1
|
Shibuta MK, Aso T, Okawa Y. Dynamic changes in chromatin structure and transcriptional activity in the generative cells of Lilium longiflorum. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01637-5. [PMID: 40232571 DOI: 10.1007/s10265-025-01637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Pollen is required for fertilization and the associated production of seeds and fruits, which are important for human nutrition. Research on the tricellular pollen of Arabidopsis thaliana revealed that chromatin is highly condensed and transcriptional activity is suppressed in sperm cells. However, comprehensive structural investigations involving generative cells of bicellular pollen have not been conducted. In this study, we provide relevant insights into other angiosperms that produce bicellular pollen. Lilium longiflorum, which has large and easily observable nuclei, was used for a detailed analysis of the chromatin structure and transcriptionally active regions in pollen and pollen tubes. Chromatin was condensed, resulting in a ribbon-like structure that was clearly visible in mature generative cell nuclei. Additionally, transcriptionally active regions were restricted to the intersections of chromatin as pollen desiccated. Although de novo transcription was revealed to be unnecessary for pollen tube growth, transcriptional activity temporarily resumed before generative cell division during pollen tube growth. Moreover, the inhibition of de novo transcription influenced changes in nuclear morphology. In this study, the distinctive chromatin structures and transcriptional activity states in generative cell nuclei of bicellular pollen were elucidated, with the generated data contributing to a deeper understanding of transcription and other regulatory mechanisms involved in pollen maturation and pollen tube growth.
Collapse
Affiliation(s)
- Mio K Shibuta
- Academic Assembly (Faculty of Science), Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan.
| | - Tsugumi Aso
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan
| | - Yutsuki Okawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata-City, Yamagata, 990-8560, Japan
| |
Collapse
|
2
|
Kim SI, Ma X, Kong L, Guo W, Xu L, Shan L, Zhang R, He P. Global profiling of CPL3-mediated alternative splicing reveals regulatory mechanisms of DGK5 in plant immunity and phosphatidic acid homeostasis. Genome Biol 2025; 26:65. [PMID: 40119401 PMCID: PMC11927175 DOI: 10.1186/s13059-025-03529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Alternative splicing of precursor mRNAs serves as a crucial mechanism to enhance gene expression plasticity for organismal adaptation. However, the precise regulation and function of alternative splicing in plant immune gene regulation remain elusive. RESULTS Here, by deploying in-depth transcriptome profiling with deep genome coverage coupled with differential expression, differential alternative splicing, and differential transcript usage analysis, we reveal profound and dynamic changes in alternative splicing following treatment with microbial pattern flg22 peptides in Arabidopsis. Our findings highlight RNA polymerase II C-terminal domain phosphatase-like 3 (CPL3) as a key regulator of alternative splicing, preferentially influencing the splicing patterns of defense genes rather than their expression levels. CPL3 mediates the production of a flg22-induced alternative splicing variant, diacylglycerol kinase 5α (DGK5α), which differs from the canonical DGK5β in its interaction with the upstream kinase BIK1 and subsequent phosphorylation, resulting in reduced flg22-triggered production of phosphatidic acid and reactive oxygen species. Furthermore, our functional analysis suggests that DGK5β, but not DGK5α, contributes to plant resistance against virulent and avirulent bacterial infections. CONCLUSIONS These findings underscore the role of CPL3 in modulating alternative splicing dynamics of defense genes and DGK5 isoform-mediated phosphatidic acid homeostasis, shedding light on the intricate mechanisms underlying plant immune gene regulation.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wenbin Guo
- Information and Computational Sciences Department, The James Hutton Institute, Dundee, UK
| | - Lahong Xu
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Runxuan Zhang
- Information and Computational Sciences Department, The James Hutton Institute, Dundee, UK.
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Kopczyńska M, Saha U, Romanenko A, Nojima T, Gdula M, Kamieniarz-Gdula K. Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide. Nucleic Acids Res 2025; 53:gkae1240. [PMID: 39718990 PMCID: PMC11754735 DOI: 10.1093/nar/gkae1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA). However, in higher eukaryotes, the end of mRNA is separated from the sites of transcription termination by hundreds to thousands of base pairs. Currently used genomic annotations only take account of the end of the mature transcript - the sites where pre-mRNA cleavage occurs, while the regions in which transcription terminates are unannotated. Here, we describe the evidence for a marker of transcription termination, which could be widely applicable in genomic studies. Pol II termination regions can be determined genome-wide by detecting Pol II phosphorylated on threonine 4 of its C-terminal domain (Pol II CTD-T4ph). Pol II in this state pauses before leaving the DNA template. Up to date this potent mark has been underused because the evidence for its place and role in termination is scattered across multiple publications. We summarize the observations regarding Pol II CTD-T4ph in termination regions and present bioinformatic analyses that further support Pol II CTD-T4ph as a global termination mark in animals.
Collapse
Affiliation(s)
- Magda Kopczyńska
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Upasana Saha
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Takayuki Nojima
- Medical institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michał R Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
4
|
Li J, Le B, Wang X, Xu Y, Wang S, Li H, Gao L, Mo B, Liu L, Chen X. ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs. THE PLANT CELL 2024; 37:koae293. [PMID: 39495672 DOI: 10.1093/plcell/koae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xufeng Wang
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Li
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Pinoti VF, Ferreira PB, Strini EJ, Lubini G, Thomé V, Cruz JO, Aziani R, Quiapim AC, Pinto APA, Araujo APU, De Paoli HC, Pranchevicius MCS, Goldman MHS. SCI1, a flower regulator of cell proliferation, and its partners NtCDKG2 and NtRH35 interact with the splicing machinery. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6312-6330. [PMID: 39113673 DOI: 10.1093/jxb/erae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 11/01/2024]
Abstract
Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.
Collapse
Affiliation(s)
- Vitor F Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Joelma O Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rodrigo Aziani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Henrique C De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
6
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Li Z, Sun L, Xu X, Liu Y, He H, Deng XW. Light control of three-dimensional chromatin organization in soybean. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2596-2611. [PMID: 38762905 PMCID: PMC11331798 DOI: 10.1111/pbi.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Higher-order chromatin structure is critical for regulation of gene expression. In plants, light profoundly affects the morphogenesis of emerging seedlings as well as global gene expression to ensure optimal adaptation to environmental conditions. However, the changes and functional significance of chromatin organization in response to light during seedling development are not well documented. We constructed Hi-C contact maps for the cotyledon, apical hook and hypocotyl of soybean subjected to dark and light conditions. The resulting high-resolution Hi-C contact maps identified chromosome territories, A/B compartments, A/B sub-compartments, TADs (Topologically Associated Domains) and chromatin loops in each organ. We observed increased chromatin compaction under light and we found that domains that switched from B sub-compartments in darkness to A sub-compartments under light contained genes that were activated during photomorphogenesis. At the local scale, we identified a group of TADs constructed by gene clusters consisting of different numbers of Small Auxin-Upregulated RNAs (SAURs), which exhibited strict co-expression in the hook and hypocotyl in response to light stimulation. In the hypocotyl, RNA polymerase II (RNAPII) regulated the transcription of a SAURs cluster under light via TAD condensation. Our results suggest that the 3D genome is involved in the regulation of light-related gene expression in a tissue-specific manner.
