1
|
Sharma S, Mondal T. Recent Advances in Graphene-Polymer Nanocomposite-Based Flexible Sensors and Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501722. [PMID: 40344497 DOI: 10.1002/smll.202501722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/23/2025] [Indexed: 05/11/2025]
Abstract
Flexible sensors are uplifting many application segments with their versatility and ease of fabrication and integration. The amalgamation of functional fillers and polymers advances the field of flexible sensors. Various fillers are currently utilized to develop polymer nanocomposites for sensing applications. However, graphene-polymer nanocomposites find widespread applicability in flexible sensing applications due to the excellent properties of graphene, such as high electrical and thermal conductivity, 2D (2 dimensional) layered structure, and high aspect ratio. This review explores the potential of graphene-polymer nanocomposites as various sensors, including physical, chemical, electrochemical, triboelectric, and moisture-electric generator-based sensors. The technological advancements in developing these sensors are thoroughly discussed, followed by the various underlying sensing mechanisms. Also, the broad application areas where these sensors can be utilized are reviewed and discussed. The review critically assesses the advancements in the established sensing technologies based on graphene-polymer composites. Also, it discusses the challenges and new avenues that are yet to be addressed and explored, paving the way to develop next-generation flexible sensors for advanced applications.
Collapse
Affiliation(s)
- Simran Sharma
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
2
|
Hristova L, Martínez-Moro R, Fernández-García E, Vázquez L, Atienzar P, Petit-Domínguez MD, Casero E, Quintana C, del Pozo M. Optical Sensor Based on WS 2 Quantum Dots for Lamotrigine Determination. ACS OMEGA 2025; 10:17257-17268. [PMID: 40352501 PMCID: PMC12060057 DOI: 10.1021/acsomega.4c09476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/10/2025] [Accepted: 03/20/2025] [Indexed: 05/14/2025]
Abstract
In this work, we obtained WS2 quantum dots by both liquid exfoliation and hydrothermal synthesis following a top-down and a bottom-up approach, respectively. The resulting nanomaterials were spectroscopically characterized by UV-vis absorption and fluorescence techniques. Atomic force microscopy measurements were performed for the morphological characterization. We have studied the interaction between the as-synthesized WS2 quantum dots with the antiepileptic drug lamotrigine, a noncolored analyte. This interaction produces a quenching of the native fluorescence of the nanomaterials, which depends linearly on the lamotrigine concentration. Moreover, the Stern-Volmer constants were calculated and the inhibition mechanism of the interaction was also investigated. Next, the WS2 quantum dots were immobilized on quartz supports for the development of an optical sensor for lamotrigine determination. The sensor shows a linear response with the analyte concentration in the 35.4-250 μM range, with a limit of detection of 10.6 μM. The sensor was applied to the determination of lamotrigine in a synthetic serum sample, obtaining a recovery of 94%. Moreover, for a rapid and visual detection of lamotrigine, we have tested the suitability of using paper as a support for immobilizing WS2 quantum dots.
Collapse
Affiliation(s)
- Lina Hristova
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - Rut Martínez-Moro
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - Esperanza Fernández-García
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - Luis Vázquez
- CSIC.
c/Sor Juana Inés de la Cruz No 3. Campus de Excelencia de la
Universidad Autónoma de Madrid, Instituto
de Ciencia de Materiales de Madrid (ICMM), Madrid 28049. Spain
| | - Pedro Atienzar
- CSIC-UPV,
Universitat Politècnica de València, Avenida de los
Naranjos S/N. Campus Universitat Politècnica de València, Instituto de Tecnología Química, Valencia 46022, Spain
| | - María Dolores Petit-Domínguez
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - Elena Casero
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - Carmen Quintana
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| | - María del Pozo
- Departamento
de Química Analítica y Análisis Instrumental.
Facultad de Ciencias. c/Francisco Tomás y Valiente, No 7. Campus de Excelencia de la Universidad Autónoma
de Madrid, Madrid 28049. Spain
| |
Collapse
|
3
|
Du Y, Zhang Q, Wu H, Liu X, Chen G, Liang Y, Li Q, Gu Y, Zhang M, Wang H. Improvement of glucose detection using 10 nm Al 2O 3 thin film on diamond solution-gate field-effect transistor. Talanta 2025; 286:127560. [PMID: 39813913 DOI: 10.1016/j.talanta.2025.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al2O3 thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al2O3 thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al2O3 distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10-8-10-2 M), a high sensitivity (-44.01 mV/log10[glucose concentration]) and a low detection limitation (10-8 M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.
