactive oxygen and nitrogen species (superoxide anion and peroxynitrite) and release of TNF-α. Complement consumption in the plasma was also detected, and complement inhibition by compstatin decreased the SMase D and LPS-induced leukocyte activation, as demonstrated by a reduction in the expression of CD11b and TLR4 and superoxide anion production. Similar results were found for the L. intermedia venom, except for the production of TNF-α. These findings indicate that SMase D present in Loxosceles venom is able to activate leukocytes in a partially complement-dependent manner, which can contribute to the systemic inflammation that follows envenomation by this spider. Thus, future therapeutic management of systemic Loxosceles envenomation could include the use of complement inhibitors as adjunct therapy.
Collapse
Affiliation(s)
- Daniel Manzoni-de-Almeida
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | - Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Carmen W van den Berg
- Centre for Medical Education, Cardiff University School of Medicine, Heath Park, Cardiff, CF144XN, UK
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Spider's venom phospholipases D: A structural review. Int J Biol Macromol 2017; 107:1054-1065. [PMID: 28951301 DOI: 10.1016/j.ijbiomac.2017.09.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/25/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Spider venoms are complex mixtures of proteins, peptides and small organic and inorganic molecules. Among the proteins, phospholipases D (PLDs) present the major portion, and till now they are the most studied enzymes in spider venom. These PLDs have been divided into two classes, I and II, based on their primary and tertiary structure. Currently, crystal structures of both classes of these enzymes are available in the Protein Data Bank (PDB). Their three-dimensional structure is composed of eight α-helices and eight β-strands forming the ubiquitous fold called triosephosphate isomerase (TIM) barrel. These enzymes use general acid-base catalysis to hydrolyzes their substrate. In this review, we have described the structural features, structure-based mechanisms of catalysis, maturation, and inhibition of these enzymes using the synthetic inhibitor.
Collapse
|
34
|
Robinson JR, Kennedy VE, Doss Y, Bastarache L, Denny J, Warner JL. Defining the complex phenotype of severe systemic loxoscelism using a large electronic health record cohort. PLoS One 2017; 12:e0174941. [PMID: 28422977 PMCID: PMC5396866 DOI: 10.1371/journal.pone.0174941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/18/2017] [Indexed: 11/17/2022] Open
Abstract
Objective Systemic loxoscelism is a rare illness resulting from the bite of the recluse spider and, in its most severe form, can lead to widespread hemolysis, coagulopathy, and death. We aim to describe the clinical features and outcomes of the largest known cohort of individuals with moderate to severe loxoscelism. Methods We performed a retrospective, cross sectional study from January 1, 1995, to December 31, 2015, at a tertiary-care academic medical center, to determine individuals with clinical records consistent with moderate to severe loxoscelism. Age-, sex-, and race-matched controls were compared. Demographics, clinical characteristics, laboratory measures, and outcomes of individuals with loxoscelism are described. Case and control groups were compared with descriptive statistics and phenome-wide association study (PheWAS). Results During the time period, 57 individuals were identified as having moderate to severe loxoscelism. Of these, only 33% had an antecedent spider bite documented. Median age of individuals diagnosed with moderate to severe loxoscelism was 14 years old (IQR 9.0–24.0 years). PheWAS confirmed associations of systemic loxoscelism with 29 other phenotypes, e.g., rash, hemolytic anemia, and sepsis. Hemoglobin level dropped an average of 3.1 g/dL over an average of 2.0 days (IQR 2.0–6.0). Lactate dehydrogenase and total bilirubin levels were on average over two times their upper limit of normal values. Eighteen individuals of 32 tested had a positive direct antiglobulin (Coombs’) test. Mortality was 3.5% (2/57 individuals). Conclusion Systemic loxoscelism is a rare but devastating process with only a minority of patients recalling the toxic exposure; hemolysis reaches a peak at 2 days after admission, with some cases taking more than a week before recovery. In endemic areas, suspicion for systemic loxoscelism should be high in individuals, especially children and younger adults, presenting with a cutaneous ulcer and hemolysis or coagulopathy, even in the absence of a bite exposure history.
