1
|
Prakobdi C, Dhellemmes L, Leclercq L, Rydzek G, Cottet H. Surfactant-based coatings for protein separation by capillary electrophoresis - A review. Anal Chim Acta 2025; 1356:343945. [PMID: 40288884 DOI: 10.1016/j.aca.2025.343945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations. RESULTS Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter. SIGNIFICANCE This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability/durability.
Collapse
Affiliation(s)
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Gaulthier Rydzek
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
2
|
Konášová R, Koval D, Tůma P, Vaculín Š, Kašička V. Study of metabolic pathways of racemic ketamine and its (S)-enantiomer in rat blood plasma using CE-ESI/MS with partial filling of dual chiral selector system. Talanta 2025; 293:128129. [PMID: 40233532 DOI: 10.1016/j.talanta.2025.128129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Ketamine is a chiral drug used as anesthetic, analgesic and antidepressant. Its enantiomers and stereoisomers of its metabolites show different pharmacological and behavioral effects. To study the ketamine metabolic pathway and investigate these effects, highly sensitive and enantioselective methods are required. For that reason, in this study, a new CE method using a partial filling dual chiral selector system and ESI-MS detection has been developed and applied for separation and quantification of enantiomers of ketamine and its main metabolites, norketamine, hydroxynorketamine and dehydronorketamine, extracted by dichloromethane from the blood plasma of laboratory rats. The dual chiral selector system consisting of two zones of highly sulfated β-cyclodextrin (30 mg mL-1) and highly sulfated γ-cyclodextrin (10 mg mL-1) was introduced consecutively near the capillary outlet end. Both chiral selectors were dissolved in the background electrolyte composed of 10 mM ammonium hydroxide, 104 mM acetic acid, 10 % (v/v) ethanol, pH∗ 3.75. This system enabled enantioseparation of ketamine and its metabolites within a single CE run. High resolutions (3.99-17.61) of enantiomers of all above four analytes within a short time (11 min) were achieved in the fused silica capillary covalently coated with weakly negatively charged polyanionic copolymer (poly(acrylamide-co-sodium-2-acrylamido-2-methylpropanesulfonate), PAMAMPS). This coating minimized analyte sorption to the capillary and provided good repeatability of migration times. The limits of detection and quantification of the above analytes were in the range 108-238 nM and 361-792 nM, respectively. The method was linear within wide concentration range of 0.1-200 μM and the recovery was 91.3-105 %.
Collapse
Affiliation(s)
- Renáta Konášová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, Prague 6, 160 00, Czechia
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, Prague 6, 160 00, Czechia
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10, 100 00, Czechia
| | - Šimon Vaculín
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, Prague 2, 120 00, Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, Prague 6, 160 00, Czechia.
| |
Collapse
|
3
|
Sun R, Dupuis E, Aupiais J, Reiller PE. Study of Ca nUO 2(CO 3) 3(4-2n)- complexes using CE-ICP-MS with polyetheretherketone (PEEK) capillaries. Dalton Trans 2025; 54:719-727. [PMID: 39569637 DOI: 10.1039/d4dt02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The formation constants of CanUO2(CO3)3(4-2n)- complexes were determined directly using capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) in 0.1 M NaCl and at room temperature. Instead of conventional fused silica, polyetheretherketone (PEEK), a neutral organic material, was used as the capillary material to avoid interactions between uranyl and silica. Since PEEK is not optically transparent, a macrocyclic neutral complex, Ga-NOTA, was used to measure the electroosmotic flux directly by ICP-MS. The impact of the Joule effect was evaluated to control the temperature during electrophoresis. To alter the reversible interaction that arose from continuous use, a two-mode electrophoresis strategy was adopted. The observed mobilities of the samples showed a satisfactory correlation with the theoretical charge calculated from previous data (C. Shang and P. E. Reiller, Dalton Trans., 2020, 49, 466-481). The successive formation constants obtained in this work, log10 K(CaUO2(CO3)32-) = 5.28 ± 0.39 and log10 K(Ca2UO2(CO3)3(aq)) = 8.46 ± 0.67 in 0.1 M NaCl, were extrapolated to infinite dilution using the Davies equation, yielding log10 β°(CaUO2(CO3)32-) = 27.12 ± 0.39 and log10 β°(Ca2UO2(CO3)3(aq)) = 30.30 ± 0.67. These values are in excellent agreement with Shang and Reiller (C. Shang and P. E. Reiller, Dalton Trans., 2020, 49, 466-481). This further verifies the thermodynamic data available for these species and validates PEEK-based capillary electrophoresis for the measurement of thermodynamic constants of inorganic complexes in alkaline media.
Collapse
Affiliation(s)
- Ruopei Sun
- Université Paris-Saclay, CEA, Service de Physico-Chimie, Gif-sur-Yvette, F-91191, France.
| | - Erwan Dupuis
- Université Paris-Saclay, CEA, Service de Physico-Chimie, Gif-sur-Yvette, F-91191, France.
| | | | - Pascal E Reiller
- Université Paris-Saclay, CEA, Service de Physico-Chimie, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
4
|
van der Zon AAM, Höchsmann A, Bos TS, Neusüß C, Somsen GW, Jooß K, Haselberg R, Gargano AFG. Characterization of monoclonal antibody charge variants under near-native separation conditions using nanoflow sheath liquid capillary electrophoresis-mass spectrometry. Anal Chim Acta 2024; 1331:343287. [PMID: 39532401 DOI: 10.1016/j.aca.2024.343287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) undergo multiple post-translational modifications (PTMs) during production and storage, resulting for instance in charge and oxidized variants. PTMs need to be assessed as critical quality attributes to assure protein quality and safety. Capillary zone electrophoresis (CZE) enables efficient charge-based separation. The CZE method developed by He et al. (2011) is currently applied routinely in the pharmaceutical industry for profiling charge heterogeneity of mAbs. However, as the method relies on a non-volatile background electrolyte (BGE), it cannot be directly hyphenated with mass spectrometry (MS), hampering the identification of separated charge variants. RESULTS This study presents a CZE-UV/MS method using a neutral static capillary coating of hydroxypropyl methylcellulose combined with a volatile BGE at pH 5.0 to allow for MS-compatible mAb charge variant separations. The effect of several parameters, including pH and concentration of the BGE, applied voltage, and injected mAb concentrations on separation performance was investigated using a panel of commercially available mAbs. The optimized method was evaluated with IgG1 and IgG4 mAbs of varying pI (7.4-9.2) and degrees of heterogeneity. Basic and acidic variants were separated from the parent mAb using a BGE of 50 mM acetic acid adjusted to pH 5.0 with ammonium hydroxide. The relative abundances of charge variants determined with the new method showed a good correlation with the corresponding relative levels obtained with the method of He et al. CZE-MS coupling was accomplished using the nanoCEasy, a low-flow sheath liquid interface, which enabled the identification and quantitation of basic, acidic, and incomplete pyroglutamate variants, and glycoforms of the tested mAbs. SIGNIFICANCE This manuscript describes a new CZE-MS method that permits heterogeneity assessment of mAbs under MS-compatible conditions, providing charge variant separation.