Collapse
Affiliation(s)
- Yuxiang Du
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianwen Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huaxiong Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaohuan Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Genqiang Chen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuesong Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yangxin Gu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Minghui Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hongxing Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Imran H, Lim S, Alam A, An J, Ko M, Lim S. Portable, Wireless Potentiostat Sensor for Ultra-Sensitive, Real-Time Detection of 5hmC in Genomic DNA Using Tree-Like Graphene. ACS NANO 2025; 19:15707-15723. [PMID: 40253717 DOI: 10.1021/acsnano.4c18646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Aberrant alterations in genomic 5-hydroxymethylcytosine (5hmC), an oxidation product of 5-methylcytosine (5mC) by Ten-eleven translocation (TET) enzymes, are frequently associated with cancers. Quick and precise 5hmC quantification is vital since it is a key biomarker for diagnosis, pathophysiology, and therapy. Here, we present a portable, wireless potentiostat sensor for real-time, ultrasensitive 5hmC-DNA sensing based on a tree-like graphene (teG)-modified screen-printed microelectrode. One-pot electrochemical exfoliation of pencil graphite enabled the cost-effective, eco-friendly, and scalable synthesis of teG, which exhibited high electrical conductivity, excellent electrochemical conductivity, low surface roughness, and high 5hmC-DNA adsorption, surpassing those of pencil graphite (pG) and graphene oxide (GO). The teG-modified gold electrodes exhibited exceptional sensitivity (6.15 × 10-6 mM-1 cm-2), selectivity, and reproducibility, with an ultralow detection limit of 12.6 fM for 5hmC-DNA. The sensor's performance was validated by quantifying 5hmC levels in genomic DNA from various biological specimens, including primary mouse tissues with altered TET function, mouse hepatocellular carcinoma, and human prostate cancer cell lines. To enhance practicality, a flexible, screen-printed microelectrode on mulberry paper was developed and integrated with a portable, wireless potentiostat powered by the Arduino Nano 33 IoT. Open-circuit potential (OCP)-based detection enabled label-free, real-time monitoring with wireless data transmission to an Android mobile application, successfully differentiating 5hmC levels between cancerous and noncancerous cells. These findings highlight teG's high surface area, superior charge transport, and scalability, positioning it as a promising platform for next-generation biosensing. The developed sensor provides a rapid, cost-effective, and highly sensitive tool for 5hmC quantification, with significant implications for early cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Habibulla Imran
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sumin Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Asrar Alam
- Mycronic AB, Nytorpsvägen 9, Täby 183 53, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sooman Lim
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2025; 12:673-693. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
6
|
Gaikwad P, Desai TR, Ghosh S, Gurnani C. Flexible Nanostructured NiS-Based Electrochemical Biosensor for Simultaneous Detection of DNA Nucleobases. ACS OMEGA 2025; 10:2561-2574. [PMID: 39895750 PMCID: PMC11780467 DOI: 10.1021/acsomega.4c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
Herein, we demonstrate a one-step, scalable, solution-processed method for the growth of nickel sulfide (NiS) nanostructures using single-source precursors (SSPs) on a flexible substrate as a versatile framework for simultaneous detection of four DNA nucleobases. The as-grown NiS nanostructures exhibit a broad bandgap range and spherical morphology with high surface area and significant porosity, as confirmed by SEM, TEM, and BET surface area analysis. Consequently, the NiS/Ni-foam electrode exhibited remarkable electrochemical performance toward the oxidation of A, G, T, and C due to its large surface area, high electrode activity, and efficient electron transfer capacity. Under the optimum conditions, the electrode demonstrated selective and simultaneous detection of all four nucleobases over a wide linear range from 200 to 1000 μM for A and G, and 50 to 500 μM for T and C, with a low limit of detection of 159 μM for A, 147.6 μM for G, 16.8 μM for T, and 45.9 μM for C, along with high sensitivity of 1.2 × 10-4 A M-1 for A, 6.1 × 10-4 A M-1 for G, 1.2 × 10-3 A M-1 for T, and 3.0 × 10-4 A M-1 for C. The as-fabricated electrode revealed excellent reproducibility and stability toward nucleobase detection and demonstrated a reliable DPV response under different bending and twisting conditions. For immediate practical application, NiS/Ni-foam was utilized to quantify the concentration of all nucleobases in calf thymus and Escherichia coli (E. coli) DNA, resulting in a (G + C)/(A + T) ratio of 0.79 and 1.10, respectively. This simple, cost-effective, and flexible NiS/Ni-foam electrode paves the way for the development of non-invasive, wearable biosensors for potential applications in early disease detection.