Collapse
Affiliation(s)
- Jamie R Robinson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America.,Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Vanessa E Kennedy
- Department of Internal Medicine, Stanford University, Stanford, CA, United States of America
| | - Youssef Doss
- Yale University, New Haven, CT, United States of America
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Joshua Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeremy L Warner
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
35
|
Rojas JM, Arán-Sekul T, Cortés E, Jaldín R, Ordenes K, Orrego PR, González J, Araya JE, Catalán A. Phospholipase D from Loxosceles laeta Spider Venom Induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 Production in Human Skin Fibroblasts and Stimulates Monocytes Migration. Toxins (Basel) 2017; 9:toxins9040125. [PMID: 28379166 PMCID: PMC5408199 DOI: 10.3390/toxins9040125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
Cutaneous loxoscelism envenomation by Loxosceles spiders is characterized by the development of a dermonecrotic lesion, strong inflammatory response, the production of pro-inflammatory mediators, and leukocyte migration to the bite site. The role of phospholipase D (PLD) from Loxosceles in the recruitment and migration of monocytes to the envenomation site has not yet been described. This study reports on the expression and production profiles of cytokines and chemokines in human skin fibroblasts treated with catalytically active and inactive recombinant PLDs from Loxosceles laeta (rLlPLD) and lipid inflammatory mediators ceramide 1-phosphate (C1P) and lysophosphatidic acid (LPA), and the evaluation of their roles in monocyte migration. Recombinant rLlPLD1 (active) and rLlPLD2 (inactive) isoforms induce interleukin (IL)-6, IL-8, CXCL1/GRO-α, and CCL2/monocyte chemoattractant protein-1 (MCP-1) expression and secretion in fibroblasts. Meanwhile, C1P and LPA only exhibited a minor effect on the expression and secretion of these cytokines and chemokines. Moreover, neutralization of both enzymes with anti-rLlPLD1 antibodies completely inhibited the secretion of these cytokines and chemokines. Importantly, conditioned media from fibroblasts, treated with rLlPLDs, stimulated the transmigration of THP-1 monocytes. Our data demonstrate the direct role of PLDs in chemotactic mediator synthesis for monocytes in human skin fibroblasts and indicate that inflammatory processes play an important role during loxoscelism.
Collapse
Affiliation(s)
- José M Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Emmanuel Cortés
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Romina Jaldín
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Kely Ordenes
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Patricio R Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Jorge González
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Jorge E Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| |
Collapse
|
36
|
Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom. Toxins (Basel) 2017; 9:toxins9030090. [PMID: 28257106 PMCID: PMC5371845 DOI: 10.3390/toxins9030090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.
Collapse
|
37
|
Boissiere F, Masson R, Fluieraru S, Vitse J, Dessena L, Lefevre M, Bekara F, Herlin C. Le loxoscelisme cutané, à propos d’une observation exceptionnelle de 9 cas consécutifs. ANN CHIR PLAST ESTH 2016; 61:811-819. [DOI: 10.1016/j.anplas.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 10/20/2022]
|
38
|
Karim-Silva S, Moura JD, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, Billiald P. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett 2016; 176:90-6. [DOI: 10.1016/j.imlet.2016.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
|
39
|
Sampaio VS, Gomes AA, Silva IM, Sachett J, Ferreira LCL, Oliveira S, Sabidò M, Chalkidis H, Barbosa Guerra MGV, Salinas JL, Wen FH, Lacerda MVG, Monteiro WM. Low Health System Performance, Indigenous Status and Antivenom Underdosage Correlate with Spider Envenoming Severity in the Remote Brazilian Amazon. PLoS One 2016; 11:e0156386. [PMID: 27227455 PMCID: PMC4881914 DOI: 10.1371/journal.pone.0156386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022] Open
Abstract
