1
|
Shen Y, Sun A, Guo Y, Chang WC. Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways. ACS BIO & MED CHEM AU 2025; 5:238-261. [PMID: 40255287 PMCID: PMC12006828 DOI: 10.1021/acsbiomedchemau.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes utilize an FeIV=O species to catalyze the functionalization of otherwise chemically inert C-H bonds. In addition to the more familiar canonical reactions of hydroxylation and chlorination, they also catalyze several other types of reactions that contribute to the diversity and complexity of natural products. In the past decade, several new Fe/2OG enzymes that catalyze C-C and C-N bond formation have been reported in the biosynthesis of structurally complex natural products. Compared with hydroxylation and chlorination, the catalytic cycles of these Fe/2OG enzymes involve distinct mechanistic features to enable noncanonical reaction outcomes. This Review summarizes recent discoveries of Fe/2OG enzymes involved in C-C and C-N bond formation with a focus on reaction mechanisms and their roles in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaoyao Shen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anyi Sun
- School
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yisong Guo
- Department
of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Guo Q, Zhong YF, Chen XY, Li YW, Yang YX, Nie ZK, Shi TQ. Transcriptome-Based Mining of the Strong Promoters for Hyperproduction of Gibberellin GA3 in Fusarium fujikuroi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8440-8447. [PMID: 40108859 DOI: 10.1021/acs.jafc.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Gibberellin GA3 is a plant growth regulator with significant applications in agriculture, and Fusarium fujikuroi has gained attention as an excellent host for the industrial production of GA3. Although numerous gene-editing tools have been developed, the precise metabolic flux regulation in F. fujikuroi was significantly hindered because the endogenous promoters were rarely identified. In this study, a library containing 20 potential promoters was mined and constructed for the first time through transcriptome sequencing. Using β-glucuronidase as a reporter gene, promoter P10594 showed the highest relative activity and had a stable expression in different media, which was identified as a strong constitutive promoter. Subsequently, P10594 was used to regulate the metabolic flux for GA3 overproduction. The yield reached 0.89 g/L in the shake flask, 17.1% higher than the control strain. Finally, 2.38 g/L GA3 can be obtained in a 5 L bioreactor using the engineered strain FF-2. In general, the work enriched the promoter library in F. fujikuroi and provided help for reshaping the complex metabolic flow.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Feng Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- Jiangxi New Reyphon Biochemical Co., Ltd., In Salt Chemical Industry City, Jian 331307, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- Jiangxi New Reyphon Biochemical Co., Ltd., In Salt Chemical Industry City, Jian 331307, People's Republic of China
| |
Collapse
|
3
|
Liao Z, Chen B, Boubakri H, Farooq M, Mur LAJ, Urano D, Teo CH, Tan BC, Hasan MDM, Aslam MM, Tahir MY, Fan J. The regulatory role of phytohormones in plant drought tolerance. PLANTA 2025; 261:98. [PMID: 40153011 DOI: 10.1007/s00425-025-04671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/09/2025] [Indexed: 03/30/2025]
Abstract
MAIN CONCLUSION This paper highlights the role of various signaling hormones in drought stress tolerance. It explains how phytohormones act and interact under drought conditions. Drought stress significantly impairs plant growth, development and productivity. The likelihood of adverse impacts of drought will increase due to variations in global climate patterns. Phytohormones serve as key regulators of drought tolerance mechanisms in plants. The in-depth understanding of the role and signaling of such hormones is thus of great significance for plant stress management. In this review, we conducted a bibliometric analysis and thematic mapping of recent research on drought and phytohormones, and phytohormone interactions. It is assumed that different classes of phytohormones such as abscisic acid (ABA), auxins (IAA), cytokinins (CTK), ethylene (ETH), gibberellic acid (GA), brassinosteroids (BRs), salicylates (SA), jasmonates (JA), and strigolactones (SLs) play a pivotal role in drought resistance mechanisms in many crops. The present work highlights recent advances in plant responses to drought and uncovers the recent functions of phytohormones in the establishment of drought-specific tolerance strategies. It also deciphers the various interactions between phytohormones allowing plant adaptation to drought stress. Overall, this review highlights recent and original discoveries useful for developing new strategies to improve plant resistance to drought.
Collapse
Affiliation(s)
- Zhenqi Liao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Chen
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Luis Alejandro Jose Mur
- Department of Life Science, Aberystwyth University, Penglais Campus, Aberystwyth, Wales, SY23 2DA, UK
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - M D Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Mehtab Muhammad Aslam
- Division of Plant Sciences and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Muhammad Yahya Tahir
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&d of Fine Chemicals of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Junliang Fan
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest a&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X, Li J, Wang B. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. Innovation (N Y) 2025; 6:100815. [PMID: 40098680 PMCID: PMC11910882 DOI: 10.1016/j.xinn.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified SlABCG45 as a key gene that mediates host resistance to Phelipanche aegyptiaca by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to Phelipanche and Orobanche, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced SlABCG45 expression and weakly induced SlABCG44 expression via the transcription factors SlNSP1 and SlNSP2. Knockout of SlABCG45 in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different Phelipanche and Orobanche species, resulting in an ∼30% yield increase in a Phelipanche-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Xinwei Ban
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianjin Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Yanrong Hao
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Hu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liquan Kou
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongyun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqin Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Hong Yu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Qi Xie
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Chen
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiayang Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Bing Wang
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
6
|
Sigalas PP, Bennett T, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:139-158. [PMID: 39136678 DOI: 10.1111/tpj.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Collapse
Affiliation(s)
| | - Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
7
|
Naseer MA, Zhang ZQ, Mukhtar A, Asad MS, Wu HY, Yang H, Zhou XB. Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109057. [PMID: 39173365 DOI: 10.1016/j.plaphy.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.