Collapse
Affiliation(s)
- Annika A M van der Zon
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Alisa Höchsmann
- Aalen University, Department of Chemistry, Beethovenstraße 1, 73430, Aalen, Germany; Eberhard Karls University of Tübingen, Faculty of Science, 72074, Tübingen, Germany
| | - Tijmen S Bos
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Christian Neusüß
- Aalen University, Department of Chemistry, Beethovenstraße 1, 73430, Aalen, Germany
| | - Govert W Somsen
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Kevin Jooß
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Rob Haselberg
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Andrea F G Gargano
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Atia MA, Kalsoom U, Ollerton S, Haddad PR, Breadmore MC. Methamphetamine detection using portable capillary electrophoresis coupled with a swab-based extraction device. Talanta 2024; 278:126357. [PMID: 38959669 DOI: 10.1016/j.talanta.2024.126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Methamphetamine (MA) is one of the most virulent illicit drugs that can be synthesized from household materials leading to its prevalent trafficking and local manufacturing in clandestine drug laboratories (clan labs). The significant problems of tracing MA in clan labs and monitoring drug abusers lie in the lag time between sample collection and analysis and the number of tests done. Capillary electrophoresis (CE) is a rapid separation technique amenable to miniaturization and field testing. Herein, we developed a simple transient isotachophoretic (tITP)-CE method to detect MA and its precursor pseudoephedrine (PSE) in clan labs and non-invasive biological fluids. The method was implemented on the ETD-100, a commercial fully automated portable CE instrument with an integrated swab-based extraction system. Within 2 min of insertion of the swab, MA and PSE were automatically extracted with a leading electrolyte (LE) and then separated on covalently modified capillaries. The ETD-100 showed a limit of detection (LOD) and quantification (LOQ) of MA 0.02 and 0.05 μg/swab and 0.02 and 0.06 μg/swab of PSE, with an enhancement factor of 118 and 328, respectively, when compared to a normal non-tITP injection. The intra and inter-day relative standard deviation in terms of migration time were in the range of 0.75-1.93 % for both MA and PSE and were 2.0-2.4 % for both MA and PSE peak height. The method was demonstrated with the detection of spiked MA and PSE on different household materials as well as in non-invasive biological fluids with a recovery above 60 %.
Collapse
Affiliation(s)
- Mostafa A Atia
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, 11795, Cairo, Egypt
| | - Umme Kalsoom
- GreyScan, 9/435 Williamstown Rd, Port Melbourne, Victoria, 3207, Australia
| | - Samantha Ollerton
- GreyScan, 9/435 Williamstown Rd, Port Melbourne, Victoria, 3207, Australia; Precision Plus Consulting Ltd., 71-75 Shelton Street, Covent Garden, London, WC2H 9HJ, United Kingdom
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
6
|
Obma A, Bumrungpuech R, Hemwech P, Detsangiamsak S, Wirasate S, Hauser PC, Chantiwas R. Efficient separation of organic anions in beverages using aminosilane-functionalized capillary electrophoresis with contactless conductivity detection. Anal Chim Acta 2024; 1316:342815. [PMID: 38969420 DOI: 10.1016/j.aca.2024.342815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Capillary electrophoresis (CE) has the advantage of rapid anion analysis, when employing a reverse electroosmotic flow (EOF). The conventional CE method utilizes dynamic coatings with surfactants like cetyltrimethylammonium bromide (CTAB) in the run buffer to reverse the EOF. However, this method suffers from very slow equilibration leading to drifting effective migration times of the analyte anions, which adversely affects the identification and quantification of peaks. Permanent coating of the capillary surface may obviate this problem but has been relatively little explored. Thus, permanent capillary surface modification by the covalent binding of 3-aminopropyltriethoxysilane (APTES) was studied as an alternative. RESULTS This study investigates the effect of APTES concentration for surface functionalization on EOF mobility, separation efficiency, and reproducibility of anion separation. The performance data was complemented by X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The XPS measurements showed that the coverage with APTES was dependent on its concentration in the coating solution. The XPS measurements correlated well with the EOF values determined for the capillaries tested. A standard mixture of 21 anions could be baseline separated within 10 min in the capillaries with lower EOF, but not in the capillary with the highest EOF as the residence time of the analytes was too short in this case. Compared to conventional dynamic coating with CTAB, APTES-functionalized capillaries provide faster equilibration and long-term EOF stability. The application of APTES-functionalized capillaries in analyzing different beverages demonstrates the precision, reliability, and specificity in determining organic anions, providing valuable insights of their compositions. SIGNIFICANCE APTES coating on capillaries provides a facile approach to achieve a permanent reversal of the stable EOF to determine anions. The control of the coverage via the concentration of the reagent solution allows the tailoring of the EOF to different needs, a faster EOF for less complex samples where resolution is not challenging, while a lower EOF for higher complex samples where the focus is on separation efficiency. This enhancement in efficiency and sensitivity has been applied to analyzing organic acids in several beverages.