Background A better knowledge of the burden and risk factors associated with severity due to spider bites would lead to improved management with a reduction of sequelae usually seen for this neglected health problem, and would ensure proper use of antivenoms in remote localities in the Brazilian Amazon. The aim of this study was to analyze the profile of spider bites reported in the state of Amazonas in the Western Brazilian Amazon, and to investigate potential risk factors associated with severity of envenomation. Methodology/Principal Findings We used a case-control study in order to identify factors associated with spider bite severity in the Western Brazilian Amazon from 2007 to 2014. Patients evolving to any severity criteria were considered cases and those with non-severe bites were included in the control group. All variables were retrieved from the official Brazilian reporting systems. Socioeconomical and environmental components were also included in a multivariable analysis in order to identify ecological determinants of incidence and severity. A total of 1,181 spider bites were recorded, resulting in an incidence of 4 cases per 100,000 person/year. Most of the spider bites occurred in males (65.8%). Bites mostly occurred in rural areas (59.5%). The most affected age group was between 16 and 45 years old (50.9%). A proportion of 39.7% of the bites were related to work activities. Antivenom was prescribed to 39% of the patients. Envenomings recorded from urban areas [Odds ratio (OR) = 0.40 (95%CI = 0.30–0.71; p<0.001)] and living in a municipality with a mean health system performance index (MHSPI >median [OR = 0.64 (95%CI = 0.39–0.75; p<0.001)] were independently associated with decreased risk of severity. Work related accidents [OR = 2.09 (95%CI = 1.49–2.94; p<0.001)], Indigenous status [OR = 2.15 (95%CI = 1.19–3.86; p = 0.011)] and living in a municipality located >300 km away from the state capital Manaus [OR = 1.90 (95%CI = 1.28–2.40; p<0.001)] were independently associated with a risk of severity. Living in a municipality located >300 km away from the state capital Manaus [OR = 1.53 (95%CI = 1.15–2.02; p = 0.003)] and living in a municipality with a MHSPI <median [OR = 1.91 (95%CI = 1.28–2.47; p = 0.002)] increased the odds of antivenom underdosage. Conclusions Spider bites is prevalent across the study region with a higher incidence in the rainy season in rural areas. Spider bites can be painful and lead to local manifestations but rarely result in life-threatening envenoming. Major local complications were dermonecrosis and secondary infection in cases diagnosed as Loxosceles bites. Based on the correlations shown here, envenomings occurring in remote rural areas, Indigenous status and living in a municipality located >300 km away from the state capital Manaus could be contributing factors to higher severity of spider envenomings in this area, as well as to antivenom underdosage.
Collapse
Affiliation(s)
- Vanderson Souza Sampaio
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Núcleo de Sistemas de Informação, Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | - André Alexandre Gomes
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Iran Mendonça Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Luiz Carlos Lima Ferreira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Sâmella Oliveira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Meritxell Sabidò
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Catalunya, Spain
| | - Hipócrates Chalkidis
- Curso de Ciências Biológicas, Faculdades Integradas do Tapajós, Santarém, Pará, Brazil
| | - Maria Graças Vale Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jorge Luis Salinas
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Fan Hui Wen
- Instituto Butantan, Secretaria de Estado da Saúde de São Paulo, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- * E-mail:
| |
Collapse
|
40
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
41
|
Myamoto DT, Pidde-Queiroz G, Pedroso A, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications. Immunobiology 2016; 221:953-63. [PMID: 27259372 DOI: 10.1016/j.imbio.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 01/02/2023]
Abstract
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3.
Collapse
Affiliation(s)
- D T Myamoto
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - G Pidde-Queiroz
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - A Pedroso
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - C W van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - D V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
42
|
Corrêa MA, Okamoto CK, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis. PLoS One 2016; 11:e0153090. [PMID: 27078876 PMCID: PMC4831769 DOI: 10.1371/journal.pone.0153090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism.