Collapse
Affiliation(s)
- Muhammad Asad Naseer
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhi Qin Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | | | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hong Yang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Han Y, Sun Y, Wang H, Li H, Jiang M, Liu X, Cao Y, Wang W, Yin H, Chen J, Sun J, Zhu QH, Zhu S, Zhao T. Biosynthesis and Signaling of Strigolactones Act Synergistically With That of ABA and JA to Enhance Verticillium dahliae Resistance in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286958 DOI: 10.1111/pce.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
Collapse
Affiliation(s)
- Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoqi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wanru Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| |
Collapse
|
9
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Homma M, Wakabayashi T, Moriwaki Y, Shiotani N, Shigeta T, Isobe K, Okazawa A, Ohta D, Terada T, Shimizu K, Mizutani M, Takikawa H, Sugimoto Y. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis. Proc Natl Acad Sci U S A 2024; 121:e2313683121. [PMID: 38905237 PMCID: PMC11214005 DOI: 10.1073/pnas.2313683121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Takumi Shigeta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Kazuki Isobe
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
| | - Atsushi Okazawa
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Daisaku Ohta
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai599-8531, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai599-8531, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
11
|
Chen P, Huang P, Yu H, Yu H, Xie W, Wang Y, Zhou Y, Chen L, Zhang M, Yao R. Strigolactones shape the assembly of root-associated microbiota in response to phosphorus availability. mSystems 2024; 9:e0112423. [PMID: 38780241 PMCID: PMC11237589 DOI: 10.1128/msystems.01124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Plants rely on strigolactones (SLs) to regulate their development and form symbiotic relationships with microbes as part of the adaptive phosphorus (P) efficiency strategies. However, the impact of SLs on root-associated microbial communities in response to P availability remains unknown. Here, root microbiota of SL biosynthesis (max3-11) and perception (d14-1) were compared to wild-type Col-0 plants under different P concentrations. Using high-throughput sequencing, the relationship between SLs, P concentrations, and the root-associated microbiota was investigated to reveal the variation in microbial diversity, composition, and interaction. Plant genotypes and P availability played important but different roles in shaping the root-associated microbial community. Importantly, SLs were found to attract Acinetobacter in low P conditions, which included an isolated CP-2 (Acinetobacter soli) that could promote plant growth in cocultivation experiments. Moreover, SLs could change the topologic structure within co-occurrence networks and increase the number of keystone taxa (e.g., Rhizobiaceae and Acidobacteriaceae) to enhance microbial community stability. This study reveals the key role of SLs in mediating root-associated microbiota interactions.IMPORTANCEStrigolactones (SLs) play a crucial role in plant development and their symbiotic relationships with microbes, particularly in adapting to phosphorus levels. Using high-throughput sequencing, we compared the root microbiota of plants with SL biosynthesis and perception mutants to wild-type plants under different phosphorus concentrations. These results found that SLs can attract beneficial microbes in low phosphorus conditions to enhance plant growth. Additionally, SLs affect microbial network structures, increasing the stability of microbial communities. This study highlights the key role of SLs in shaping root-associated microbial interactions, especially in response to phosphorus availability.
Collapse
Affiliation(s)
- Pubo Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Pingliang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Huang Yu
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang, China
| | - Weicheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
| | - Yu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- College of Biology, Hunan University, Changsha, China
- Yuelushan Lab, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, China
| |
Collapse
|
12
|
Yang B, Federmann P, Warth V, Ren M, Mu X, Wu H, Bäckvall JE. Total Synthesis of Strigolactones via Palladium-Catalyzed Cascade Carbonylative Carbocyclization of Enallenes. Org Lett 2024; 26:4637-4642. [PMID: 38805214 PMCID: PMC11165582 DOI: 10.1021/acs.orglett.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.
Collapse
Affiliation(s)
- Bin Yang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Patrick Federmann
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Viktoria Warth
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mingzhe Ren
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin Mu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haibo Wu
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
13
|
Zheng Z, Li W, Ding Y, Wu Y, Jiang Q, Wang Y. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. PLANTA 2024; 259:146. [PMID: 38713242 DOI: 10.1007/s00425-024-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
MAIN CONCLUSION The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.
Collapse
Affiliation(s)
- Zhongtian Zheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Ding
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yinting Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Qinyue Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Homma M, Uchida K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1392212. [PMID: 38699535 PMCID: PMC11063326 DOI: 10.3389/fpls.2024.1392212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Strigolactones (SLs), a class of plant apocarotenoids, serve dual roles as rhizosphere-signaling molecules and plant hormones. Orobanchol, a major naturally occurring SL, along with its various derivatives, has been detected in the root exudates of plants of the Fabaceae family. Medicaol, fabacyl acetate, and orobanchyl acetate were identified in the root exudates of barrel medic (Medicago truncatula), pea (Pisum sativum), and cowpea (Vigna unguiculata), respectively. Although the biosynthetic pathway leading to orobanchol production has been elucidated, the biosynthetic pathways of the orobanchol derivatives have not yet been fully elucidated. Here, we report the identification of 2-oxoglutarate-dependent dioxygenases (DOXs) and BAHD acyltransferases responsible for converting orobanchol to these derivatives in Fabaceae plants. First, the metabolic pathways downstream of orobanchol were analyzed using substrate feeding experiments. Prohexadione, an inhibitor of DOX inhibits the conversion of orobanchol to medicaol in barrel medic. The DOX inhibitor also reduced the formation of fabacyl acetate and fabacol, a precursor of fabacyl acetate, in pea. Subsequently, we utilized a dataset based on comparative transcriptome analysis to select a candidate gene encoding DOX for medicaol synthase in barrel medic. Recombinant proteins of the gene converted orobanchol to medicaol. The candidate genes encoding DOX and BAHD acyltransferase for fabacol synthase and fabacol acetyltransferase, respectively, were selected by co-expression analysis in pea. The recombinant proteins of the candidate genes converted orobanchol to fabacol and acetylated fabacol. Furthermore, fabacol acetyltransferase and its homolog in cowpea acetylated orobanchol. The kinetics and substrate specificity analyses revealed high affinity and strict recognition of the substrates of the identified enzymes. These findings shed light on the molecular mechanisms underlying the structural diversity of SLs.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
15
|
Shu H, Xu K, Li X, Liu J, Altaf MA, Fu H, Lu X, Cheng S, Wang Z. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. PLANT CELL REPORTS 2024; 43:106. [PMID: 38532109 DOI: 10.1007/s00299-024-03196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Kaijing Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Xiangrui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
| | - Jiancheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
16
|
Han Y, Zhang J, Zhang S, Xiang L, Lei Z, Huang Q, Wang H, Chen T, Cai M. DcERF109 regulates shoot branching by participating in strigolactone signal transduction in Dendrobium catenatum. PHYSIOLOGIA PLANTARUM 2024; 176:e14286. [PMID: 38618752 DOI: 10.1111/ppl.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.