Collapse
Affiliation(s)
- Apinya Obma
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Rawiwan Bumrungpuech
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Pattamaporn Hemwech
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Sasinun Detsangiamsak
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Supa Wirasate
- Rubber Technology Research Centre, 999 Science Building 3, Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Peter C Hauser
- The University of Basel, Department of Chemistry, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
| | - Rattikan Chantiwas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Dhellemmes L, Leclercq L, Lichtenauer L, Höchsmann A, Leitner M, Ebner A, Martin M, Neusüß C, Cottet H. Dual Contributions of Analyte Adsorption and Electroosmotic Inhomogeneity to Separation Efficiency in Capillary Electrophoresis of Proteins. Anal Chem 2024; 96:11172-11180. [PMID: 38946102 DOI: 10.1021/acs.analchem.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Lisa Lichtenauer
- Institute of Biophysics, Johannes Kepler University Linz, Linz 4020, Austria
| | - Alisa Höchsmann
- Faculty of Chemistry, Aalen University, Aalen 73430, Germany
| | - Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Linz 4020, Austria
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Linz 4020, Austria
| | - Michel Martin
- PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université de Paris, Paris 75005, France
| | | | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
8
|
Dhellemmes L, Leclercq L, Frick H, Höchsmann A, Schaschke N, Neusüß C, Cottet H. Investigating cationic and zwitterionic successive multiple ionic-polymer layer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2024; 1720:464802. [PMID: 38507871 DOI: 10.1016/j.chroma.2024.464802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Henry Frick
- Faculty of Chemistry, Aalen University, Aalen, Germany
| | | | | | | | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
9
|
Gouyon J, Clavié M, Raquel GC, Ngo G, Dumy P, Etienne P, Martineau P, Pugnière M, Ahmad M, Subra G, Perrin C, Ladner Y. A bioinspired approach for the modulation of electroosmotic flow and protein-surface interactions in capillary electrophoresis using silylated amino-amides blocks and covalent grafting. Electrophoresis 2024; 45:557-572. [PMID: 38161236 DOI: 10.1002/elps.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
We explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well-known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino-amide mimic hybrid precursors synthesized by silylation of amino-amides (Si-AA) derivatives with 3-isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein-protein interactions (π-π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si-AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein-surface interactions. The analytical performances of amino-amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si-AA in the functionalization mixture.
Collapse
Affiliation(s)
- Jérémie Gouyon
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Margaux Clavié
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | | | - Giang Ngo
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Pascal Dumy
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Pascal Etienne
- l2C, CNRS UMR 5221, University of Montpellier, Montpellier, France
| | - Pierre Martineau
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Martine Pugnière
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Mehdi Ahmad
- ICGM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Gilles Subra
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Catherine Perrin
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Yoann Ladner
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Hajba L, Guttman A. Ionic liquids in capillary electrophoresis analysis of proteins and carbohydrates. J Chromatogr A 2024; 1716:464642. [PMID: 38237290 DOI: 10.1016/j.chroma.2024.464642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Ionic liquids (ILs), as non-molecular type solvents, possess excellent physical-chemical properties, which make them useful in important separation applications in gas chromatography, liquid chromatography, and capillary electrophoresis. Among a plethora of potential uses of ionic liquids in separation science, capillary electrophoresis can utilize its resolution-enhancing effect in the analysis of proteins and carbohydrates, via the formation of intermolecular interactions, e.g., hydrophobic, hydrogen bonding, or electrostatic. ILs and polymeric ionic liquids (PIL) also represent an excellent choice as background electrolyte (BGE) additives for capillary coatings in CE, which is especially important in protein analysis. Another interesting utilization of ILs is the fabrication of monoliths for capillary electrochromatography in which instance the mechanism of retention is based on ion exclusion interactions. Carbohydrates can also be readily analyzed by CE with the help of ionic liquids without the need for an extra derivatization step. One of the future perspectives on the use of ILs is their utilization in the recently emerging biopharmaceutical industry exploiting the increased resolution of proteins and carbohydrates, two of the important components of glycoprotein therapeutics. In this paper, we address the so-far not-reviewed ionic liquid-mediated analysis of proteins and carbohydrates by capillary electrophoresis-based techniques also addressing their impact on the separation mechanism.
Collapse
Affiliation(s)
- László Hajba
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - András Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
11
|
Atia MA, Smejkal P, Gupta V, Haddad PR, Breadmore MC. Chemical vapour deposition in narrow capillaries: Electro-osmotic flow control in capillary electrophoresis. Anal Chim Acta 2023; 1280:341847. [PMID: 37858546 DOI: 10.1016/j.aca.2023.341847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In capillary electrophoresis (CE), the inner surface of fused-silica capillaries is commonly covalently modified with liquid silanes to control electroosmotic flow (EOF). This liquid phase deposition (LPD) approach is challenging for long and narrow-diameter capillaries (≥1 m, ≤25 μm ID) inhibiting commercial production. Here, we use chemical vapour deposition (CVD) to covalently modify capillaries with different silanes. Using a home-built CVD device, capillaries were modified with neutral (3-glycidyloxypropyl) trimethoxysilane (GPTMS), the weak base (3-aminopropyl) trimethoxysilane (APTMS), the weak acid 3-mercaptopropyltrimethoxysilane (MPTMS) and the neutral hydrophobic trichloro(1H,1H,2H,2H-perfluorooctyl) silane (PFOCTS). Gas-phase modification of GPTMS with acid and ammonia allowed further modification of the surface prior to molecular layer deposition (MLD) of poly(p-phenylene terephthalamide) (PPTA) using the self-limiting sequential reaction between terephthalaldehyde (TA) and p-phenylenediamine (PD) vapours. RESULTS Capillaries coated with GPTMS by CVD showed a greater reduction in EOF at all pH values than the conventional LPD. APTMS showed a reduction of the EOF at pH 9, with EOF reversal observed below pH 6. MPTMS provided a slightly lower EOF than an unmodified capillary at high pH, and a slightly higher EOF at lower pH. PFOCTS provided the most consistent EOF as a function of pH. The deposition of successive layers of PPTA resulted in increased surface coverage of the polymer and a greater reduction in EOF at pH higher than 5. The stability of a 10 μm ID GPTMS coated capillary was tested at pH 8.8 in a 200 mM CHES/Tris BGE for the separation of inorganic anions. Over 1.5 months of continuous operation (≈4130 runs), the reproducibility of the apparent mobilities for chloride, nitrite, nitrate and sulfate were 2.43%, 2.56%, 2.63% and 3.05%, respectively. The intra-day and inter-day column-to-column reproducibility and batch-to-batch reproducibility for all the coated capillaries ranged between 0.34% and 3.95%. SIGNIFICANCE The study demonstrates the superior performance of CVD coating for suppressing the EOF compared to LPD allowing the easy modification of long lengths of narrow capillary. The variation in silane, and the ability of MLD to modify and control the surface chemistry, provides a simple and facile method for surface modification. The stability of these coatings will allow long-term capillary electrophoresis monitoring of water chemistry, such as for monitoring fertiliser run-off in natural waters.