Collapse
Affiliation(s)
- Mara A. Corrêa
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
43
|
Immunodetection of the "brown" spider (Loxosceles intermedia) dermonecrotoxin with an scFv-alkaline phosphatase fusion protein. Immunol Lett 2016; 173:1-6. [PMID: 26970375 DOI: 10.1016/j.imlet.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
Bites by spiders from Loxosceles genus often lead to a wide variance in envenomation profile of patients and diagnosis is difficult due to the number of diseases that mimic loxoscelism. In such a context, it is of interest to consider the design of standardized recombinant colorimetric antibodies for diagnosis and specific detection of individual circulating toxins in biological fluids of envenomed patients. We have previously prepared a monoclonal murine IgG (LiMab7) that reacts with Loxosceles intermedia venom components of 32-35kDa and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a colorimetric bifunctional protein consisting in the corresponding single-chain antibody fragment (scFv) fused to alkaline phosphatase (AP) of Escherichia coli. The immune tracer was tested in two different types of immunoassays and it proved to be efficient in both. Thus, this recombinant fusion protein (scFv-LiMab7/AP) can be used for rapid and specific immunotitration of L. intermedia venom with a linear range of 39-20000ng/mL and a detection limit of 39ng/mL without any cross-reaction.
Collapse
|
44
|
Documented cutaneous loxoscelism in the south of France: an unrecognized condition causing delay in diagnosis. Infection 2016; 44:383-7. [DOI: 10.1007/s15010-015-0869-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
45
|
Rocha-E-Silva TAA, Linardi A, Antunes E, Hyslop S. Pharmacological Characterization of the Edema Caused by Vitalius dubius (Theraphosidae, Mygalomorphae) Spider Venom in Rats. J Pharmacol Exp Ther 2016; 356:13-9. [PMID: 26607257 DOI: 10.1124/jpet.115.226787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Bites by tarantulas (Theraphosidae, Mygalomorphae) in humans can result in mild clinical manifestations such as local pain, erythema, and edema. Vitalius dubius is a medium-sized, nonaggressive theraphosid found in southeastern Brazil. In this work, we investigated the mediators involved in the plasma extravasation caused by V. dubius venom in rats. The venom caused dose-dependent (0.1-100 μg/site) edema in rat dorsal skin. This edema was significantly inhibited by ((S)1-{2-[3(3-4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)piperidine-3-yl]ethyl}-4-phenyl-1-azoniabicyclo[2.2.2]octone, chloride) (SR140333, a neurokinin NK1 receptor antagonist), indomethacin [a nonselective cyclooxygenase (COX) inhibitor], cyproheptadine (a serotonin 5-hydroxytryptamine1/2 and histamine H1 receptor antagonist), and N(ω)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor). In contrast, mepyramine (a histamine H1 receptor antagonist), D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)-]-BK (JE 049, a bradykinin B2 receptor antagonist), and ((S)-N-methyl-N-[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-di-chlorophenyl)butyl]benzamide) (SR48968, a neurokinin NK2 receptor antagonist) had no effect on the venom-induced increase in vascular permeability. In rat hind paws, the venom-induced edema was attenuated by ketoprofen (a nonselective COX inhibitor) administered 15 minutes postvenom. Preincubation of venom with commercial antiarachnid antivenom attenuated the venom-induced edema. These results suggest that the enhanced vascular permeability evoked by V. dubius venom involves serotonin, COX products, neurokinin NK1 receptors, and nitric oxide formation. The attenuation of hind paw edema by ketoprofen suggests that COX inhibitors could be useful in treating the local inflammatory response to bites by these spiders.
Collapse
Affiliation(s)
- Thomaz A A Rocha-E-Silva
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Alessandra Linardi
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil (T.A.A.R.S., E.A., S.H.); and Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil (T.A.A.R.S., A.L.)
| |
Collapse
|
46
|
Pedroso A, Matioli SR, Murakami MT, Pidde-Queiroz G, Tambourgi DV. Adaptive evolution in the toxicity of a spider's venom enzymes. BMC Evol Biol 2015; 15:290. [PMID: 26690570 PMCID: PMC4687385 DOI: 10.1186/s12862-015-0561-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms present in these venoms can be structurally classified in two groups. Class I Sphingomyelinase D contains a single disulphide bridge and variable loop. Class II Sphingomyelinase D presents an additional intrachain disulphide bridge that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper we address the distribution of the structural classes of SMase D within and among species of spiders and also their evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural selection in their evolution combined to structural modelling of the affected sites. Results The majority of the Class I enzymes belong to the same clade, which indicates a recent evolution from a single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional bridge were found in Class I enzymes. Conclusions The evolution of Sphingomyelinase D has been driven by natural selection toward an increase in noxiousness, and this might help explain the toxic variation between classes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0561-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélio Pedroso
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| | - Sergio Russo Matioli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, S.P., Brazil.