Collapse
Affiliation(s)
- Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Takai T. Potential of rice tillering for sustainable food production. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:708-720. [PMID: 37933683 PMCID: PMC10837021 DOI: 10.1093/jxb/erad422] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields. Recent advances in molecular biology have revealed the mechanisms underlying rice tillering; however, in rice breeding and cultivation, there remain limited genes or alleles suitable for effective tillering and high yields. A recently identified quantitative trait locus (QTL) called MORE PANICLES 3 (MP3) has been cloned as a single gene and shown to promote tillering and to moderately increase panicle number. This gene is an ortholog of the maize domestication gene TB1, and it has the potential to increase grain yield under ongoing climate change and in nutrient-poor environments. This review reconsiders the potential and importance of tillering for sustainable food production. Thus, I provide an overview of rice tiller development and the currently understood molecular mechanisms that underly it, focusing primarily on the biosynthesis and signaling of strigolactones, effective QTLs, and the importance of MP3 (TB1). The possible future benefits in using promising QTLs such as MP3 to explore agronomic solutions under ongoing climate change and in nutrient-poor environments are also highlighted.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Japan International Research Center for Agricultural Sciences (JIRCAS), 305-8686 Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Luqman M, Shahbaz M, Maqsood MF, Farhat F, Zulfiqar U, Siddiqui MH, Masood A, Aqeel M, Haider FU. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize ( Zea mays L.) hybrids grown under drought stress. PLANT SIGNALING & BEHAVIOR 2023; 18:2262795. [PMID: 37767863 PMCID: PMC10730227 DOI: 10.1080/15592324.2023.2262795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Drought alters plant physiology, morphology, and biochemical pathways, necessitating effective mitigation strategies. Strigolactones (SLs) are phytohormones known to enhance plant growth under abiotic stress. However, their specific impact on drought stress in maize remains unclear. This study aimed to determine the optimal SL concentration for mitigating drought stress in two maize hybrids (HY-1898, FH-1046). Maize plants were subjected to 60% field capacity drought stress in a pot experiment. After 40 d, different concentrations (0, 0.001, 0.01, and 0.1 mg L-1) of the synthetic SL analogue GR24 were applied to evaluate their effects on growth features, photosynthesis attributes, and osmolyte accumulation in the maize hybrids. Results showed that exogenous SL application significantly increased photosynthetic pigments in maize hybrids under drought stress. Chlorophyll content, gas exchange characteristics, net CO2 assimilation rate, stomatal conductance, water use efficiency, and antioxidant activities were enhanced by GR24. Leaf ascorbic acid and total phenolics also increased with SL application. Organic osmolytes, such as glycine betaine and free proline, were elevated in both maize hybrids under drought stress. Yield-related parameters, including cob diameter, cob weight, number of seeds per cob, and number of seeds per plant, were significantly increased by GR24 under drought stress. Our findings highlight the potential of GR24 foliar application to mitigate drought stress and promote maize growth and grain yield in a concentration-dependent manner. The minimum effective SL concentration against drought stress was determined to be 0.01 mg L-1. Overall, foliar application of GR24 could serve as a sustainable approach for drought tolerance in agriculture.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Fozia Farhat
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atifa Masood
- The department of Botany, University of Lahore, Sargodha, Pakistan
| | - Muhammad Aqeel
- State key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fasih Ullah Haider
- Ecology, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Ecology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Shu H, Altaf MA, Mushtaq N, Fu H, Lu X, Zhu G, Cheng S, Wang Z. Physiological and Transcriptome Analysis of the Effects of Exogenous Strigolactones on Drought Responses of Pepper Seedlings. Antioxidants (Basel) 2023; 12:2019. [PMID: 38136139 PMCID: PMC10740728 DOI: 10.3390/antiox12122019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Drought stress significantly restricts the growth, yield, and quality of peppers. Strigolactone (SL), a relatively new plant hormone, has shown promise in alleviating drought-related symptoms in pepper plants. However, there is limited knowledge on how SL affects the gene expression in peppers when exposed to drought stress (DS) after the foliar application of SL. To explore this, we conducted a thorough physiological and transcriptome analysis investigation to uncover the mechanisms through which SL mitigates the effects of DS on pepper seedlings. DS inhibited the growth of pepper seedlings, altered antioxidant enzyme activity, reduced relative water content (RWC), and caused oxidative damage. On the contrary, the application of SL significantly enhanced RWC, promoted root morphology, and increased leaf pigment content. SL also protected pepper seedlings from drought-induced oxidative damage by reducing MDA and H2O2 levels and maintaining POD, CAT, and SOD activity. Moreover, transcriptomic analysis revealed that differentially expressed genes were enriched in ribosomes, ABC transporters, phenylpropanoid biosynthesis, and Auxin/MAPK signaling pathways in DS and DS + SL treatment. Furthermore, the results of qRT-PCR showed the up-regulation of AGR7, ABI5, BRI1, and PDR4 and down-regulation of SAPK6, NTF4, PYL6, and GPX4 in SL treatment compared with drought-only treatment. In particular, the key gene for SL signal transduction, SMXL6, was down-regulated under drought. These results elucidate the molecular aspects underlying SL-mediated plant DS tolerance, and provide pivotal strategies for effectively achieving pepper drought resilience.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
20
|
Kong X, Wang F, Wang Z, Gao X, Geng S, Deng Z, Zhang S, Fu M, Cui D, Liu S, Che Y, Liao R, Yin L, Zhou P, Wang K, Ye X, Liu D, Fu X, Mao L, Li A. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1990-2001. [PMID: 37589238 PMCID: PMC10502751 DOI: 10.1111/pbi.14107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Plant breeding is constrained by trade-offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand-grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co-Expression Network Analysis (WGCNA) of spatial-temporal transcriptome profiles revealed two hub genes: RhtL1, a DELLA domain-free Rht-1 paralog, which was up-regulated in peduncle, and TaNGR5, an organ size regulator that was up-regulated in rachis, in taarf12 plants. The up-regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up-regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.