Collapse
Affiliation(s)
- Mostafa A Atia
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, 11795, Cairo, Egypt.
| | - Petr Smejkal
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
12
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
13
|
Szabó ZI, Benkő BM, Bartalis-Fábián Á, Iványi R, Varga E, Szőcs L, Tóth G. Chiral Separation of Apremilast by Capillary Electrophoresis Using Succinyl-β-Cyclodextrin-Reversal of Enantiomer Elution Order by Cationic Capillary Coating. Molecules 2023; 28:molecules28083310. [PMID: 37110544 PMCID: PMC10143784 DOI: 10.3390/molecules28083310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A stereospecific capillary electrophoresis method was developed for the separation of the novel, antipsoriatic agent, apremilast (APR). Six anionic cyclodextrin (CD) derivatives were screened for their ability to discriminate between the uncharged enantiomers. Only succinyl-β-CD (Succ-β-CD) presented chiral interactions; however, the enantiomer migration order (EMO) was unfavorable, and the eutomer, S-APR, migrated faster. Despite the optimization of all possible parameters (pH, cyclodextrin concentration, temperature, and degree of substitution of CD), the method was unsuccessful for purity control due to the low resolution and the unfavorable enantiomer migration order. Changing the direction of electroosmotic flow (EOF) by the dynamic coating of the inner surface of the capillary with poly(diallyldimethylammonium) chloride or polybrene resulted in EMO reversal, and the developed method could be applied for the determination of R-APR as the enantiomeric purity. Thus, the application of the dynamic capillary coating offers a general opportunity for enantiomeric migration order reversal in particular cases when the chiral selector is a weak acid.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
- Sz-Imfidum Ltd., nr. 504, 525401 Lunga, Romania
| | - Beáta-Mária Benkő
- University Pharmacy Department of Pharmaceutical Administration, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| | - Ágnes Bartalis-Fábián
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
| | - Róbert Iványi
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | | | - Levente Szőcs
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| |
Collapse
|
14
|
Dhellemmes L, Leclercq L, Höchsmann A, Neusüß C, Biron JP, Roca S, Cottet H. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2023; 1695:463912. [PMID: 36972664 DOI: 10.1016/j.chroma.2023.463912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Since the introduction of polyelectrolyte multilayers to protein separation in capillary electrophoresis (CE), some progress has been made to improve separation efficiency by varying different parameters, such as buffer ionic strength and pH, polyelectrolyte nature and number of deposited layers. However, CE is often overlooked as it lacks robustness compared to other separation techniques. In this work, critical parameters for the construction of efficient and reproducible Successive multiple ionic-polymer layers (SMIL) coatings were investigated, focusing on experimental conditions, such as vial preparation and sample conservation which were shown to have a significant impact on separation performances. In addition to repeatability, intra- and inter-capillary precision were assessed, demonstrating the improved capability of poly(diallyldimethylammonium chloride) / poly(sodium styrene sulfonate) (PDADMAC / PSS) coated capillaries to separate model proteins in a 2 M acetic acid background electrolyte when all the correct precautions are put in place (with run to run%RSD(tm) < 1.8%, day to day%RSD(tm) < 3.2% and cap to cap%RSD(tm) < 4.6%). The approach recently introduced to calculate retention factors was used to quantify residual protein adsorption onto the capillary wall and to assess capillary coating performances. 5-layer PDADAMAC / PSS coatings led to average retention factors for the five model proteins of ∼4×10-2. These values suggest a relatively low residual protein adsorption leading to reasonably flat plate height vs linear velocity curves, obtained by performing electrophoretic separations at different electrical voltages (-10 to -25 kV).
Collapse
|
15
|
Hajba L, Jeong S, Chung DS, Guttman A. Capillary Gel Electrophoresis of Proteins: Historical overview and recent advances. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
18
|
Fauvel M, Trybala A, Tseluiko D, Starov VM, Bandulasena HCH. Foam-Based Electrophoretic Separation of Charged Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13935-13942. [PMID: 36322953 PMCID: PMC9671044 DOI: 10.1021/acs.langmuir.2c02228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Electrophoretic separation of a fluorescent dye mixture, containing rhodamine B (RB) and fluorescein, in liquid foams stabilized by anionic, cationic, or non-ionic surfactants in water-glycerol mixtures was studied in a custom-designed foam separation device. The effects of the external electric field applied across the foam and the initial pH of the solution on the effectiveness of separation were also studied. The fluid motion due to electroosmosis and the resulting back pressure within the foam and local pH changes were found to be complex and affected the separation. Fluorescein dye molecules, which have a positive or negative charge depending on the solution pH, aggregated in the vicinity of an electrode, leaving a pure band of neutral dye RB. The effectiveness of the separation was quantified by the percentage width of the pure RB band, which was found to be between 29 and 42%. This study demonstrates the potential of liquid foam as a platform for electrophoretic separation.
Collapse
Affiliation(s)
- Matthieu Fauvel
- Department
of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Anna Trybala
- Department
of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Dmitri Tseluiko
- Department
of Mathematics, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Victor Mikhilovich Starov
- Department
of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | | |
Collapse
|
19
|
Cupp-Sutton KA, Fang M, Wu S. Separation methods in single-cell proteomics: RPLC or CE? INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 481:116920. [PMID: 36211475 PMCID: PMC9542495 DOI: 10.1016/j.ijms.2022.116920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.