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, S.P., Brazil.
| | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| |
Collapse
|
47
|
Lajoie DM, Cordes MHJ. Spider, bacterial and fungal phospholipase D toxins make cyclic phosphate products. Toxicon 2015; 108:176-80. [PMID: 26482933 DOI: 10.1016/j.toxicon.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022]
Abstract
Phospholipase D (PLD) toxins from sicariid spiders, which cause disease in mammals, were recently found to convert their primary substrates, sphingomyelin and lysophosphatidylcholine, to cyclic phospholipids. Here we show that two PLD toxins from pathogenic actinobacteria and ascomycete fungi, which share distant homology with the spider toxins, also generate cyclic phospholipids. This shared function supports divergent evolution of the PLD toxins from a common ancestor and suggests the importance of cyclic phospholipids in pathogenicity.
Collapse
Affiliation(s)
- Daniel M Lajoie
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
48
|
Schmitz GLP, Rohrbacher I, Corrêa CJDS, Silva AMSD, Franzoi CF, Parzianello FB, Silva JP, Rezende FF, Oldenburg Neto CF. Conhecimento de puérperas sobre identificação e prevenção do acidente loxoscélico. REVISTA BRASILEIRA DE MEDICINA DE FAMÍLIA E COMUNIDADE 2015. [DOI: 10.5712/rbmfc10(36)778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objetivos: este estudo teve como objetivo identificar o grau de conhecimento que puérperas possuíam a respeito da aranha Loxosceles, sua picada e conduta no caso de acidente com elas ou seus filhos. Métodos: estudo transversal quantitativo, que utilizou um questionário estruturado abrangendo perfil socioeconômico, conhecimento sobre aranha-marrom e o loxoscelismo. Foram incluídas pacientes em puerpério imediato, considerado entre o primeiro e décimo dia do parto, internadas na maternidade do Hospital do Trabalhador em Curitiba-PR, entre julho e outubro de 2011. Participaram 208 puérperas, das quais oito foram excluídas porque os questionários foram preenchidos de forma incorreta. Os dados obtidos foram tabulados no programa Microsoft Excel 2007® e analisados pelos testes χ2 e Exato de Fisher. Resultados: sobre o conhecimento da aranha, 61% das puérperas afirmaram reconhecer a aranha e apontaram a imagem correta. Sobre a conduta em caso de acidente, 87,5% responderam a conduta correta, porém apenas 37% apontaram a sintomatologia correta. Hipóteses testadas mostraram que idade, escolaridade e acidente loxoscélico prévio são diretamente proporcionais ao conhecimento das participantes (p<0,05). Conclusão: a maioria das puérperas pesquisadas conhecia a aranha-marrom e grande parte reconhecia a lesão provocada pela picada, mas a gravidade da lesão foi superestimada. Contraditoriamente, o conhecimento dos sintomas foi pequeno, o que pode levar ao atraso do tratamento delas mesmas ou dos seus filhos. O conhecimento da aranha foi diretamente relacionado à idade, escolaridade e a acidente loxoscélico prévio.
Collapse
|
49
|
XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta. Clin Toxicol (Phila) 2015. [DOI: 10.3109/15563650.2015.1024953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Lajoie DM, Roberts SA, Zobel-Thropp PA, Delahaye JL, Bandarian V, Binford GJ, Cordes MHJ. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders. J Biol Chem 2015; 290:10994-1007. [PMID: 25752604 DOI: 10.1074/jbc.m115.636951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.
Collapse
Affiliation(s)
- Daniel M Lajoie
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Sue A Roberts
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | | | - Jared L Delahaye
- the Department of Biology, Lewis and Clark College, Portland, Oregon 97219
| | - Vahe Bandarian
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Greta J Binford
- the Department of Biology, Lewis and Clark College, Portland, Oregon 97219
| | - Matthew H J Cordes
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| |
Collapse
|