Collapse
Affiliation(s)
- Zhu Li
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Plant Science and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Linhua Sun
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| | - Xiao Xu
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
| | - Yutong Liu
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
| | - Hang He
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| | - Xing Wang Deng
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| |
Collapse
|
8
|
Xu H, Chen X, Zeng G, Qin X, Deng Z, Cheng W, Shen X, Hu Y. Unveiling common and specific features of the COMPASS-like complex in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108709. [PMID: 38744082 DOI: 10.1016/j.plaphy.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The COMPASS-like complex, responsible for depositing H3K4 methylation, exhibits a conserved composition across yeast, plants, and animals, with functional analysis highlighting its crucial roles in plant development and stress response. In this study, we identified nine genes encoding four subunits of the COMPASS-like complex through homologous search. Phylogenetic analysis revealed the presence of two additional ASH2 genes in the sorghum genome, specifically expressed in endosperms, suggesting the formation of a unique COMPASS-like complex in sorghum endosperms. Y2H and BiFC protein-protein interaction tests demonstrated the interaction between SbRbBP5 and SbASH2A/B/C, while the association between other subunits appeared weak, possibly due to sequence variations in SbWDR5 or synergistic interactions among COMPASS-like complex subunits. The interaction between ATX1 and the C-Terminal Domain (CTD) of Pol II, reported in Arabidopsis, was not detected in sorghum. However, we made the novel discovery of transcriptional activation activity in RbBP5, which is conserved in sorghum, rice, and Arabidopsis, providing valuable insights into the mechanism by which the COMPASS-like complex regulates gene expression in plants.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China; Jingchu University of Technology, Jingmen, Hubei, 448000, China
| | - Xiaoliang Chen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Gongjian Zeng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiner Qin
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Zhuying Deng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wenhan Cheng
- Jingchu University of Technology, Jingmen, Hubei, 448000, China
| | - Xiangling Shen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yongfeng Hu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
9
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
10
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
11
|
Bielewicz D, Dolata J, Bajczyk M, Szewc L, Gulanicz T, Bhat SS, Karlik A, Jozwiak M, Jarmolowski A, Szweykowska-Kulinska Z. Hyponastic Leaves 1 Interacts with RNA Pol II to Ensure Proper Transcription of MicroRNA Genes. PLANT & CELL PHYSIOLOGY 2023; 64:571-582. [PMID: 37040378 DOI: 10.1093/pcp/pcad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
Hyponastic Leaves 1 (HYL1) [also known as Double-stranded RNA-Binding protein 1 (DRB1)] is a double-stranded RNA-binding protein involved in microRNA (miRNA) processing in plants. It is a core component of the Microprocessor complex and enhances the efficiency and precision of miRNA processing by the Dicer-Like 1 protein. In this work, we report a novel function of the HYL1 protein in the transcription of miRNA (MIR) genes. HYL1 colocalizes with RNA polymerase II and affects its distribution along MIR genes. Moreover, proteomic experiments revealed that the HYL1 protein interacts with many transcription factors. Finally, we show that the action of HYL1 is not limited to MIR genes and impacts the expression of many other genes, a majority of which are involved in plastid organization. These discoveries indicate HYL1 as an additional player in gene regulation at the transcriptional level, independent of its role in miRNA biogenesis.
Collapse
Affiliation(s)
- Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Lukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Susheel S Bhat
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Anna Karlik
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Monika Jozwiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| |
Collapse
|
12
|
Mazhar MW, Yusof NY, Shaheen T, Saif S, Raza A, Mazhar F. Sequence, Secondary Structure, and Phylogenetic Conservation of MicroRNAs in Arabidopsis thaliana. Bioinform Biol Insights 2022; 16:11779322221142116. [PMID: 36570328 PMCID: PMC9768830 DOI: 10.1177/11779322221142116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are small non-coding RNA molecules that are produced in a cell endogenously. They are made up of 18 to 26 nucleotides in strength. Due to their evolutionary conserved nature, most of the miRNAs provide a logical basis for the prediction of novel miRNAs and their clusters in plants such as sunflowers related to the Asteraceae family. In addition, they participate in different biological processes of plants, including cell signaling and metabolism, development, growth, and tolerance to (biotic and abiotic) stresses. In this study profiling, conservation and characterization of novel miRNA possessing conserved nature in various plants and their targets annotation in sunflower (Asteraceae) were obtained by using various computational tools and software. As a result, we looked at 152 microRNAs in Arabidopsis thaliana that had already been predicted. Drought tolerance stress is mediated by these 152 non-coding RNAs. Following that, we used local alignment to predict novel microRNAs that were specific to Helianthus annuus. We used BLAST to do a local alignment, and we chose sequences with an identity of 80% to 100%. MIR156a, MIR164a, MIR165a, MIR170, MIR172a, MIR172b, MIR319a, MIR393a, MIR394a, MIR399a, MIR156h, and MIR414 are the new anticipated miRNAs. We used MFold to predict the secondary structure of new microRNAs. We used conservation analysis and phylogenetic analysis against a variety of organisms, including Gossypium hirsutum, H. annuus, A. thaliana, Triticum aestivum, Saccharum officinarum, Zea mays, Brassica napus, Solanum tuberosum, Solanum lycopersicum, and Oryza sativa, to determine the evolutionary history of these novel non-coding RNAs. Clustal W was used to analyze the evolutionary history of discovered miRNAs.
Collapse
Affiliation(s)
- Muhammad Waqar Mazhar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan,Muhammad Waqar Mazhar, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saira Saif
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad Raza
- Department of Biological Sciences, Nuclear Institute for Agriculture & Biology, Faisalabad, Pakistan
| | - Fatima Mazhar
- Department of Microbiology, Muhammad Nawaz Sharif University of Agriculture, Multan, Multan, Pakistan
| |
Collapse
|
13
|
Qin Y, Long Y, Zhai J. Genome-wide characterization of nascent RNA processing in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102294. [PMID: 36063636 DOI: 10.1016/j.pbi.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Following transcription initiation, RNA polymerase II (Pol II) elongates through the genic region and terminates after the polyadenylation signal. This process is accompanied by splicing, 3' cleavage, and polyadenylation, to eventually form a mature mRNA. Recent advances in short-read and long-read high-throughput sequencing methods have shed light on the global landscape of these co-transcriptional events at nucleotide resolution. In this mini review, we summarize recent developments in genome-wide approaches that broadened our understanding of nascent RNA processing in plants.