Collapse
Affiliation(s)
- Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuhua Gao
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shuang Zhang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Mingxue Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Dada Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoshuai Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqing Che
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Lingjie Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Peng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
21
|
Kee YJ, Ogawa S, Ichihashi Y, Shirasu K, Yoshida S. Strigolactones in Rhizosphere Communication: Multiple Molecules With Diverse Functions. PLANT & CELL PHYSIOLOGY 2023; 64:955-966. [PMID: 37279572 DOI: 10.1093/pcp/pcad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are root-secreted small molecules that influence organisms living in the rhizosphere. While SLs are known as germination stimulants for root parasitic plants and as hyphal branching factors for arbuscular mycorrhizal fungi, recent studies have also identified them as chemoattractants for parasitic plants, sensors of neighboring plants and key players in shaping the microbiome community. Furthermore, the discovery of structurally diverged SLs, including so-called canonical and non-canonical SLs in various plant species, raises the question of whether the same SLs are responsible for their diverse functions 'in planta' and the rhizosphere or whether different molecules play different roles. Emerging evidence supports the latter, with each SL exhibiting different activities as rhizosphere signals and plant hormones. The evolution of D14/KAI2 receptors has enabled the perception of various SLs or SL-like compounds to control downstream signaling, highlighting the complex interplay between plants and their rhizosphere environment. This review summarizes the recent advances in our understanding of the diverse functions of SLs in the rhizosphere.
Collapse
Affiliation(s)
- Yee Jia Kee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92507, USA
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
22
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107872. [PMID: 37478726 DOI: 10.1016/j.plaphy.2023.107872] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Chromium (Cr) is considered one of the most hazardous metal contaminant reducing crop production and putting human health at risk. Phytohormones are known to regulate chromium stress, however, the function of melatonin and strigolactones in Chromium stress tolerance in tomato is rarely investigated. Here we investigated the potential role of melatonin (ML) and strigolactone (SL) on mitigating Chromium toxicity in tomato. With exposure to 300 μM Cr stress a remarkable decline in growth (63.01%), biomass yield (50.25)%, Pigment content (24.32%), photosynthesis, gas exchange and Physico-biochemical attributes of tomato was observed. Cr treatment also resulted in oxidative stress closely associated with higher H2O2 generation (215.66%), Lipid peroxidation (50.29%), electrolyte leakage (440.01%) and accumulation of osmolytes like proline and glycine betine. Moreover, Cr toxicity up-regulated the transcriptional expression profiles of antioxidant, stress related and metal transporter genes and down-regulated the genes related to photosynthesis. The application of ML and SL alleviated the Cr induced phytotoxic effects on photosynthetic pigments, gas exchange parameters and restored growth of tomato plants. ML and SL supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool and transcriptional regulation of several genes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative stress. Hence, ML and SL application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in tomato plants grown in contaminated soils. The study may also provide new insights into the role of transcriptional regulation in the protection against heavy metal toxicity.
Collapse
Affiliation(s)
- Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences Govt. Degree College for Women, Udhampur, 182101, India
| | - Naveen Kumar
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
24
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Guan JC, Li C, Flint-Garcia S, Suzuki M, Wu S, Saunders JW, Dong L, Bouwmeester HJ, McCarty DR, Koch KE. Maize domestication phenotypes reveal strigolactone networks coordinating grain size evolution with kernel-bearing cupule architecture. THE PLANT CELL 2023; 35:1013-1037. [PMID: 36573016 PMCID: PMC10015167 DOI: 10.1093/plcell/koac370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface.
Collapse
Affiliation(s)
- Jiahn-Chou Guan
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Changsheng Li
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Sherry Flint-Garcia
- United States Department of Agriculture – Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Jonathan W Saunders
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Lemeng Dong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
26
|
Pang J, Ryan MH, Wen Z, Lambers H, Liu Y, Zhang Y, Tueux G, Jenkins S, Mickan B, Wong WS, Yong JWH, Siddique KHM. Enhanced nodulation and phosphorus acquisition from sparingly-soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13873. [PMID: 36762694 DOI: 10.1111/ppl.13873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 μg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.