Collapse
Affiliation(s)
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
20
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
21
|
Šolínová V, Tůma P, Butnariu M, Kašička V, Koval D. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations. Electrophoresis 2022; 43:1953-1962. [DOI: 10.1002/elps.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine Charles University Prague 10 Czech Republic
| | - Maria Butnariu
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
- Department of Analytical Chemistry, Faculty of Science Charles University Prague 2 Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| |
Collapse
|
22
|
Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte Multilayers in Capillary Electrophoresis. Chempluschem 2022; 87:e202200028. [PMID: 35388990 DOI: 10.1002/cplu.202200028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Indexed: 02/21/2024]
Abstract
Capillary electrophoresis (CE) has been proven to be a performant analytical method to analyze both small and macro molecules. Indeed, it is capable of separating compounds of the same nature according to differences in their charge to size ratios, particularly proteins, monoclonal antibodies and peptides. However, one of the major obstacles to reach high separation efficiency remains the adsorption of solutes on the capillary wall. Among the different coating approaches used to control and minimize solute adsorption, polyelectrolyte multilayers can be applied to CE as a versatile approach. These coatings are made up of alternating layers of polycations and polyanions, and may be used in acidic, neutral or basic conditions depending on the solutes to be analyzed. This Review provides an overview of Successive Multiple Ionic-polymer Layer (SMIL) coatings used in CE, looking at how different parameters induce variations on the electro-osmotic flow (EOF), separation efficiency and coating stability, as well as their promising applications in the biopharmaceutical field.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
23
|
Li M, Wang Y, He K, Wang Y. Determination of pepsin by capillary electrophoresis using mixed polymer coated capillary with switchable properties towards protein adsorption/desorption. J Sep Sci 2022; 45:1960-1970. [PMID: 35352869 DOI: 10.1002/jssc.202100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/07/2022]
Abstract
In this work, a simple on-line preconcentration method for quantitative detection of pepsin was realized by using the binary mixed polymer brushes coated capillary with switchable properties towards protein adsorption. Firstly, the binary mixed polymer brushes were prepared by grafting poly(2-methyl-2-oxazoline) and poly(4-vinylpyridine) onto the inner wall of the capillary through polydopamine anchor. Then the coatings were characterized by X-ray photoelectron spectrometer and electroosmotic flow measurement. The results indicated that the composition of coating could be controlled by varying the feed ratio of poly(2-methyl-2-oxazoline) to poly(4-vinylpyridine) and the inner surface charge could be tuned toward the change of pH and ionic strength. The results showed when poly(2-methyl-2-oxazoline)/poly(4-vinylpyridine) mass ratio was 80/20, the highest on-line preconcentration effect was obtained and the sensitivity enhancement factor was 6.3. Moreover, satisfactory sensitivity (limit of detection: 7.5 ng/mL) and good repeatability were obtained with on-line preconcentration method. The polymer coated capillary was still stable for on-line preconcentration and detection of pepsin after 50 consecutive runs. Lastly, the proposed method was used successfully to on-line preconcentrate pepsin in saliva matrix. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengqin Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kang He
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
24
|
Graf HG, Biebl SM, Müller L, Breitenstein C, Huhn C. Capillary electrophoresis applied for the determination of acidity constants and limiting electrophoretic mobilities of ionizable herbicides including glyphosate and its metabolites and for their simultaneous separation. J Sep Sci 2022; 45:1128-1139. [PMID: 34984811 DOI: 10.1002/jssc.202100952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/11/2022]
Abstract
Thermodynamic acidity constants and limiting ionic mobilities were determined for polyprotic non-chromophore analytes using capillary electrophoresis with capacitively coupled contactless conductivity detection. It was not necessary to work with buffers of identical ionic strength as ionic strength effects on effective electrophoretic mobilities were corrected by modeling during data evaluation (software AnglerFish). The mobility data from capillary electrophoresis coupled to conductivity detection were determined in the pH range from 1.25 to 12.02 with a high resolution (36 pH steps). With this strategy, thermodynamic acidity constants and limiting ionic mobilities for various acidic herbicides were determined, sometimes for the first time. The model analytes included glyphosate, its metabolites, and its acetylated derivates (aminomethyl phosphonic acid, glyoxylic acid, sarcosine, glycine, N-acetyl glyphosate, N-acetyl aminomethyl phosphonic acid, hydroxymethyl phosphonic acid). The obtained data were used in simulations to optimize separations by capillary electrophoresis. Simulations correlated very well to experimental results. With the new method, the separation of glyphosate from interfering components like phosphate in beer samples was possible.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Sonja Maria Biebl
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Linda Müller
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christina Breitenstein
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Online preconcentration methodology that realizes over 2000-fold enhancement by integrating the free liquid membrane into electrokinetic supercharging in capillary electrophoresis for the determination of trace anionic analytes in complex samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 2022; 6:215-231. [PMID: 37117432 DOI: 10.1038/s41570-021-00353-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.
Collapse
|
27
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
28
|
Gärtner A, de Almeida Santos G, Ruff AJ, Schwaneberg U. A Screening Method for P450 BM3 Mutant Libraries Using Multiplexed Capillary Electrophoresis for Detection of Enzymatically Converted Compounds. Methods Mol Biol 2022; 2461:195-210. [PMID: 35727452 DOI: 10.1007/978-1-0716-2152-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Capillary electrophoresis (CE) is an analytical method in which charged species are separated by attraction or repulsion performed in submillimeter diameter capillaries or micro- and nanofluidic channels through the application of a high voltage electric field. When capillary electrophoresis is assembled in a multicapillary instrument such as 96-well format (multiplexed), it becomes a powerful high-throughput system with the ability to simultaneously screen several types of samples like genetic mutations, metabolomes, kinase inhibitors, or enzymatic activities to name a few. The usage of a 96-multiplexed capillary electrophoresis system (96-MP-CE) represents a new platform for product-specific high-throughput screening of enzyme mutant libraries from directed evolution campaigns providing a comprehensive view on enzyme activity through the detection of all products formed. We describe the application of 96-MP-CE to screen mutant libraries of P450 BM3. MP-CE was used in directed evolution campaigns toward benzo-1,4-dioxane and α-isophorone.