Collapse
Affiliation(s)
- Yuwei Qin
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yanping Long
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jixian Zhai
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
14
|
Fukudome A, Ishiga Y, Nagashima Y, Davidson KH, Chou HA, Mysore KS, Koiwa H. Functional diversity of Medicago truncatula RNA polymerase II CTD phosphatase isoforms produced in the Arabidopsis thaliana superexpression platform. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111309. [PMID: 35696909 DOI: 10.1016/j.plantsci.2022.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Medicago truncatula is a model system for legume plants, which has substantially expanded the genome relative to the prototypical model dicot plant, Arabidopsis thaliana. An essential transcriptional regulator, FCP1 (transcription factor IIF-interacting RNA polymerase II carboxyl-terminal phosphatase 1) ortholog, is encoded by a single essential gene CPL4 (CTD-phosphatase-like 4), whereas M. truncatula genome contains four genes homologous to FCP1/AtCPL4, and splicing variants of MtCPL4 are observed. Functional diversification of MtCPL4 family proteins was analyzed using recombinant proteins (MtCPL4a1, MtCPL4a2, and MtCPL4b) produced in Arabidopsis cell culture system developed for plant protein overexpression. In vitro CTD phosphatase assay using highly purified MtCPL4 preparations revealed a potent CTD phosphatase activity in MtCPL4b, but not two splicing variants of MtCPL4a. On the other hand, in planta binding assay to RNA polymerase II (pol II) revealed a greater pol II-binding activity of both MtCPL4a variants. Our results indicate functional diversification of MtCPL4 isoforms and suggest the presence of a large number of functionally specialized CTD-phosphatase-like proteins in plants.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yasuhiro Ishiga
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukihiro Nagashima
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine H Davidson
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hsiu-An Chou
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74044, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
The Arabidopsis DREAM complex antagonizes WDR5A to modulate histone H3K4me2/3 deposition for a subset of genome repression. Proc Natl Acad Sci U S A 2022; 119:e2206075119. [PMID: 35759663 PMCID: PMC9271193 DOI: 10.1073/pnas.2206075119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The master transcriptional repressor DREAM (dimerization partner, RB-like, E2F and multivulval class B) complex regulates the cell cycle in eukaryotes, but much remains unknown about how it transmits repressive signals on chromatin to the primary transcriptional machinery (e.g., RNA polymerase II [Pol II]). Through a forward genetic screen, we identified BTE1 (barrier of transcription elongation 1), a plant-specific component of the DREAM complex. The subsequent characterization demonstrated that DREAM complex containing BTE1 antagonizes the activity of Complex Proteins Associated with Set1 (COMPASS)-like complex to repress H3K4me3 occupancy and inhibits Pol II elongation at DREAM target genes. We showed that BTE1 is recruited to chromatin at the promoter-proximal regions of target genes by E2F transcription factors. DREAM target genes exhibit characteristic enrichment of H2A.Z and H3K4me2 modification on chromatin. We further showed that BTE1 directly interacts with WDR5A, a core component of COMPASS-like complex, repressing WDR5A chromatin binding and the elongation of transcription on DREAM target genes. H3K4me3 is known to correlate with the Pol II transcription activation and promotes efficient elongation. Thus, our study illustrates a transcriptional repression mechanism by which the DREAM complex dampens H3K4me3 deposition at a set of genes through its interaction with WDR5A.
Collapse
|
16
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
17
|
Stochastic Variation in DNA Methylation Modulates Nucleosome Occupancy and Alternative Splicing in Arabidopsis thaliana. PLANTS 2022; 11:plants11091105. [PMID: 35567106 PMCID: PMC9101026 DOI: 10.3390/plants11091105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Plants use complex gene regulatory mechanisms to overcome diverse environmental challenges. For instance, cold stress induces rapid and massive transcriptome changes via alternative splicing (AS) to confer cold tolerance in plants. In mammals, mounting evidence suggests chromatin structure can regulate co-transcriptional AS. Recent evidence also supports co-transcriptional regulation of AS in plants, but how dynamic changes in DNA methylation and the chromatin structure influence the AS process upon cold stress remains poorly understood. In this study, we used the DNA methylation inhibitor 5-Aza-2′-Deoxycytidine (5-aza-dC) to investigate the role of stochastic variations in DNA methylation and nucleosome occupancy in modulating cold-induced AS, in Arabidopsis thaliana (Arabidopsis). Our results demonstrate that 5-aza-dC derived stochastic hypomethylation modulates nucleosome occupancy and AS profiles of genes implicated in RNA metabolism, plant hormone signal transduction, and of cold-related genes in response to cold stress. We also demonstrate that cold-induced remodelling of DNA methylation regulates genes involved in amino acid metabolism. Collectively, we demonstrate that sudden changes in DNA methylation via drug treatment can influence nucleosome occupancy levels and modulate AS in a temperature-dependent manner to regulate plant metabolism and physiological stress adaptation.
Collapse
|
18
|
Cyclin-Dependent Kinases and CTD Phosphatases in Cell Cycle Transcriptional Control: Conservation across Eukaryotic Kingdoms and Uniqueness to Plants. Cells 2022; 11:cells11020279. [PMID: 35053398 PMCID: PMC8774115 DOI: 10.3390/cells11020279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cell cycle control is vital for cell proliferation in all eukaryotic organisms. The entire cell cycle can be conceptually separated into four distinct phases, Gap 1 (G1), DNA synthesis (S), G2, and mitosis (M), which progress sequentially. The precise control of transcription, in particular, at the G1 to S and G2 to M transitions, is crucial for the synthesis of many phase-specific proteins, to ensure orderly progression throughout the cell cycle. This mini-review highlights highly conserved transcriptional regulators that are shared in budding yeast (Saccharomyces cerevisiae), Arabidopsis thaliana model plant, and humans, which have been separated for more than a billion years of evolution. These include structurally and/or functionally conserved regulators cyclin-dependent kinases (CDKs), RNA polymerase II C-terminal domain (CTD) phosphatases, and the classical versus shortcut models of Pol II transcriptional control. A few of CDKs and CTD phosphatases counteract to control the Pol II CTD Ser phosphorylation codes and are considered critical regulators of Pol II transcriptional process from initiation to elongation and termination. The functions of plant-unique CDKs and CTD phosphatases in relation to cell division are also briefly summarized. Future studies towards testing a cooperative transcriptional mechanism, which is proposed here and involves sequence-specific transcription factors and the shortcut model of Pol II CTD code modulation, across the three eukaryotic kingdoms will reveal how individual organisms achieve the most productive, large-scale transcription of phase-specific genes required for orderly progression throughout the entire cell cycle.
Collapse
|
19
|
Subcellular Proteomics to Understand Promotive Effect of Plant-Derived Smoke Solution on Soybean Root. Proteomes 2021; 9:proteomes9040039. [PMID: 34698284 PMCID: PMC8544748 DOI: 10.3390/proteomes9040039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-derived smoke solution enhances soybean root growth; however, its mechanism is not clearly understood. Subcellular proteomics techniques were used for underlying roles of plant-derived smoke solution on soybean root growth. The fractions of membrane and nucleus were purified and evaluated for purity. ATPase and histone were enriched in the fractions of membrane and nucleus, respectively. Principal component analysis of proteomic results indicated that the plant-derived smoke solution affected the proteins in the membrane and nucleus. The proteins in the membrane and nucleus mainly increased and decreased, respectively, by the treatment of plant-derived smoke solution compared with control. In the proteins in the plasma membrane, ATPase increased, which was confirmed by immunoblot analysis, and ATP contents increased through the treatment of plant-derived smoke solution. Additionally, although the nuclear proteins mainly decreased, the expression of RNA polymerase II was up-regulated through the treatment of plant-derived smoke solution. These results indicate that plant-derived smoke solution enhanced soybean root growth through the transcriptional promotion with RNA polymerase II expression and the energy production with ATPase accumulation.