Collapse
Affiliation(s)
- Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhihui Wen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang Agricultural University, Shenyang, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Guillaume Tueux
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Ecole d'Ingénieurs de PURPAN, Toulouse, France
| | - Sasha Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Bede Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei San Wong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Hirayama T, Mochida K. Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. PLANT & CELL PHYSIOLOGY 2023; 63:1826-1839. [PMID: 35583356 PMCID: PMC9885943 DOI: 10.1093/pcp/pcac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is particularly vulnerable to climate change. To cope with the risks posed by climate-related stressors to agricultural production, global population growth, and changes in food preferences, it is imperative to develop new climate-smart crop varieties with increased yield and environmental resilience. Molecular genetics and genomic analyses have revealed that allelic variations in genes involved in phytohormone-mediated growth regulation have greatly improved productivity in major crops. Plant science has remarkably advanced our understanding of the molecular basis of various phytohormone-mediated events in plant life. These findings provide essential information for improving the productivity of crops growing in changing climates. In this review, we highlight the recent advances in plant hormonomics (multiple phytohormone profiling) and discuss its application to crop improvement. We present plant hormonomics as a key tool for deep physiological phenotyping, focusing on representative plant growth regulators associated with the improvement of crop productivity. Specifically, we review advanced methodologies in plant hormonomics, highlighting mass spectrometry- and nanosensor-based plant hormone profiling techniques. We also discuss the applications of plant hormonomics in crop improvement through breeding and agricultural management practices.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokacho, Totsukaku, Yokohama, Kanagawa, 244-0813 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
- RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
28
|
Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Falasca G, Betti C. New Paradigms in Brassinosteroids, Strigolactones, Sphingolipids, and Nitric Oxide Interaction in the Control of Lateral and Adventitious Root Formation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020413. [PMID: 36679126 PMCID: PMC9864901 DOI: 10.3390/plants12020413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/05/2023]
Abstract
The root system is formed by the primary root (PR), which forms lateral roots (LRs) and, in some cases, adventitious roots (ARs), which in turn may produce their own LRs. The formation of ARs is also essential for vegetative propagation in planta and in vitro and for breeding programs. Root formation and branching is coordinated by a complex developmental network, which maximizes the plant's ability to cope with abiotic stress. Rooting is also a response caused in a cutting by wounding and disconnection from the donor plant. Brassinosteroids (BRs) are steroid molecules perceived at the cell surface. They act as plant-growth-regulators (PGRs) and modulate plant development to provide stress tolerance. BRs and auxins control the formation of LRs and ARs. The auxin/BR interaction involves other PGRs and compounds, such as nitric oxide (NO), strigolactones (SLs), and sphingolipids (SPLs). The roles of these interactions in root formation and plasticity are still to be discovered. SLs are carotenoid derived PGRs. SLs enhance/reduce LR/AR formation depending on species and culture conditions. These PGRs possibly crosstalk with BRs. SPLs form domains with sterols within cellular membranes. Both SLs and SPLs participate in plant development and stress responses. SPLs are determinant for auxin cell-trafficking, which is essential for the formation of LRs/ARs in planta and in in vitro systems. Although little is known about the transport, trafficking, and signaling of SPLs, they seem to interact with BRs and SLs in regulating root-system growth. Here, we review the literature on BRs as modulators of LR and AR formation, as well as their crosstalk with SLs and SPLs through NO signaling. Knowledge on the control of rooting by these non-classical PGRs can help in improving crop productivity and enhancing AR-response from cuttings.
Collapse
Affiliation(s)
- Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
29
|
Wang HN, Ke X, Jia R, Huang LG, Liu ZQ, Zheng YG. Multivariate modular metabolic engineering for enhanced gibberellic acid biosynthesis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2022; 364:128033. [PMID: 36174897 DOI: 10.1016/j.biortech.2022.128033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Gibberellic acid (GA3) is one of natural phytohormones, widely used in agriculture and downstream fields. Qualified for the nature productivity, Fusarium fujikuroi was currently employed for the industrial biotransformation from agriculture residues into GA3. Herein, Multivariate modular metabolic engineering (MMME) was assigned to reconstitute the metabolic balance in F. fujikuroi for enhancing GA3 production. Three modules including precursor pool, cluster-specific channel and P450-mediated oxidation in GA3 biosynthetic pathway were defined and optimized separately. The enhancement of both precursor pool and cluster-specific channel pushed metabolic flux transfer into the GA3-specific pathway. Moreover, both introduction of Vitreoscilla hemoglobin and reinforcement of NADPH-dependent cytochrome P450 reductase facilitated oxidation cofactor transfer and subsequently boosted mycelium growth and GA3 biosynthesis. Integration of three modules in the engineered strain accumulated 2.89 g/L GA3 in shake flask via submerged fermentation, presenting a promising modular metabolic engineering model for efficient microbial transformation in agro-industrial application.
Collapse
Affiliation(s)
- Hao-Nan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Jia
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
30
|
Chen GTE, Wang JY, Jamil M, Braguy J, Al-Babili S. 9-cis-β-Apo-10'-carotenal is the precursor of strigolactones in planta. PLANTA 2022; 256:88. [PMID: 36152118 DOI: 10.1007/s00425-022-03999-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
13C-isotope feeding experiments demonstrate that the apocarotenoid 9-cis-β-apo-10'-carotenal is the precursor of several strigolactones in rice, providing a direct, in planta evidence for its role in strigolactone biosynthesis. Strigolactones (SLs) are plant hormone that regulates plant architecture and mediates rhizospheric communications. Previous in vitro studies using heterogously produced enzymes unraveled the conversion of all-trans-β-carotene via the intermediate 9-cis-β-apo-10'-carotenal into the SL precursor carlactone. However, a direct evidence for the formation of SLs from 9-cis-β-apo-10'-carotenal is still missing. To provide this evidence, we supplied rice seedlings with 13C-labeled 9-cis-β-apo-10'-carotenal and analyzed their SLs by LC-MS. Our results show that 9-cis-β-apo-10'-carotenal is the SL precursor in planta and reveal, for the first time, the application of labeled long-chain apocarotenoids as a promising approach to investigate apocarotenoid metabolism and the genesis of carotenoid-derived growth regulators and signaling molecules.
Collapse
Affiliation(s)
- Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
31
|
Bretani G, Shaaf S, Tondelli A, Cattivelli L, Delbono S, Waugh R, Thomas W, Russell J, Bull H, Igartua E, Casas AM, Gracia P, Rossi R, Schulman AH, Rossini L. Multi-environment genome -wide association mapping of culm morphology traits in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:926277. [PMID: 36212331 PMCID: PMC9539552 DOI: 10.3389/fpls.2022.926277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we developed an image analysis-based protocol to accurately phenotype culm diameters and culm wall thickness across 261 barley accessions. Analysis of culm trait data collected from field trials in seven different environments revealed high heritability values (>50%) for most traits except thickness and stiffness, as well as genotype-by-environment interactions. The collection was structured mainly according to row-type, which had a confounding effect on culm traits as evidenced by phenotypic correlations. Within both row-type subsets, outer diameter and section modulus showed significant negative correlations with lodging (<-0.52 and <-0.45, respectively), but no correlation with plant height, indicating the possibility of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we conducted multi-environment genome-wide association studies using mixed model approach across the whole panel and row-type subsets: we identified a total of 192 quantitative trait loci (QTLs) for the studied traits, including subpopulation-specific QTLs and 21 main effect loci for culm diameter and/or section modulus showing effects on lodging without impacting plant height. Providing insights into the genetic architecture of culm morphology in barley and the possible role of candidate genes involved in hormone and cell wall-related pathways, this work supports the potential of loci underpinning culm features to improve lodging resistance and increase barley yield stability under changing environments.