Collapse
Affiliation(s)
- Anna Gärtner
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Anna Joëlle Ruff
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
- DWI-Leibniz Institut für Interaktive Materialien, Aachen, Germany.
| |
Collapse
|
29
|
Nguyen VD, Nguyen HQ, Bui KH, Ko YS, Park BJ, Seo TS. A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: Power, fluorescence detection, and data analysis by smartphone. Biosens Bioelectron 2022; 195:113632. [PMID: 34571485 DOI: 10.1016/j.bios.2021.113632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
A micro-capillary electrophoresis (μCE) system is one of the widely adopted techniques in the molecular diagnostics and DNA sequencing due to the benefits of high resolution, rapid analysis, and low reagent consumption, but due to the requirements of bulky high-power suppliers and an expensive laser-induced fluorescence detector module, the conventional set-up of μCE system is not adequate for point-of-care (POC) molecular diagnostics. In this study, we constructed a miniaturized and integrated μCE system which can be manipulated by a smartphone. The smartphone not only powers two boost converters and an excited laser, but also controls the relay for the power switch. Moreover, the complementary metal-oxide-semiconductor (CMOS) camera of the smartphone was used for detecting the fluorescence signal of amplicons amplified with reverse transcription-polymerase chain reaction (RT-PCR). We also developed a web-based application so that the raw data of the recorded fluorescence intensity versus the running time can display typical capillary electropherograms on the smartphone. The total size of the hand-held μCE system was 9.6 cm [Width] × 22 cm [Length] × 15.5 cm [Height], and the weight was ∼1 kg, which is suitable for POC DNA testing. In the integrated smartphone-associated μCE system, we could accurately analyze two genes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely N gene and S gene along with two bracket ladders in 6 min to identify SARS-CoV-2. Such an advanced μCE platform can be applied for a variety of on-site molecular diagnostics fields with user-friendliness.
Collapse
Affiliation(s)
- Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Khang Hoang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Young Soo Ko
- Department of Chemical Engineering and Department of Future Convergence Engineering, Kongju National University, Cheonan City, Chungcheongnam-do, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea.
| |
Collapse
|
30
|
Rahimnejad M, Rabiee N, Ahmadi S, Jahangiri S, Sajadi SM, Akhavan O, Saeb MR, Kwon W, Kim M, Hahn SK. Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS APPLIED BIO MATERIALS 2021; 4:8110-8128. [PMID: 35005915 DOI: 10.1021/acsabm.1c00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Sepideh Jahangiri
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran City 44008, Kurdistan Region, Iraq
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran , Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk 80-233, Poland
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
31
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
32
|
Abstract
Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.
Collapse
|
33
|
Kumar R, Guttman A, Rathore AS. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 2021; 43:143-166. [PMID: 34591322 DOI: 10.1002/elps.202100182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Capillary electrophoresis (CE), after being introduced several decades ago, has carved out a niche for itself in the field of analytical characterization of biopharmaceutical products. It does not only offer fast separation, high resolution in miniaturized format, but equally importantly represents an orthogonal separation mechanism to high-performance liquid chromatography. Therefore, it is not surprising that CE-based methods can be found in all major pharmacopoeias and are recommended for the analysis of biopharmaceutical products during process development, characterization, quality control, and release testing. Different separation formats of CE, such as capillary gel electrophoresis, capillary isoelectric focusing, and capillary zone electrophoresis are widely used for size and charge heterogeneity characterization as well as purity and stability testing of therapeutic proteins. Hyphenation of CE with MS is emerging as a promising bioanalytical tool to assess the primary structure of therapeutic proteins along with any impurities. In this review, we confer the latest developments in capillary electrophoresis, used for the characterization of critical quality attributes of biopharmaceutical products covering the past 6 years (2015-2021). Monoclonal antibodies, due to their significant share in the market, have been given prioritized coverage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Andras Guttman
- Horváth Csaba Memorial Laboratories of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
34
|
Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations. Anal Chim Acta 2021; 1178:338789. [PMID: 34482877 DOI: 10.1016/j.aca.2021.338789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Electroosmotic flow (EOF) plays a pivotal role in optimization of capillary electrophoresis (CE) separations of (bio)molecules and (bio)particles. EOF velocity is directly related to analysis time, peak resolution and separation efficiency. Here, we report a concept of charged polymer coatings of the inner fused silica capillary wall, which allows anodic EOF with mobility ranging from 0 to ∼(30-40) × 10-9 m2V-1s-1. The capillary wall is modified by covalently bound cationic copolymer poly(acrylamide-co-(3-acrylamidopropyl)trimethylammonium chloride) (PAMAPTAC) containing variable ratio of the charged monomer in the 0-60 mol. % interval. The EOF mobility showed minor variability with composition of background electrolyte (BGE) and pH in the 2-10 interval. The coatings were evaluated by CE-UV and nanospray CE-MS in the counter-EOF arrangement for a series of basic drug molecules in acetic acid based acidic BGE. Tunable EOF velocity was demonstrated as a useful tool for optimization of peak resolution, separation efficiency and migration time of analytes. Electrostatic repulsion of positively charged capillary surface was shown as beneficial for suppression of analyte adsorption, notably for hydrophobic cationic analytes.
Collapse
|
35
|
Semi-Automatic Lab-on-PCB System for Agarose Gel Preparation and Electrophoresis for Biomedical Applications. MICROMACHINES 2021; 12:mi12091071. [PMID: 34577715 PMCID: PMC8467303 DOI: 10.3390/mi12091071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
In this paper, a prototype of a semi-automatic lab-on-PCB for agarose gel preparation and electrophoresis is developed. The dimensions of the device are 38 × 34 mm2 and it includes a conductivity sensor for detecting the TAE buffer (Tris-acetate-EDTA buffer), a microheater for increasing the solubility of the agarose, a negative temperature coefficient (NTC) thermistor for controlling the temperature, a light dependent resistor (LDR) sensor for measuring the transparency of the mixture, and two electrodes for performing the electrophoresis. The agarose preparation functions are governed by a microcontroller. The device requires a PMMA structure to define the wells of the agarose gel, and to release the electrodes from the agarose. The maximum voltage and current that the system requires are 40 V to perform the electrophoresis, and 1 A for activating the microheater. The chosen temperature for mixing is 80 ∘C, with a mixing time of 10 min. In addition, the curing time is about 30 min. This device is intended to be integrated as a part of a larger lab-on-PCB system for DNA amplification and detection. However, it can be used to migrate DNA amplified in conventional thermocyclers. Moreover, the device can be modified for preparing larger agarose gels and performing electrophoresis.