Collapse
|
20
|
Yuan C, Xu J, Chen Q, Liu Q, Hu Y, Jin Y, Qin C. C-terminal domain phosphatase-like 1 (CPL1) is involved in floral transition in Arabidopsis. BMC Genomics 2021; 22:642. [PMID: 34482814 PMCID: PMC8418720 DOI: 10.1186/s12864-021-07966-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA polymerase II plays critical roles in transcription in eukaryotic organisms. C-terminal Domain Phosphatase-like 1 (CPL1) regulates the phosphorylation state of the C-terminal domain of RNA polymerase II subunit B1, which is critical in determining RNA polymerase II activity. CPL1 plays an important role in miRNA biogenesis, plant growth and stress responses. Although cpl1 mutant showes delayed-flowering phenotype, the molecular mechanism behind CPL1's role in floral transition is still unknown. RESULTS To study the role of CPL1 during the floral transition, we first tested phenotypes of cpl1-3 mutant, which harbors a point-mutation. The cpl1-3 mutant contains a G-to-A transition in the second exon, which results in an amino acid substitution from Glu to Lys (E116K). Further analyses found that the mutated amino acid (Glu) was conserved in these species. As a result, we found that the cpl1-3 mutant experienced delayed flowering under both long- and short-day conditions, and CPL1 is involved in the vernalization pathway. Transcriptome analysis identified 109 genes differentially expressed in the cpl1 mutant, with 2 being involved in floral transition. Differential expression of the two flowering-related DEGs was further validated by qRT-PCR. CONCLUSIONS Flowering genetic pathways analysis coupled with transciptomic analysis provides potential genes related to floral transition in the cpl1-3 mutant, and a framework for future studies of the molecular mechanisms behind CPL1's role in floral transition.
Collapse
Affiliation(s)
- Chen Yuan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Jingya Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qianqian Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qinggang Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yikai Hu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yicheng Jin
- Division of Research and Development, Oriomics Inc, 310018, Hangzhou, China
| | - Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| |
Collapse
|
21
|
Chaudhary S, Jabre I, Syed NH. Epigenetic differences in an identical genetic background modulate alternative splicing in A. thaliana. Genomics 2021; 113:3476-3486. [PMID: 34391867 DOI: 10.1016/j.ygeno.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
How stable and temperature-dependent variations in DNA methylation and nucleosome occupancy influence alternative splicing (AS) remains poorly understood in plants. To answer this, we generated transcriptome, whole-genome bisulfite, and MNase sequencing data for an epigenetic Recombinant Inbred Line (epiRIL) of A. thaliana at normal and cold temperature. For comparative analysis, the same data sets for the parental ecotype Columbia (Col-0) were also generated, whereas for DNA methylation, previously published high confidence methylation profiles of Col-0 were used. Significant epigenetic differences in an identical genetic background were observed between Col-0 and epiRIL lines under normal and cold temperatures. Our transcriptome data revealed that differential DNA methylation and nucleosome occupancy modulate expression levels of many genes and AS in response to cold. Collectively, DNA methylation and nucleosome levels exhibit characteristic patterns around intron-exon boundaries at normal and cold conditions, and any perturbation in them, in an identical genetic background is sufficient to modulate AS in Arabidopsis.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Ibtissam Jabre
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Naeem H Syed
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| |
Collapse
|
22
|
Shibuta MK, Sakamoto T, Yamaoka T, Yoshikawa M, Kasamatsu S, Yagi N, Fujimoto S, Suzuki T, Uchino S, Sato Y, Kimura H, Matsunaga S. A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Commun Biol 2021; 4:580. [PMID: 33990678 PMCID: PMC8121908 DOI: 10.1038/s42003-021-02106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Spatiotemporal changes in general transcription levels play a vital role in the dynamic regulation of various critical activities. Phosphorylation levels at Ser2 in heptad repeats within the C-terminal domain of RNA polymerase II, representing the elongation form, is an indicator of transcription. However, rapid transcriptional changes during tissue development and cellular phenomena are difficult to capture in living organisms. We introduced a genetically encoded system termed modification-specific intracellular antibody (mintbody) into Arabidopsis thaliana. We developed a protein processing- and 2A peptide-mediated two-component system for real-time quantitative measurement of endogenous modification level. This system enables quantitative tracking of the spatiotemporal dynamics of transcription. Using this method, we observed that the transcription level varies among tissues in the root and changes dynamically during the mitotic phase. The approach is effective for achieving live visualization of the transcription level in a single cell and facilitates an improved understanding of spatiotemporal transcription dynamics.
Collapse
Affiliation(s)
- Mio K Shibuta
- Graduate School of Frontier Sciences, Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takuya Sakamoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Tamako Yamaoka
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Mayu Yoshikawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Shusuke Kasamatsu
- Academic Assembly (Faculty of Science), Yamagata University, Yamagata, Japan
| | - Noriyoshi Yagi
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Satoru Fujimoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Satoshi Uchino
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Yuko Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Japan
| | - Sachihiro Matsunaga
- Graduate School of Frontier Sciences, Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
23
|
Wang CC, Hsieh HY, Hsieh HL, Tu SL. The Physcomitrella patens chromatin adaptor PpMRG1 interacts with H3K36me3 and regulates light-responsive alternative splicing. PLANT PHYSIOLOGY 2021; 185:1229-1241. [PMID: 33793927 PMCID: PMC8133547 DOI: 10.1093/plphys/kiaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Plants perceive dynamic light conditions and optimize their growth and development accordingly by regulating gene expression at multiple levels. Alternative splicing (AS), a widespread mechanism in eukaryotes that post-transcriptionally generates two or more messenger RNAs (mRNAs) from the same pre-mRNA, is rapidly controlled by light. However, a detailed mechanism of light-regulated AS is still not clear. In this study, we demonstrate that histone 3 lysine 36 trimethylation (H3K36me3) rapidly and differentially responds to light at specific gene loci with light-regulated intron retention (IR) of their transcripts in the moss Physcomitrella patens. However, the level of H3K36me3 following exposure to light is inversely related to that of IR events. Physcomitrella patens MORF-related gene 1 (PpMRG1), a chromatin adaptor, bound with higher affinity to H3K36me3 in light conditions than in darkness and was differentially targeted to gene loci showing light-responsive IR. Transcriptome analysis indicated that PpMRG1 functions in the regulation of light-mediated AS. Furthermore, PpMRG1 was also involved in red light-mediated phototropic responses. Our results suggest that light regulates histone methylation, which leads to alterations of AS patterns. The chromatin adaptor PpMRG1 potentially participates in light-mediated AS, revealing that chromatin-coupled regulation of pre-mRNA splicing is an important aspect of the plant's response to environmental changes.
Collapse
Affiliation(s)
- Chien-Chang Wang
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Qian F, Zhao QY, Zhang TN, Li YL, Su YN, Li L, Sui JH, Chen S, He XJ. A histone H3K27me3 reader cooperates with a family of PHD finger-containing proteins to regulate flowering time in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:787-802. [PMID: 33433058 DOI: 10.1111/jipb.13067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 05/29/2023]
Abstract
Trimethylated histone H3 lysine 27 (H3K27me3) is a repressive histone marker that regulates a variety of developmental processes, including those that determine flowering time. However, relatively little is known about the mechanism of how H3K27me3 is recognized to regulate transcription. Here, we identified BAH domain-containing transcriptional regulator 1 (BDT1) as an H3K27me3 reader. BDT1 is responsible for preventing flowering by suppressing the expression of flowering genes. Mutation of the H3K27me3 recognition sites in the BAH domain disrupted the binding of BDT1 to H3K27me3, leading to de-repression of H3K27me3-enriched flowering genes and an early-flowering phenotype. We also found that BDT1 interacts with a family of PHD finger-containing proteins, which we named PHD1-6, and with CPL2, a Pol II carboxyl terminal domain (CTD) phosphatase responsible for transcriptional repression. Pull-down assays showed that the PHD finger-containing proteins can enhance the binding of BDT1 to the H3K27me3 peptide. Mutations in all of the PHD genes caused increased expression of flowering genes and an early-flowering phenotype. This study suggests that the binding of BDT1 to the H3K27me3 peptide, which is enhanced by PHD proteins, is critical for preventing early flowering.