Collapse
Affiliation(s)
- Gianluca Bretani
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Salar Shaaf
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - William Thomas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Hazel Bull
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Pilar Gracia
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Roberta Rossi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alan H. Schulman
- Viikki Plant Sciences Centre, Natural Resources Institue (LUKE), HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Vinde MH, Cao D, Chesterfield RJ, Yoneyama K, Gumulya Y, Thomson RES, Matila T, Ebert BE, Beveridge CA, Vickers CE, Gillam EMJ. Ancestral sequence reconstruction of the CYP711 family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. THE NEW PHYTOLOGIST 2022; 235:1900-1912. [PMID: 35644901 PMCID: PMC9544836 DOI: 10.1111/nph.18285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.
Collapse
Affiliation(s)
- Marcos H. Vinde
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Da Cao
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Rebecca J. Chesterfield
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Yosephine Gumulya
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Tebogo Matila
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
| | - Christine A. Beveridge
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Claudia E. Vickers
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
- Griffith Institute for Drug DesignGriffith UniversityNathanBrisbaneQld4111Australia
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|
33
|
Song C, Zhao J, Guichard M, Shi D, Grossmann G, Schmitt C, Jouannet V, Greb T. Strigo-D2-a bio-sensor for monitoring spatio-temporal strigolactone signaling patterns in intact plants. PLANT PHYSIOLOGY 2022; 188:97-110. [PMID: 34718781 PMCID: PMC8774841 DOI: 10.1093/plphys/kiab504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that mediate biotic interactions and modulate developmental programs in response to endogenous and exogenous stimuli. However, a comprehensive view on the spatio-temporal pattern of SL signaling has not been established, and tools for a systematic in planta analysis do not exist. Here, we present Strigo-D2, a genetically encoded ratiometric SL signaling sensor that enables the examination of SL signaling distribution at cellular resolution and is capable of rapid response to altered SL levels in intact Arabidopsis (Arabidopsis thaliana) plants. By monitoring the abundance of a truncated and fluorescently labeled SUPPRESSOR OF MAX2 1-LIKE 6 (SMXL6) protein, a proteolytic target of the SL signaling machinery, we show that all cell types investigated have the capacity to respond to changes in SL levels but with very different dynamics. In particular, SL signaling is pronounced in vascular cells but low in guard cells and the meristematic region of the root. We also show that other hormones leave Strigo-D2 activity unchanged, indicating that initial SL signaling steps work in isolation from other hormonal signaling pathways. The specificity and spatio-temporal resolution of Strigo-D2 underline the value of the sensor for monitoring SL signaling in a broad range of biological contexts with highly instructive analytical depth.
Collapse
Affiliation(s)
- Changzheng Song
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jiao Zhao
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Marjorie Guichard
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-Yokohama 230-0045, Japan
| | - Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Virginie Jouannet
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:821563. [PMID: 35283865 PMCID: PMC8908206 DOI: 10.3389/fpls.2022.821563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Phytohormones are small chemicals critical for plant development and adaptation to a changing environment. Strigolactones (SLs), carotenoid-derived small signalling molecules and a class of phytohormones, regulate multiple developmental processes and respond to diverse environmental signals. SLs also coordinate adjustments in the balance of resource distribution by strategic modification of the plant development, allowing plants to adapt to nutrient deficiency. Instead of operating independently, SL interplays with abscisic acid, cytokinin, auxin, ethylene, and some other plant phytohormones, forming elaborate signalling networks. Hormone signalling crosstalk in plant development and environmental response may occur in a fully concerted manner or as a cascade of sequential events. In many cases, the exact underlying mechanism is unclear because of the different effects of phytohormones and the varying backgrounds of their actions. In this review, we systematically summarise the synthesis, signal transduction, and biological functions of SLs and further highlight the significance of crosstalk between SLs and other phytohormones during plant development and resistance to ever-changing environments.
Collapse
|
35
|
Yoda A, Mori N, Akiyama K, Kikuchi M, Xie X, Miura K, Yoneyama K, Sato‐Izawa K, Yamaguchi S, Yoneyama K, Nelson DC, Nomura T. Strigolactone biosynthesis catalyzed by cytochrome P450 and sulfotransferase in sorghum. THE NEW PHYTOLOGIST 2021; 232:1999-2010. [PMID: 34525227 PMCID: PMC9292024 DOI: 10.1111/nph.17737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/05/2021] [Indexed: 05/19/2023]
Abstract
Root parasitic plants such as Striga, Orobanche, and Phelipanche spp. cause serious damage to crop production world-wide. Deletion of the Low Germination Stimulant 1 (LGS1) gene gives a Striga-resistance trait in sorghum (Sorghum bicolor). The LGS1 gene encodes a sulfotransferase-like protein, but its function has not been elucidated. Since the profile of strigolactones (SLs) that induce seed germination in root parasitic plants is altered in the lgs1 mutant, LGS1 is thought to be an SL biosynthetic enzyme. In order to clarify the enzymatic function of LGS1, we looked for candidate SL substrates that accumulate in the lgs1 mutants and performed in vivo and in vitro metabolism experiments. We found the SL precursor 18-hydroxycarlactonoic acid (18-OH-CLA) is a substrate for LGS1. CYP711A cytochrome P450 enzymes (SbMAX1 proteins) in sorghum produce 18-OH-CLA. When LGS1 and SbMAX1 coding sequences were co-expressed in Nicotiana benthamiana with the upstream SL biosynthesis genes from sorghum, the canonical SLs 5-deoxystrigol and 4-deoxyorobanchol were produced. This finding showed that LGS1 in sorghum uses a sulfo group to catalyze leaving of a hydroxyl group and cyclization of 18-OH-CLA. A similar SL biosynthetic pathway has not been found in other plant species.