Collapse
|
36
|
Hamidli N, Andrasi M, Nagy C, Gaspar A. Analysis of intact proteins with capillary zone electrophoresis coupled to mass spectromery using uncoated and coated capillaries. J Chromatogr A 2021; 1654:462448. [PMID: 34392123 DOI: 10.1016/j.chroma.2021.462448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Although, in general, the application of coated capillaries is recommended for the separation of intact proteins, bare silica capillary is still the most often used capillary due to its simplicity and cheapness. In this work, the performance of bare fused silica capillary for intact protein analysis was compared to that of different (dynamically coated polybrene (PB) and permanently coated linear polyacrylamide (LPA)) coated capillaries using capillary zone electrophoresis - mass spectrometry (CZE-MS). In cases where low pH (pH=1.8) was used in bare silica capillaries, good precision (0.56-0.78 RSD% and 1.7-6.5 RSD% for migration times and peak areas, respectively), minimal adsorption and separation efficiency (N= 27 000/m - 322 000/m) similar to or even better than those obtained with the coated capillaries (created by an intricate multi-step process) was achieved. The PB and the LPA capillaries demonstrated their slightly better resolving power in terms of separating the different forms/variants of the same protein (e.g., hemoglobin subunits). Among the studied capillaries the one with LPA coating showed the most stable separations in the long term (n=25: 0.18-0.49 RSD% and 3.1-4.9 RSD% for migration times and peak areas, respectively). For the separation of a few proteins or even a larger number of proteins in biological samples (e.g., snake venom) the application of the simple and cheap bare fused silica capillary can be considered as an efficient choice.
Collapse
Affiliation(s)
- N Hamidli
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - M Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - C Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - A Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| |
Collapse
|
37
|
Wang Y, Li M, Hu F, Wang Y. Online preconcentration of lysozyme in hen egg white using responsive polymer coating in CE. J Sep Sci 2021; 44:3477-3488. [PMID: 34255416 DOI: 10.1002/jssc.202100246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
A mixed polymer brushes material based on poly (2-methyl-2-oxazoline)- and poly (acrylic acid)-coated capillary with switchable protein adsorption/desorption properties was applied for online preconcentration of lysozyme in hen egg white during capillary electrophoresis performance. First, lysozyme in simulated egg white was successfully online preconcentrated and the detection signal of lysozyme was amplified. Ovalbumin, ovomucoid, and conalbumin in egg white were verified show negligible interference on the online preconcentration of lysozyme according to the study on electroosmotic flow mobility. Second, a series validation procedure was carried out to evaluate the proposed method performance. There was a good linearity behavior range from 0.1 to 5.0 ng/mL, limit of detection was 20 pg/mL, and limit of quantity was 50 pg/mL, the accuracy and robustness of this method were also excellent. Last, the proposed method has been successfully used to detect and analyze lysozyme in hen egg white, the determined amounts of lysozyme in hen egg white were consistent with reported normal levels and recoveries were in the range of 96.0-99.2%. After 75 consecutive runs, this prepared capillary was still stable for online preconcentration and determination of lysozyme in hen egg white without being affected by complex matrix.
Collapse
Affiliation(s)
- Yuchen Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Mengqin Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Fei Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
38
|
Electroosmotic flow modulation for improved electrokinetic preconcentration: Application to capillary electrophoresis of fluorescent magnetic nanoparticles. Anal Chim Acta 2021; 1161:338466. [PMID: 33896565 DOI: 10.1016/j.aca.2021.338466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
It is reported in this study a new approach for modulation and even suppression of the electroosmotic flow (EOF) to achieve better electrokinetic preconcentration in capillary electrophoresis. This is based on the augmentation of the buffer's concentrations to very high levels (more than a thousand of mM) without recourse to any dynamic/permanent coating nor viscous gel. The use of large weakly charged molecules as background electrolyte's constituents allows working at extreme concentration ranges without penalty of high electric currents and Joule heating. By this way, the electroosmotic mobility could be modulated over a wide range (2-60 × 10-5 cm2 V-1 s-1 under alkaline conditions), and suppressed to levels equivalent to those obtained with several neutral coatings. The highest buffer concentrations, and the lowest EOF magnitudes, accordingly, were achieved with diethanolamine/3-(Cyclohexylamino)-1-propanesulfonic acid (ionic strength (IS) of 250 mM, pH 9.5), Tris(hydroxymethyl)aminomethane (Tris)/2-(Cyclohexylamino)ethanesulfonic acid (CHES) (IS of 280 mM, pH 8.7) and triethanolamine/2-(Cyclohexylamino)ethanesulfonic acid (IS of 250 mM, pH 8.5). For demonstration, this new approach was applied for sensitive determination of core-shell magnetic nanoparticles (CSMNPs) having high potential for healthcare applications such as imaging agents for diagnostics and controllable cargos for nanomedicine. Different profiles were achieved for purpose-made and commercial magnetic nanoparticles using CE coupled with light-emitting-diode induced fluorescence (LEDIF) detection. The best performance for EOF-assisted preconcentration and CE-LEDIF of CSMNPs was achieved with these nanoparticles prepared in TRIS/CHES (IS 10 mM, pH 8.4) for preconcentration, and separation under BGE of TRIS/CHES (IS 100 mM, pH 8.4). Compared to the conventional capillary electrophoresis (CE-UV) method for characterization of magnetic nanoparticles, our proposed approach with fluorescent detection and EOF-assisted preconcentration offers almost 350-fold sensitivity improvement. Furthermore, our scheme can be used for monitoring the interaction between CSMNPs and target pharmaceutical molecules, serving for drug delivery development. A preliminary study with two antibiotics using this approach revealed that kanamycin interacts better with the target nanoparticles than amikacin.
Collapse
|
39
|
Wätzig H, Hoffstedt M, Krebs F, Minkner R, Scheller C, Zagst H. Protein analysis and stability: Overcoming trial-and-error by grouping according to physicochemical properties. J Chromatogr A 2021; 1649:462234. [PMID: 34038775 DOI: 10.1016/j.chroma.2021.462234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/β-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.