Collapse
Affiliation(s)
- Feng Qian
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qiu-Yuan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Tie-Nan Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yu-Lu Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jian-Hua Sui
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Zhang YZ, Yuan J, Zhang L, Chen C, Wang Y, Zhang G, Peng L, Xie SS, Jiang J, Zhu JK, Du J, Duan CG. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. Nat Commun 2020; 11:6212. [PMID: 33277495 PMCID: PMC7718874 DOI: 10.1038/s41467-020-20089-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Histone 3 Lys 27 trimethylation (H3K27me3)-mediated epigenetic silencing plays a critical role in multiple biological processes. However, the H3K27me3 recognition and transcriptional repression mechanisms are only partially understood. Here, we report a mechanism for H3K27me3 recognition and transcriptional repression. Our structural and biochemical data showed that the BAH domain protein AIPP3 and the PHD proteins AIPP2 and PAIPP2 cooperate to read H3K27me3 and unmodified H3K4 histone marks, respectively, in Arabidopsis. The BAH-PHD bivalent histone reader complex silences a substantial subset of H3K27me3-enriched loci, including a number of development and stress response-related genes such as the RNA silencing effector gene ARGONAUTE 5 (AGO5). We found that the BAH-PHD module associates with CPL2, a plant-specific Pol II carboxyl terminal domain (CTD) phosphatase, to form the BAH-PHD-CPL2 complex (BPC) for transcriptional repression. The BPC complex represses transcription through CPL2-mediated CTD dephosphorylation, thereby causing inhibition of Pol II release from the transcriptional start site. Our work reveals a mechanism coupling H3K27me3 recognition with transcriptional repression through the alteration of Pol II phosphorylation states, thereby contributing to our understanding of the mechanism of H3K27me3-dependent silencing.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianlong Yuan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lingrui Zhang
- grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Chunxiang Chen
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yuhua Wang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Guiping Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Li Peng
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Si-Si Xie
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Jiang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Jian-Kang Zhu
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jiamu Du
- grid.263817.9Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cheng-Guo Duan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| |
Collapse
|
26
|
Maß L, Holtmannspötter M, Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1423-1436. [PMID: 32896918 DOI: 10.1111/tpj.14986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
To unravel the function of a protein of interest, it is crucial to asses to what extent it associates via direct interactions or by overlapping expression with other proteins. ROXY1, a land plant-specific glutaredoxin, exerts a function in Arabidopsis flower development and interacts with TGA transcription factors in the nucleus. We detected a novel ROXY1 function in the root meristem. Root cells that lack chlorophyll reducing plant-specific background problems that can hamper colocalization 3D microscopy. Thus far, a super-resolution three-dimensional stochastic optical reconstruction microscopy (3D-dSTORM) approach has mainly been applied in animal studies. We established 3D-dSTORM using the roxy1 mutant complemented with green fluorescence protein-ROXY1 and investigated its colocalization with three distinct RNAPII isoforms. To quantify the colocalization results, 3D-dSTORM was coupled with the coordinate-based colocalization method. Interestingly, ROXY1 proteins colocalize with different RNA polymerase II (RNAPII) isoforms that are active at distinct transcription cycle steps. Our colocalization data provide new insights on nuclear glutaredoxin activities suggesting that ROXY1 is not only required in early transcription initiation events via interaction with transcription factors but likely also participates throughout further transcription processes until late termination steps. Furthermore, we showed the applicability of the combined approaches to detect and quantify responses to altered growth conditions, exemplified by analysis of H2 O2 treatment, causing a dissociation of ROXY1 and RNAPII isoforms. We envisage that the powerful dual-color 3D-dSTORM/coordinate-based colocalization combination offers plant cell biologists the opportunity to colocalize and quantify root meristem proteins at an increased, unprecedented resolution level <50 nm, which will enable the detection of novel subcellular protein associations and functions.
Collapse
Affiliation(s)
- Lucia Maß
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Michael Holtmannspötter
- Integrated Bioimaging Facility iBiOs, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
- Center of Cellular Nanoanalytics Osnabrück, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Sabine Zachgo
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| |
Collapse
|
27
|
Abstract
Expansion microscopy (ExM) improves image resolution of specimens without requirements of sophisticated techniques or equipment. Probes or proteins are anchored onto an acrylamide gel matrix which is then expanded with osmotic pressure. As the physical distance between two signal points increases, previously confounded signals can be resolved while their relative spatial locations are retained. ExM has been successfully applied to several animal tissues, but its application to plant tissues was only recently demonstrated. Here we provide a detailed ExM protocol for plant tissues using fluorescent immunostaining of developing Arabidopsis thaliana (Arabidopsis) seeds as an example. This modified ExM protocol enables expansion of ovule/seed samples, and preserves the majority of fluorescent protein signals in the expanded samples. The fluorescent immunostaining observed using this protocol demonstrates the feasibility of detecting cellular events and subcellular structures in expanded plant samples. This ExM protocol variant for plants can serve as a guideline for applying ExM to various plant tissues and help increase the resolution of corresponding microscopy based studies.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
28
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
29
|
Zhang B, Zhong X, Sauane M, Zhao Y, Zheng ZL. Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy. Cells 2020; 9:cells9030621. [PMID: 32143485 PMCID: PMC7140432 DOI: 10.3390/cells9030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
Rho GTPases, including Rho, Cdc42, Rac and ROP subfamilies, are key signaling molecules in RNA polymerase II (Pol II) transcriptional control. Our prior work has shown that plant ROP and yeast Cdc42 GTPases similarly modulate Ser2 and Ser5 phosphorylation status of the C-terminal domain (CTD) of the Pol II largest subunit by regulating CTD phosphatase degradation. Here, we present genetic and pharmacological evidence showing that Cdc42 and Rac1 GTPase signaling modulates a similar CTD Ser2 and Ser5 phosphorylation code in cultured human cancer cells. While siRNA knockdown of Cdc42 and Rac1, respectively, in HeLa cells increased the level of CTD Ser phosphatases RPAP2 and FCP1, they both decreased the level of CTD kinases CDK7 and CDK13. In addition, the protein degradation inhibitor MG132 reversed the effect of THZ1, a CDK7 inhibitor which could decrease the cell number and amount of CDK7 and CDK13, accompanied by a reduction in the level of CTD Ser2 and Ser5 phosphorylation and DOCK4 and DOCK9 (the activators for Rac1 and Cdc42, respectively). Conversely, treatments of Torin1 or serum deprivation, both of which promote protein degradation, could enhance the effect of THZ1, indicating the involvement of protein degradation in controlling CDK7 and CDK13. Our results support an evolutionarily conserved signaling shortcut model linking Rho GTPases to Pol II transcription across three kingdoms, Fungi, Plantae and Animalia, and could lead to the development of a potential synthetic-lethal strategy in controlling cancer cell proliferation or death.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang 325060, China
| | - Xuelin Zhong
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
- Biology PhD Program, Graduate School and University Center, City University of New York, New York, NY 10016, USA
| | - Moira Sauane
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
- Biology PhD Program, Graduate School and University Center, City University of New York, New York, NY 10016, USA
| | - Yihong Zhao
- Center of Alcohol and Substance Use Studies and Department of Applied Psychology, Graduate School of Applied and Professional Psychology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
- Correspondence:
| |
Collapse
|
30
|
Chen C, Shu J, Li C, Thapa RK, Nguyen V, Yu K, Yuan ZC, Kohalmi SE, Liu J, Marsolais F, Huang S, Cui Y. RNA polymerase II-independent recruitment of SPT6L at transcription start sites in Arabidopsis. Nucleic Acids Res 2020; 47:6714-6725. [PMID: 31127286 PMCID: PMC6648355 DOI: 10.1093/nar/gkz465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 01/20/2023] Open
Abstract
SPT6 is a conserved elongation factor that is associated with phosphorylated RNA polymerase II (RNAPII) during transcription. Recent transcriptome analysis in yeast mutants revealed its potential role in the control of transcription initiation at genic promoters. However, the mechanism by which this is achieved and how this is linked to elongation remains to be elucidated. Here, we present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNAPII occupancy across transcribed genes. We also further demonstrate that SPT6L enrichment is unexpectedly shifted, from gene body to transcription start site (TSS), when its association with RNAPII is disrupted. Protein domains, required for proper function and enrichment of SPT6L on chromatin, are subsequently identified. Finally, our results suggest that recruitment of SPT6L at TSS is indispensable for its spreading along the gene body during transcription. These findings provide new insights into the mechanisms underlying SPT6L recruitment in transcription and shed light on the coordination between transcription initiation and elongation.