Collapse
Affiliation(s)
- Prajakta
N. Gaikwad
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Trishala R. Desai
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Souradyuti Ghosh
- Centre
for Life Sciences, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| | - Chitra Gurnani
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| |
Collapse
|
7
|
Malesys V, Duan T, Denys E, Li H, Leifer K, Simon L. E-beam fluorinated CVD graphene: in-situXPS study on stability and NH 3adsorption doping effect. NANOTECHNOLOGY 2024; 36:095701. [PMID: 39637436 DOI: 10.1088/1361-6528/ad9ab0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Graphene exhibits promise in gas detection applications despite its limited selectivity. Functionalization with fluorine atoms offers a potential solution to enhance selectivity, particularly towards ammonia (NH+) molecules. This article presents a study on electron-beam fluorinated graphene (FG) and its integration into gas sensor platforms. We begin by characterizing the thermal stability of fluorographene, demonstrating its resilience up to 450 °C. Subsequently, we investigate the nature of NH3interaction with FG, exploring distinct adsorption energies to address preferential adsorption concerns. Notably, we introduce an innovative approach utilizing x-ray photoelectron spectroscopy cartography for simultaneous analysis of fluorinated and pristine graphene, offering enhanced insights into their properties and interactions. This study contributes to advancing the understanding and application of FG in gas sensing technologies.
Collapse
Affiliation(s)
- V Malesys
- Institut de Sciences des Matériaux de Mulhouse, Université de Haute Alsace CNRS-UMR 7361, Mulhouse, France
| | - T Duan
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - E Denys
- Institut de Sciences des Matériaux de Mulhouse, Université de Haute Alsace CNRS-UMR 7361, Mulhouse, France
| | - Hu Li
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, People's Republic of China
| | - K Leifer
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - L Simon
- Institut de Sciences des Matériaux de Mulhouse, Université de Haute Alsace CNRS-UMR 7361, Mulhouse, France
| |
Collapse
|
8
|
Wang F, Qi Y, Ji L, Qiao F, Chen Y, Xiong X, Liu Y. Visual detection of ochratoxin a based on GPE-PET bipolar electrode-electrochemiluminescence platform. Food Chem 2024; 461:140842. [PMID: 39173256 DOI: 10.1016/j.foodchem.2024.140842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A GPE-PET (graphene-polyethylene terephthalate) bipolar electrode-electrochemiluminescence (BPE-ECL) platform was developed for ochratoxin A (OTA) detection. PET served as the electrode sheet substrate, and GPE was drop-coated onto the surface of PET to form a conductive line. On the functional sensing interface, the thiol (-SH) modified OTA aptamer (OTA-Aptamer) are fixed on the surface of the gold-plated cathode through AuS bonds. The efficient electron transfer ability of methylene blue (MB) made the anode ECL signal strong. Due to competition between OTA and MB with OTA-Aptamer, leading to a decrease in ECL intensity of the [Ru(bpy)3]2+/TPA system on the BPE anode. Under optimized conditions, the GPE-PET BPE-ECL biosensor displayed superior sensitivity for OTA with a detection limit of 2 ng mL-1 and a wide linear concentration range of 5-100 ng mL-1. This method could be further applied to detect various toxins and had broad application prospects.