Collapse
Affiliation(s)
- Akiyoshi Yoda
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Narumi Mori
- Department of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsaka599‐8531Japan
| | - Kohki Akiyama
- Department of Applied Life SciencesGraduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsaka599‐8531Japan
| | - Mayu Kikuchi
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Xiaonan Xie
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| | - Kenji Miura
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukuba305‐8572Japan
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Kanna Sato‐Izawa
- Department of BioscienceFaculty of Life SciencesTokyo University of AgricultureTokyo156‐8502Japan
| | | | - Koichi Yoneyama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
- Women’s Future Development CenterEhime UniversityEhime790‐8566Japan
| | - David C. Nelson
- Department of Botany & Plant SciencesUniversity of CaliforniaRiversideCA92521USA
| | - Takahito Nomura
- Department of Biological Production ScienceUnited Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigi321‐8505Japan
| |
Collapse
|
36
|
Strigolactones Modulate Cellular Antioxidant Defense Mechanisms to Mitigate Arsenate Toxicity in Rice Shoots. Antioxidants (Basel) 2021; 10:antiox10111815. [PMID: 34829686 PMCID: PMC8614715 DOI: 10.3390/antiox10111815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Metalloid contamination, such as arsenic poisoning, poses a significant environmental problem, reducing plant productivity and putting human health at risk. Phytohormones are known to regulate arsenic stress; however, the function of strigolactones (SLs) in arsenic stress tolerance in rice is rarely investigated. Here, we investigated shoot responses of wild-type (WT) and SL-deficient d10 and d17 rice mutants under arsenate stress to elucidate SLs’ roles in rice adaptation to arsenic. Under arsenate stress, the d10 and d17 mutants displayed severe growth abnormalities, including phenotypic aberrations, chlorosis and biomass loss, relative to WT. Arsenate stress activated the SL-biosynthetic pathway by enhancing the expression of SL-biosynthetic genes D10 and D17 in WT shoots. No differences in arsenic levels between WT and SL-biosynthetic mutants were found from Inductively Coupled Plasma-Mass Spectrometry analysis, demonstrating that the greater growth defects of mutant plants did not result from accumulated arsenic in shoots. The d10 and d17 plants had higher levels of reactive oxygen species, water loss, electrolyte leakage and membrane damage but lower activities of superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and glutathione S-transferase than did the WT, implying that arsenate caused substantial oxidative stress in the SL mutants. Furthermore, WT plants had higher glutathione (GSH) contents and transcript levels of OsGSH1, OsGSH2, OsPCS1 and OsABCC1 in their shoots, indicating an upregulation of GSH-assisted arsenic sequestration into vacuoles. We conclude that arsenate stress activated SL biosynthesis, which led to enhanced arsenate tolerance through the stimulation of cellular antioxidant defense systems and vacuolar sequestration of arsenic, suggesting a novel role for SLs in rice adaptation to arsenic stress. Our findings have significant implications in the development of arsenic-resistant rice varieties for safe and sustainable rice production in arsenic-polluted soils.
Collapse
|
37
|
Abiotic stress-by-competition interactions drive hormone and nutrient changes to regulate Suaeda salsa growth. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C, Hu Y. Catabolism of strigolactones by a carboxylesterase. NATURE PLANTS 2021; 7:1495-1504. [PMID: 34764442 DOI: 10.1038/s41477-021-01011-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants.
Collapse
Affiliation(s)
- Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Chai
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xixi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- National Center for Plant Gene Research, Beijing, China.
| |
Collapse
|
39
|
Yoneyama K, Brewer PB. Strigolactones, how are they synthesized to regulate plant growth and development? CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102072. [PMID: 34198192 DOI: 10.1016/j.pbi.2021.102072] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 05/02/2023]
Abstract
Strigolactones (SLs) are multifunctional plant metabolites working not only as allelochemicals in the rhizosphere, but also as a novel class of hormones regulating growth and development in planta. To date, more than 30 SLs have been characterized, but the reason why plants produce structurally diverse SLs and the details of their biosynthetic pathway remain elusive. Recent studies using transcriptomics and reverse genetic techniques have paved the way to clarify the entire biosynthetic pathway of structurally diverse SLs. In this review, we discuss how various SLs are synthesized and what SL structural diversity means for plant growth and development.
Collapse
Affiliation(s)
- Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; PRESTO, JST, Japan.
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond SA 5064, Australia.
| |
Collapse
|
40
|
Wakabayashi T, Yasuhara R, Miura K, Takikawa H, Mizutani M, Sugimoto Y. Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase. PLANTA 2021; 254:88. [PMID: 34586497 DOI: 10.1007/s00425-021-03738-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/08/2023]
Abstract
An Arabidopsis S-adenosyl-L-methionine-dependent methyltransferase belonging to the SABATH family catalyzes the specific carboxymethylation of (11R)-carlactonoic acid. Methyl carlactonoate (MeCLA), found in Arabidopsis (Arabidopsis thaliana) as a non-canonical strigolactone (SL), may be a biosynthetic intermediate of various non-canonical SLs and biologically active as a plant hormone. MeCLA is formed from carlactonoic acid (CLA), but the methyltransferases (MTs) converting CLA to MeCLA remain unclear. Previous studies have demonstrated that the carboxymethylation of acidic plant hormones is catalyzed by the same protein family, the SABATH family (Wang et al. in Evol Bioinform 15:117693431986086. https://doi.org/10.1177/1176934319860864 , 2019). In the present study, we focused on the At4g36470 gene, an Arabidopsis SABATH MT gene co-expressed with the MAX1 gene responsible for CLA formation for biochemical characterization. The recombinant At4g36470 protein expressed in Escherichia coli exhibited exclusive activity against naturally occurring (11R)-CLA among the substrates, including CLA enantiomers and a variety of acidic plant hormones. The apparent Km value for (11R)-CLA was 1.46 μM, which was relatively smaller than that of the other Arabidopsis SABATH MTs responsible for the carboxymethylation of acidic plant hormones. The strict substrate specificity and high affinity of At4g36470 suggested it is an (11R)-CLA MT. We also confirmed the function of the identified gene by reconstructing MeCLA biosynthesis using transient expression in Nicotiana benthamiana. Phylogenetic analysis demonstrated that At4g36470 and its orthologs in non-canonical SL-producing plants cluster together in an exclusive clade, suggesting that the SABATH MTs of this clade may be involved in the carboxymethylation of CLA and the biosynthesis of non-canonical SLs.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryo Yasuhara