Collapse
Affiliation(s)
- Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Jie Shu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Chenlong Li
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Raj K Thapa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada
| | - Kangfu Yu
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, Ontario N0R 1G0, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada
| | - Susanne E Kohalmi
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Jun Liu
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Shangzhi Huang
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
31
|
Kao P, Nodine MD. Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions. Sci Rep 2019; 9:17159. [PMID: 31748673 PMCID: PMC6868190 DOI: 10.1038/s41598-019-53704-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022] Open
Abstract
Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
32
|
Jabre I, Reddy ASN, Kalyna M, Chaudhary S, Khokhar W, Byrne LJ, Wilson CM, Syed NH. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res 2019; 47:2716-2726. [PMID: 30793202 PMCID: PMC6451118 DOI: 10.1093/nar/gkz121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.
Collapse
Affiliation(s)
- Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Lee J Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cornelia M Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
33
|
Hu Z, Ghosh A, Stolze SC, Horváth M, Bai B, Schaefer S, Zündorf S, Liu S, Harzen A, Hajheidari M, Sarnowski TJ, Nakagami H, Koncz Z, Koncz C. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:411-429. [PMID: 31276249 PMCID: PMC6852550 DOI: 10.1111/tpj.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Ajit Ghosh
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhet3114, Bangladesh
| | - Sara C. Stolze
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mihály Horváth
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Bing Bai
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Sabine Schaefer
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Simone Zündorf
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Shanda Liu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Anne Harzen
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mohsen Hajheidari
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Botanical InstituteCologne Biocenter, Cluster of Excellence on Plant Sciences, University of CologneD‐50674CologneGermany
| | - Tomasz J. Sarnowski
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5A02‐106WarsawPoland
| | - Hirofumi Nakagami
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Zsuzsa Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Csaba Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Plant BiologyBiological Research Center of Hungarian Academy of SciencesTemesvári krt. 62H‐6726SzegedHungary
| |
Collapse
|
34
|
Li S, Xu R, Li A, Liu K, Gu L, Li M, Zhang H, Zhang Y, Zhuang S, Wang Q, Gao G, Li N, Zhang C, Li Y, Yu B. SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2019; 46:9148-9159. [PMID: 29982637 PMCID: PMC6158494 DOI: 10.1093/nar/gky591] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress gene expression. In plants, the RNase III enzyme Dicer-like (DCL1) processes primary miRNAs (pri-miRNAs) into miRNAs. Here, we show that SMALL1 (SMA1), a homolog of the DEAD-box pre-mRNA splicing factor Prp28, plays essential roles in miRNA biogenesis in Arabidopsis. A hypomorphic sma1-1 mutation causes growth defects and reduces miRNA accumulation correlated with increased target transcript levels. SMA1 interacts with the DCL1 complex and positively influences pri-miRNA processing. Moreover, SMA1 binds the promoter region of genes encoding pri-miRNAs (MIRs) and is required for MIR transcription. Furthermore, SMA1 also enhances the abundance of the DCL1 protein levels through promoting the splicing of the DCL1 pre-mRNAs. Collectively, our data provide new insights into the function of SMA1/Prp28 in regulating miRNA abundance in plants.
Collapse
Affiliation(s)
- Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aixia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - Liqing Gu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mu Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - Hairui Zhang
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangshang Zhuang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gang Gao
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| |
Collapse
|
35
|
Hajheidari M, Koncz C, Bucher M. Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. FRONTIERS IN PLANT SCIENCE 2019; 10:454. [PMID: 31031789 PMCID: PMC6474313 DOI: 10.3389/fpls.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Mitra P, Deshmukh AS, Gurupwar R, Kashyap P. Characterization of Toxoplasma gondii Spt5 like transcription elongation factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:184-197. [DOI: 10.1016/j.bbagrm.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
|
37
|
Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet 2019; 15:e1007969. [PMID: 30707695 PMCID: PMC6373976 DOI: 10.1371/journal.pgen.1007969] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/13/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a “positional information system” for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in fact mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an Arabidopsis RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes. Genes represent DNA elements that are transcribed into mRNA. However, the position where transcription actually starts can be dynamically regulated to expand the diversity of RNA isoforms produced from a single gene. Functionally, alternative Transcription Start Sites (TSSs) may generate protein isoforms with differing N-terminal regions and distinct cellular functions. In plants, light signaling regulates protein isoforms largely through regulated TSS selection, emphasizing the biological significance of this mechanism. Despite the importance of alternative TSS selection, little is known about the underlying molecular mechanisms. Here, we characterize for the first time how transcription initiation from an upstream promoter represses alternative downstream promoter activity in plants. This repression mechanism is associated with chromatin changes that are required to maintain precise gene expression control. Specific chromatin signatures are established during transcription via dynamic interactions between the transcription machinery and associated factors. The conserved histone chaperone complex FACT is one such factor involved in regulating the chromatin environment along genes during transcription. We find that mutant plants with reduced FACT activity specifically initiate transcription from thousands of intragenic positions, thus expanding RNA isoform diversity. Overall, our study reveals conserved and plant-specific chromatin features associated with the co-transcriptional repression of downstream intragenic TSSs. These findings promise to help inform the molecular mechanism underlying environmentally-triggered TSS regulation in plants.
Collapse
|
38
|
Cao Y, Ma L. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1222. [PMID: 31632433 PMCID: PMC6785753 DOI: 10.3389/fpls.2019.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Gene expression in eukaryotes is controlled at multiple levels, including transcriptional and post-transcriptional levels. The transcriptional regulation of gene expression is complex and includes the regulation of the initiation and elongation phases of transcription. Meanwhile, the post-transcriptional regulation of gene expression includes precursor messenger RNA (pre-mRNA) splicing, 5' capping, and 3' polyadenylation. Among these events, pre-mRNA splicing, conducted by the spliceosome, plays a key role in the regulation of gene expression, and the efficiency and precision of pre-mRNA splicing are critical for gene function. Ski-interacting protein (SKIP) is an evolutionarily conserved protein from yeast to humans. In plants, SKIP is a bifunctional regulator that works as a splicing factor as part of the spliceosome and as a transcriptional regulator via interactions with the transcriptional regulatory complex. Here, we review how the functions of SKIP as a splicing factor and a transcriptional regulator affect environmental fitness and development in plants.