Collapse
Affiliation(s)
- Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Marc Hoffstedt
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Finja Krebs
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Robert Minkner
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Christin Scheller
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
40
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
41
|
Kartsova L, Makeeva D, Kravchenko A, Moskvichev D, Polikarpova D. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Xing J, Wang F, Cong H, Wang S, Shen Y, Yu B. Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst 2020; 146:1320-1325. [PMID: 33367313 DOI: 10.1039/d0an02018d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vancomycin is an amphoteric glycopeptide molecule, and its group diversity and chiral active sites provide a potential basis for its application in chromatographic analysis. In this article, using photosensitive diazo resin (DR) as the coupling agent, vancomycin is modified on the inner wall of the capillary to construct a capillary coating separation system. The highlight of the coated capillary is that it has both anti-protein adsorption and chiral separation properties. Compared with the bare capillary or non-covalently bonded DR/vancomycin-coated capillary, it can not only achieve the separation of four mixed proteins of lysozyme (Lys), bovine serum albumin (BSA), myoglobin (Mb), and ribonuclease A (RNase A), but also shows excellent performance in chiral drugs. The coated capillary effectively solves the problems of low efficiency of the separation column and high sample loss and provides ideas for the development of coated capillaries in the future.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
43
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Samarasinghe TN, Zeng Y, Johnson CK. Comparison of separation modes for microchip electrophoresis of proteins. J Sep Sci 2020; 44:744-751. [PMID: 33226183 DOI: 10.1002/jssc.202000883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Separation of a set of model proteins was tested on a microchip electrophoresis analytical platform capable of sample injection by two different electrokinetic mechanisms. A range of separation modes-microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography, and nanoparticle-based sieving-was tested on glass and polydimethylsiloxane/glass microchips and with silica-nanoparticle colloidal arrays. The model proteins calmodulin (18 kiloDalton), bovine serum albumin (66 kDa), and concanavalin (106 kDa) were labeled with Alexa Fluor 647 for laser-induced fluorescence detection. The best separation and resolution were obtained in a silica-nanoparticle colloidal array chip.
Collapse
Affiliation(s)
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
45
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
46
|
Advantages and Pitfalls of Capillary Electrophoresis of Pharmaceutical Compounds and Their Enantiomers in Complex Samples: Comparison of Hydrodynamically Opened and Closed Systems. Int J Mol Sci 2020; 21:ijms21186852. [PMID: 32961980 PMCID: PMC7555747 DOI: 10.3390/ijms21186852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Several research disciplines require fast, reliable and highly automated determination of pharmaceutically active compounds and their enantiomers in complex biological matrices. To address some of the challenges of Capillary Electrophoresis (CE), such as low concentration sensitivity and performance degradation linked to the adsorption and interference of matrix components, CE in a hydrodynamically closed system was evaluated using the model compounds Pindolol and Propranolol. Some established validation parameters such as repeatability of injection efficiency, resolution and sensitivity were used to assess its performance, and it was found to be broadly identical to that of hydrodynamically opened systems. While some reduction in separation efficiency was observed, this was mainly due to dispersion caused by injection and it had no impact on the ability to resolve enantiomers of model compounds even when spiked into complex biological matrix such as blood serum. An approximately 18- to 23-fold increase in concentration sensitivity due to the employment of wide bore capillaries was observed. This brings the sensitivity of CE to a level similar to that of liquid chromatography techniques. In addition to this benefit and unlike in hydrodynamically opened systems, suppression of electroosmotic flow, which is essential for hydrodynamically closed systems practically eliminates the matrix effects that are linked to protein adsorption.
Collapse
|
47
|
Wang F, Cong H, Xing J, Wang S, Shen Y, Yu B. Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta 2020; 221:121493. [PMID: 33076098 DOI: 10.1016/j.talanta.2020.121493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
The non-specific adsorption of protein has caused many problems in the application of materials. In this paper, a tri-block copolymer PEO-PNIPAAm-PSPMAP with double effects were obtained via atom transfer radical copolymerization (ATRP). The double-effect copolymer is covalently bonded to the hydrophobic material through a photosensitizer to achieve surface modification and applied to analytical chemistry. Sufficient hydratable groups (for instance, ether bonds, amide groups, and sulfonic acid groups) in the copolymer provides a basis for the anti-protein adsorption. At the same time, the interaction of the hydrophilic group and isopropyl group with temperature changes provides the possibility of elastic self-cleaning of the material, which is instrumental in extending the circulate lifetime of materials. Therefore, it is an environmentally friendly coating material. Besides, the effective antifouling performance and elastic self-cleaning function of the coating have been confirmed by the dynamic adsorption experiment of a fluorescent protein. The coating is used in capillary electrophoresis (CE), and its excellent protein separation spectrum verifies the practicality of the coating.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Centre for Bio Nanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
48
|
Wimmer B, Pattky M, Zada LG, Meixner M, Haderlein SB, Zimmermann HP, Huhn C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal Bioanal Chem 2020; 412:4967-4983. [PMID: 32524371 PMCID: PMC7334262 DOI: 10.1007/s00216-020-02751-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
In this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis. The advantages of our new method are the following: no derivatization is needed, high separation selectivity and thus matrix tolerance, speed of analysis, limits of detection suitable for many applications in food and environmental science, negligible disturbance by metal chelation. LODs for glyphosate were < 5 μg/L for both aqueous and beer samples, the linear range in aqueous samples was 5-3000 μg/L, for beer samples 10-3000 μg/L. For AMPA, LODs were 3.3 and 30.6 μg/L, and the linear range 10-3000 μg/L and 50-3000 μg/L, for aqueous and beer samples, respectively. Recoveries in beer samples for glyphosate were 94.3-110.7% and for AMPA 80.2-100.4%. We analyzed 12 German and 2 Danish beer samples. Quantification of glyphosate and AMPA was possible using isotopically labeled standards without enrichment, purification, or dilution, only degassing and filtration were required for sample preparation. Finally, we demonstrate the applicability of the method for other strong acids, relevant in food and environmental sciences such as N-acetyl glyphosate, N-acetyl AMPA (present in some glyphosate resistant crop), trifluoroacetic acid, 2-methyl-4-chlorophenoxyacetic acid, glufosinate and its degradation product 3-(methylphosphinico)propionic acid, oxamic acid, and others.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Martin Pattky
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Leyla Gulu Zada
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Martin Meixner
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | | | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
49
|
Leclercq L, Renard C, Martin M, Cottet H. Quantification of Adsorption and Optimization of Separation of Proteins in Capillary Electrophoresis. Anal Chem 2020; 92:10743-10750. [DOI: 10.1021/acs.analchem.0c02012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Leclercq
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Charly Renard
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Michel Martin
- PMMH, CNRS, ESPCI Paris − PSL, Sorbonne Université, Université de Paris, Paris 75005, France
| | - Hervé Cottet
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
50
|
Reed PA, Cardoso RM, Muñoz RA, Garcia CD. Pyrolyzed cotton balls for protein removal: Analysis of pharmaceuticals in serum by capillary electrophoresis. Anal Chim Acta 2020; 1110:90-97. [PMID: 32278404 DOI: 10.1016/j.aca.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 01/22/2023]
|