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
41
|
Chen Y, Kuang Y, Shi L, Wang X, Fu H, Yang S, Sampietro DA, Huang L, Yuan Y. Synthesis and Evaluation of New Halogenated GR24 Analogs as Germination Promotors for Orobanche cumana. FRONTIERS IN PLANT SCIENCE 2021; 12:725949. [PMID: 34603353 PMCID: PMC8484532 DOI: 10.3389/fpls.2021.725949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Orobanche and Striga are parasitic weeds extremely well adapted to the life cycle of their host plants. They cannot be eliminated by conventional weed control methods. Suicidal germination induced by strigolactones (SLs) analogs is an option to control these weeds. Here, we reported two new halogenated (+)-GR24 analogs, named 7-bromo-GR24 (7BrGR24) and 7-fluoro-GR24 (7FGR24), which were synthesized using commercially available materials following simple steps. Both compounds strongly promoted seed germination of Orobanche cumana. Their EC50 values of 2.3±0.28×10-8M (7BrGR24) and 0.97±0.29×10-8M (7FGR24) were 3- and 5-fold lower, respectively, than those of (+)-GR24 and rac-GR24 (EC50=5.1±1.32-5.3±1.44×10-8; p<0.05). The 7FGR24 was the strongest seed germination promoter tested, with a stimulation percentage of 62.0±9.1% at 1.0×10-8M and 90.9±3.8% at 1.0×10-6M. It showed higher binding affinity (IC50=0.189±0.012μM) for the SL receptor ShHTL7 than (+)-GR24 (IC50=0.248±0.032μM), rac-GR24 (IC50=0.319±0.032μM), and 7BrGR24 (IC50=0.521±0.087μM). Molecular docking experiments indicated that the binding affinity of both halogenated analogs to the strigolactone receptor OsD14 was similar to that of (+)-GR24. Our results indicate that 7FGR24 is a promising agent for the control of parasitic weeds.
Collapse
Affiliation(s)
- Yuchao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yi Kuang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, China
| | - Liyang Shi
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, China
| | - Xing Wang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, China
| | - Haoyu Fu
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, China
| | - Shengxiang Yang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, China
| | | | - Luqi Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resources Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wu S, Ma X, Zhou A, Valenzuela A, Zhou K, Li Y. Establishment of strigolactone-producing bacterium-yeast consortium. SCIENCE ADVANCES 2021; 7:eabh4048. [PMID: 34533983 PMCID: PMC8448452 DOI: 10.1126/sciadv.abh4048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli–Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonoic acid, 5-deoxystrigol (5DS; 6.65 ± 1.71 μg/liter), 4-deoxyorobanchol (3.46 ± 0.28 μg/liter), and orobanchol (OB; 19.36 ± 5.20 μg/liter). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 47.3 μg/liter. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Xiaoqiang Ma
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Anqi Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Alex Valenzuela
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kang Zhou
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
43
|
Takikawa H. Studies on Strigolactone Based on Synthetic Organic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
44
|
Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules 2021; 26:molecules26154579. [PMID: 34361731 PMCID: PMC8348160 DOI: 10.3390/molecules26154579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.
Collapse
|
45
|
Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cropping potential of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) cultivars is determined by their adaptation to edaphoclimatic and environmental conditions. The effects of scion–rootstock interactions on vigor have a decisive impact on this cropping success. Intensively planted orchards with smaller less vigorous trees present several potential benefits for increasing orchard profitability. While several studies have examined rootstock effects on tree vigor, it is less clear how rootstocks influence more specific aspects of tree architecture. The objective of this current study was to identify which architectural traits of commercially important scion cultivars are influenced by rootstock and which of these traits can be useful as descriptors of rootstock performance in breeding evaluations. To do this, 6 almond cultivars of commercial significance were grafted onto 5 hybrid rootstocks, resulting in 30 combinations that were measured after their second year of growth. We observed that rootstock choice mainly influenced branch production, but the effects were not consistent across the different scion–rootstock combinations evaluated. This lack of consistency in response highlights the importance of the unique interaction between each rootstock and its respective scion genotype.
Collapse
|
46
|
Wu S, Li Y. A Unique Sulfotransferase-Involving Strigolactone Biosynthetic Route in Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:793459. [PMID: 34970291 PMCID: PMC8713700 DOI: 10.3389/fpls.2021.793459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
LOW GERMINATION STIMULANT 1 (LGS1) plays an important role in strigolactones (SLs) biosynthesis and Striga resistance in sorghum, but the catalytic function remains unclear. Using the recently developed SL-producing microbial consortia, we examined the activities of sorghum MORE AXILLARY GROWTH1 (MAX1) analogs and LGS1. Surprisingly, SbMAX1a (cytochrome P450 711A enzyme in sorghum) synthesized 18-hydroxy-carlactonoic acid (18-hydroxy-CLA) directly from carlactone (CL) through four-step oxidations. The further oxidated product orobanchol (OB) was also detected in the microbial consortium. Further addition of LGS1 led to the synthesis of both 5-deoxystrigol (5DS) and 4-deoxyorobanchol (4DO). Further biochemical characterization found that LGS1 functions after SbMAX1a by converting 18-hydroxy-CLA to 5DS and 4DO possibly through a sulfonation-mediated pathway. The unique functions of SbMAX1 and LGS1 imply a previously unknown synthetic route toward SLs.
Collapse
|
47
|
Chesterfield RJ, Whitfield JH, Pouvreau B, Cao D, Alexandrov K, Beveridge CA, Vickers CE. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synth Biol 2020; 9:2107-2118. [PMID: 32786922 DOI: 10.1021/acssynbio.0c00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.
Collapse
Affiliation(s)
- Rebecca J. Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Jason H. Whitfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| | - Benjamin Pouvreau
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Kirill Alexandrov
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Christine A. Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| |
Collapse
|