Collapse
|
39
|
Zhu J, Liu M, Liu X, Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. NATURE PLANTS 2018; 4:1112-1123. [PMID: 30374093 DOI: 10.1038/s41477-018-0280-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
RNA polymerase II (Pol II) plays an essential role in gene expression. We used plant native elongating transcript sequencing and global run-on sequencing to profile nascent RNAs genome wide in Arabidopsis. We found that Pol II tends to accumulate downstream of the transcription start site (TSS). Moreover, Pol II with an unphosphorylated carboxyl-terminal domain (CTD) mainly accumulates downstream of the TSS, while Pol II with a Ser 5P CTD associates with spliceosomes, and Pol II with a Ser 2P CTD presents a sharp peak within 250 base pairs downstream of the polyadenylation site (PAS). Pol II pausing both at promoter-proximal regions and after PAS affects the transcription rate. Interestingly, active genes can be classified into three clusters based on the different modes of transcription. We demonstrate that these two methods are suitable to study Pol II dynamics in planta. Although transcription is conserved overall within eukaryotes, there is plant-specific regulation.
Collapse
Affiliation(s)
- Jiafu Zhu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobin Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhicheng Dong
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
40
|
The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Sci Rep 2018; 8:13454. [PMID: 30194343 PMCID: PMC6128934 DOI: 10.1038/s41598-018-31837-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Crop breeding for improved disease resistance may be achieved through the manipulation of host susceptibility genes. Previously we identified multiple Arabidopsis mutants known as enhanced stress response1 (esr1) that have defects in a KH-domain RNA-binding protein and conferred increased resistance to the root fungal pathogen Fusarium oxysporum. Here, screening the same mutagenized population we discovered two further enhanced stress response mutants that also conferred enhanced resistance to F. oxysporum. These mutants also have enhanced resistance to a leaf fungal pathogen (Alternaria brassicicola) and an aphid pest (Myzus persicae), but not to the bacterial leaf pathogen Pseudomonas syringae. The causal alleles in these mutants were found to have defects in the ESR1 interacting protein partner RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) and subsequently given the allele symbols cpl1-7 and cpl1-8. These results define a new role for CPL1 as a pathogen and pest susceptibility gene. Global transcriptome analysis and oxidative stress assays showed these cpl1 mutants have increased tolerance to oxidative stress. In particular, components of biotic stress responsive pathways were enriched in cpl1 over wild-type up-regulated gene expression datasets including genes related to defence, heat shock proteins and oxidative stress/redox state processes.
Collapse
|
41
|
Zhang QQ, Li Y, Fu ZY, Liu XB, Yuan K, Fang Y, Liu Y, Li G, Zhang XS, Chong K, Ge L. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:150-167. [PMID: 29752751 DOI: 10.1111/tpj.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 05/14/2023]
Abstract
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhao-Ying Fu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xun-Biao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Fang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
42
|
Yu X, Meng X, Liu Y, Li N, Zhang A, Wang TJ, Jiang L, Pang J, Zhao X, Qi X, Zhang M, Wang S, Liu B, Xu ZY. The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize. PLANT MOLECULAR BIOLOGY 2018; 97:451-465. [PMID: 29956114 DOI: 10.1007/s11103-018-0751-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 05/16/2023]
Abstract
The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
- Department of Bioengineering, Jilin Agricultural Science and Technology College, Jilin, People's Republic of China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Xinxin Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| |
Collapse
|
43
|
Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1010-1022. [PMID: 29602264 PMCID: PMC6032924 DOI: 10.1111/tpj.13914] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 05/19/2023]
Abstract
The ability to adapt growth and development to temperature variations is crucial to generate plant varieties resilient to predicted temperature changes. However, the mechanisms underlying plant response to progressive increases in temperature have just started to be elucidated. Here, we report that the cyclin-dependent kinase G1 (CDKG1) is a central element in a thermo-sensitive mRNA splicing cascade that transduces changes in ambient temperature into differential expression of the fundamental spliceosome component, ATU2AF65A. CDKG1 is alternatively spliced in a temperature-dependent manner. We found that this process is partly dependent on both the cyclin-dependent kinase G2 (CDKG2) and the interacting co-factor CYCLIN L1 (CYCL1), resulting in two distinct messenger RNAs. The relative abundance of both CDKG1 transcripts correlates with ambient temperature and possibly with different expression levels of the associated protein isoforms. Both CDKG1 alternative transcripts are necessary to fully complement the expression of ATU2AF65A across the temperature range. Our data support a previously unidentified temperature-dependent mechanism based on the alternative splicing (AS) of CDKG1 and regulated by CDKG2 and CYCL1. We propose that changes in ambient temperature affect the relative abundance of CDKG1 transcripts, and this in turn translates into differential CDKG1 protein expression coordinating the AS of ATU2AF65A.
Collapse
Affiliation(s)
- Nicola Cavallari
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
- Present address:
Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Candida Nibau
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| | - Armin Fuchs
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
| | - Despoina Dadarou
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| | - Andrea Barta
- Max F. Perutz LaboratoriesMedical University of ViennaVienna Biocenter, Dr Bohr‐Gasse 9/3A‐1030WienAustria
| | - John H. Doonan
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythSY23 3EBUK
| |
Collapse
|
44
|
Fukudome A, Goldman JS, Finlayson SA, Koiwa H. Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:799-812. [PMID: 29573374 DOI: 10.1111/tpj.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
De novo shoot organogenesis (DNSO) is a post-embryonic development programme that has been widely exploited by plant biotechnology. DNSO is a hormonally regulated process in which auxin and cytokinin (CK) coordinate suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery. Here we report that silencing Arabidopsis thaliana carboxyl-terminal domain (CTD) phosphatase-like 4 (CPL4RNAi ) resulted in increased phosphorylation levels of RNA polymerase II (pol II) CTD and altered lateral root development and DNSO efficiency of the host plants. Under standard growth conditions, CPL4RNAi lines produced no or few lateral roots. When induced by high concentrations of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. In contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines was observed even under 10 times less the CK required for the wild-type explants. Transcriptome analysis showed that CPL4RNAi , but not wild-type explants, expressed high levels of shoot meristem-related genes even during priming on medium with a high auxin/CK ratio, and during subsequent shoot induction with a lower auxin/CK ratio. Conversely, CPL4RNAi enhanced the inhibitory phenotype of the shoot redifferentiation defective2-1 mutation, which affected snRNA biogenesis and formation of the auxin gradient. These results indicated that CPL4 functions in multiple regulatory pathways that positively and negatively affect DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jared S Goldman
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
45
|
Li Y, Hu D, Li Y, Yang B, Yu Q, Ge L. Full-length RPB1 is required in two-step shoot regeneration. Biochem Biophys Res Commun 2018; 499:895-900. [PMID: 29625106 DOI: 10.1016/j.bbrc.2018.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022]
Abstract
Regeneration is a complicated progress in plants and animals. Most multicellular organisms can regenerate new tissue when wounded, and plants excel most animals in their ability to regenerate whole new growth module from adult tissues. Regeneration in Arabidopsis includes two steps. Firstly, the explants from differentiated plant tissues such as roots or hypocotyls are induced to generate callus, then the shoots regenerate upon the callus. The phytohormone auxin and cytokinin play important parts in this process. And genes related to auxin and cytokinin siganls involved in the regeneration have been studied widely. As we reported before, in Arabidopsis the full-length CTD of RNA Polymerase II's largest subunit RPB1 is necessary in keeping normal cell cycling and maintaining stem cell niches. Here, we report that the mutants of card1s have significant defects in the regeneration progress both in the induction of callus and the formation of shoot. All the results further proved the importance of intact RPB1 from a distinctive perspective.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China
| | - Die Hu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China
| | - Yi Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China
| | - Bo Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China
| | - Qian Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an City, Shandong Province, PR China.