Collapse
Affiliation(s)
- Fengyang Wang
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Yan Qi
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Lei Ji
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Fanglin Qiao
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Yin Chen
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
9
|
Li L, Han Y, Zhang Y, Wu W, Du W, Wen G, Cheng S. Laser-Induced Graphene Decorated with MOF-Derived NiCo-LDH for Highly Sensitive Non-Enzymatic Glucose Sensor. Molecules 2024; 29:5662. [PMID: 39683820 DOI: 10.3390/molecules29235662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple one-step laser engraving method is applied for preparing laser-induced graphene (LIG) on polyimide (PI) film, which serves as the sensor substrate. NiCo-layered double hydroxides (NiCo-LDH) are synthesized on LIG as a precursor, utilizing the zeolitic imidazolate framework (ZIF-67), and then reacted with Ni(NO3)2 via solvent-thermal methods. The sensitivity of the non-enzymatic electrochemical glucose sensor is significantly improved by employing NiCo-LDH/LIG as the sensing material. The porous and interconnected structure of NiCo-LDH, derived from ZIF-67, enhances the accessibility of electrochemically active sites, while the incorporation of LIG ensures exceptional conductivity. The combination of NiCo-LDH with LIG enables efficient electron transport, leading to an increased electrochemically active surface area and enhanced catalytic efficiency. The fabricated electrode achieves a low glucose detection limit of 0.437 μM and demonstrates a high sensitivity of 1141.2 and 631.1 μA mM-2 cm-2 within the linear ranges of 0-770 μM and 770-1970 μM, respectively. Furthermore, the NiCo-LDH/LIG glucose sensor demonstrates superior reliability and little impact from other substances. A flexible integrated LIG-based non-enzymatic glucose sensor has been developed, demonstrating high sensitivity and suggesting a promising application for LIG-based chemical sensors.
Collapse
Affiliation(s)
- Longxiao Li
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Yufei Han
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Yuzhe Zhang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Weijia Wu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Wei Du
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Guojun Wen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Siyi Cheng
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Xue T, Lu X, Wen Y, Maleh HK, Duan X, Xu J. Recent progress of black phosphorene from preparation to diversified bio-/chemo-nanosensors and their challenges and opportunities for comprehensive health. Mikrochim Acta 2024; 191:771. [PMID: 39609277 DOI: 10.1007/s00604-024-06828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The introduction of comprehensive health, related to human living environment and mental state, helps people to improve human health literacy and accept scientific health guidance. The unique structure and properties of black phosphorene (BP) provide potential opportunities for rapid development and versatile applications of high-performance sensors serving comprehensive health. The review begins with the preparation from bulk black phosphorous crystals via transforming requirements of phosphorous allotropes and BP nanosheets via preparative strategies using both "top-down" and "bottom-up" methods. Then the diversified modification of BP and versatile fabrication of diversified bio-/chemo-nanosensors for sensitive detection of analytes are discussed. Besides, the challenges including the preparation of BP, diversified modification, devices for improving performance defects and chemo-/bio-nanosensors for enhancing performance are outlined together with potential opportunities for the BP preparation and applications in comprehensive health from agricultural environments, food safety, personal life, physical and mental life, and finally to medical care.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Hassan Karimi Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
11
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
12
|
Zhang J, Chen J, Li J, Xie Y. Detection of Tert-Butylhydroquinone in Edible Oils Using an Electrochemical Sensor Based on a Nickel-Aluminum Layered Double Hydroxide@Carbon Spheres-Derived Carbon Composite. Foods 2024; 13:3431. [PMID: 39517216 PMCID: PMC11545052 DOI: 10.3390/foods13213431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Phenolic antioxidants such as tert-butylhydroquinone (TBHQ) can prolong the shelf life of edible oils by delaying the oxidation process. The excessive use of TBHQ can damage food quality and public health, so it is necessary to develop an efficient TBHQ detection technique. In this work, nickel-aluminum double hydroxide (NiAl-LDH) was grown on glucose carbon spheres (GC), which formed porous carbon nanomaterials (named NiAl-LDH@GC-800) after pyrolysis at 800 °C. The successful synthesis of the material was verified by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The obtained NiAl-LDH@GC-800 was dopped onto a glass carbon electrode to prepare an electrochemical sensor for TBHQ. The synergistic effect of porous carbon and Ni metal reduced from NiAl-LDH by high-temperature calcination accelerated the electron transfer rate and improved the sensitivity of the sensor. The prepared sensor showed a low limit of detection (LOD) of 8.2 nM, a high sensitivity (4.2 A·M-1), and a good linear range (20~300 µM) in detecting TBHQ. The sensor was also successfully used for TBHQ detection in edible oils, including chili oil, peanut oil, and rapeseed oil.