| |
Collapse
|
46
|
Pfab A, Bruckmann A, Nazet J, Merkl R, Grasser KD. The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. J Mol Biol 2018; 430:1479-1494. [PMID: 29588169 DOI: 10.1016/j.jmb.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
The conserved nuclear protein ENY2 (Sus1 in yeast) is involved in coupling transcription and mRNA export in yeast and metazoa, as it is a component both of the transcriptional co-activator complex SAGA and of the mRNA export complex TREX-2. Arabidopsis thaliana ENY2 is widely expressed in the plant and it localizes to the nucleoplasm, but unlike its yeast/metazoan orthologs, it is not enriched in the nuclear envelope. Affinity purification of ENY2 in combination with mass spectrometry revealed that it co-purified with SAGA components, but not with the nuclear pore-associated TREX-2. In addition, further targeted proteomics analyses by reciprocal tagging established the composition of the Arabidopsis SAGA complex consisting of the four modules HATm, SPTm, TAFm and DUBm, and that several SAGA subunits occur in alternative variants. While the HATm, SPTm and TAFm robustly co-purified with each other, the deubiquitination module (DUBm) appears to associate with the other SAGA modules more weakly/dynamically. Consistent with a homology model of the Arabidopsis DUBm, the SGF11 protein interacts directly with ENY2 and UBP22. Plants depleted in the DUBm components, SGF11 or ENY2, are phenotypically only mildly affected, but they contain increased levels of ubiquitinated histone H2B, indicating that the SAGA-DUBm has histone deubiquitination activity in plants. In addition to transcription-related proteins (i.e., transcript elongation factors, Mediator), many splicing factors were found to associate with SAGA, linking the SAGA complex and ongoing transcription with mRNA processing.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Julian Nazet
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
47
|
Liu C, Xin Y, Xu L, Cai Z, Xue Y, Liu Y, Xie D, Liu Y, Qi Y. Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Dev Cell 2017; 44:348-361.e7. [PMID: 29290588 DOI: 10.1016/j.devcel.2017.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
Conventional RNA interference (RNAi) pathways suppress eukaryotic gene expression at the transcriptional or post-transcriptional level. At the core of RNAi are small RNAs (sRNAs) and effector Argonaute (AGO) proteins. Arabidopsis AGO1 is known to bind microRNAs (miRNAs) and post-transcriptionally repress target genes in the cytoplasm. Here, we report that AGO1 also binds to the chromatin of active genes and promotes their transcription. We show that sRNAs and SWI/SNF complexes associate with nuclear AGO1 and are required for AGO1 binding to chromatin. Moreover, we show that various stimuli, including plant hormones and stresses, specifically trigger AGO1 binding to stimulus-responsive genes. Finally, we show that AGO1 facilitates the induction of genes in jasmonate (JA) signaling pathways and the activation of JA responses. Our findings suggest that, by binding and facilitating the expression of stimuli-specific genes, AGO1 may regulate diverse signaling pathways and associated biological processes.
Collapse
Affiliation(s)
- Chang Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Ying Xin
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liu
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Daoxin Xie
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
48
|
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S. Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. PLANT DIRECT 2017; 1:e00030. [PMID: 31245678 PMCID: PMC6508501 DOI: 10.1002/pld3.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana CC-type glutaredoxin (GRX) ROXY1 and the bZIP TGA transcription factor (TF) PERIANTHIA (PAN) interact in the nucleus and together regulate petal development. The CC-type GRXs exist exclusively in land plants, and in contrast to the ubiquitously occurring CPYC and CGFS GRX classes, only the CC-type GRXs expanded strongly during land plant evolution. Phylogenetic analyses show that TGA TFs evolved before the CC-type GRXs in charophycean algae. MpROXY1/2 and MpTGA were isolated from the liverwort Marchantia polymorpha to analyze regulatory ROXY/TGA interactions in a basal land plant. Homologous and heterologous protein interaction studies demonstrate that nuclear ROXY/TGA interactions are conserved since the occurrence of CC-type GRXs in bryophytes and mediated by a conserved ROXY C-terminus. Redox EMSA analyses show a redox-sensitive binding of MpTGA to the cis-regulatory as-1-like element. Furthermore, we demonstrate that MpTGA binds together with MpROXY1/2 to this motif under reducing conditions, whereas this interaction is not observed under oxidizing conditions. Remarkably, heterologous complementation studies reveal a strongly conserved land plant ROXY activity, suggesting an ancestral role for CC-type GRXs in modulating the activities of TGA TFs. Super-resolution microscopy experiments detected a strong colocalization of ROXY1 with the active form of the RNA polymerase II in the nucleus. Together, these data shed new light on the function of ROXYs and TGA TFs and the evolution of redox-sensitive transcription regulation processes, which likely contributed to adapt land plants to novel terrestrial habitats.
Collapse
Affiliation(s)
- Nora Gutsche
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Lucia Maß
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Andrea Busch
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Sabine Zachgo
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
49
|
Yu Y, Jia T, Chen X. The 'how' and 'where' of plant microRNAs. THE NEW PHYTOLOGIST 2017; 216:1002-1017. [PMID: 29048752 PMCID: PMC6040672 DOI: 10.1111/nph.14834] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
Contents 1002 I. 1002 II. 1007 III. 1010 IV. 1013 1013 References 1013 SUMMARY: MicroRNAs (miRNAs) are small non-coding RNAs, of typically 20-24 nt, that regulate gene expression post-transcriptionally through sequence complementarity. Since the identification of the first miRNA, lin-4, in the nematode Caenorhabditis elegans in 1993, thousands of miRNAs have been discovered in animals and plants, and their regulatory roles in numerous biological processes have been uncovered. In plants, research efforts have established the major molecular framework of miRNA biogenesis and modes of action, and are beginning to elucidate the mechanisms of miRNA degradation. Studies have implicated restricted and surprising subcellular locations in which miRNA biogenesis or activity takes place. In this article, we summarize the current knowledge on how plant miRNAs are made and degraded, and how they repress target gene expression. We discuss not only the players involved in these processes, but also the subcellular sites in which these processes are known or implicated to take place. We hope to raise awareness that the cell biology of miRNAs holds the key to a full understanding of these enigmatic molecules.
Collapse
Affiliation(s)
- Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
50
|
Grasser M, Grasser KD. The plant RNA polymerase II elongation complex: A hub coordinating transcript elongation and mRNA processing. Transcription 2017; 9:117-122. [PMID: 28886274 DOI: 10.1080/21541264.2017.1356902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Characterisation of the Arabidopsis RNA polymerase II (RNAPII) elongation complex revealed an assembly of a conserved set of transcript elongation factors associated with chromatin remodellers, histone modifiers as well as with various pre-mRNA splicing and polyadenylation factors. Therefore, transcribing RNAPII streamlines the processes of mRNA synthesis and processing in plants.
Collapse
Affiliation(s)
- Marion Grasser
- a Department of Cell Biology & Plant Biochemistry, Biochemistry Centre , University of Regensburg , Regensburg , Germany
| | - Klaus D Grasser
- a Department of Cell Biology & Plant Biochemistry, Biochemistry Centre , University of Regensburg , Regensburg , Germany
| |
Collapse
|