Collapse
Affiliation(s)
- Jin Zhang
- School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China;
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| | - Jingrong Chen
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
| | - Jiejun Li
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
| | - Yixi Xie
- School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China;
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
13
|
Bao C, Deng L, Huang F, Yang M, Li X. Signal amplification strategies in photoelectrochemical sensing of carcinoembryonic antigen. Biosens Bioelectron 2024; 262:116543. [PMID: 38963951 DOI: 10.1016/j.bios.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.
Collapse
Affiliation(s)
- Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| |
Collapse
|
14
|
Bouali W, Erk N, Sert B, Harputlu E. Evaluating the simultaneous electrochemical determination of antineoplastic drugs using LaNiO 3/g-C 3N 4@RGH nanocomposite material. Talanta 2024; 278:126486. [PMID: 38944941 DOI: 10.1016/j.talanta.2024.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A novel electrochemical sensor based on LaNiO3/g-C3N4@RGH nanocomposite material was developed to simultaneously determine Ribociclib (RIBO) and Alpelisib (ALPE). Ribociclib and Alpelisib are vital anticancer medications used in the treatment of advanced breast cancer. The sensor exhibited excellent electrocatalytic activity towards the oxidation of RIBO and ALPE, enabling their simultaneous detection. The fabricated sensor was characterized using various techniques, including energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), which confirmed the successful synthesis of the LaNiO3/g-C3N4@RGH composite material. Electrochemical characterization revealed enhanced conductivity and lower resistance of the modified electrode compared to the bare electrode. The developed sensor exhibited high repeatability, reproducibility, stability, and selectivity toward RIBO detection. Furthermore, the sensor displayed high sensitivity with low detection limits of 0.88 nM for RIBO and 6.1 nM for ALPE, and linear ranges of 0.05-6.2 μM and 0.5-6.5 μM, respectively. The proposed electrochemical sensor offers a promising approach for simultaneously determining RIBO and ALPE in pharmaceutical formulations and biological samples with recovery data of 98.7-102.0 %, providing a valuable tool for anticancer drug analysis and clinical research.
Collapse
Affiliation(s)
- Wiem Bouali
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of the Health Sciences, 06110, Ankara, Turkey.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Buse Sert
- Tarsus University, Faculty of Engineering, Department of Engineering Fundamental Sciences, 33400, Tarsus, Turkey
| | - Ersan Harputlu
- Tarsus University, Faculty of Engineering, Department of Engineering Fundamental Sciences, 33400, Tarsus, Turkey
| |
Collapse
|
15
|
Hossain MK, Hendi A, Asim N, Alghoul MA, Rafiqul Islam M, Hussain SMS. Chemiresistive Gas Sensing using Graphene-Metal Oxide Hybrids. Chem Asian J 2024; 19:e202300529. [PMID: 37695946 DOI: 10.1002/asia.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Chemiresistive sensing lies in its ability to provide fast, accurate, and reliable detection of various gases in a cost-effective and non-invasive manner. In this context, graphene-functionalized metal oxides play crucial role in hydrogen gas sensing. However, a cost-effective, defect-free, and large production schemes of graphene-based sensors are required for industrial applications. This review focuses on graphene-functionalized metal oxide nanostructures designed for gaseous molecules detection, mainly hydrogen gas sensing applications. For the convenience of the reader and to understand the role of graphene-metal oxide hybrids (GMOH) in gas sensing activities, a brief overview of the properties and synthesis routes of graphene and GMOH have been reported in this paper. Metal oxides play an essential role in the GMOH construct for hydrogen gas sensing. Therefore, various metal oxides-decorated GMOH constructs are detailed in this review as gas sensing platforms, particularly for hydrogen detection. Finally, specific directions for future research works and challenges ahead in designing highly selective and sensitive hydrogen gas sensors have been highlighted. As illustrated in this review, understanding of the metal oxides-decorated GMOH constructs is expected to guide ones in developing emerging hybrid nanomaterials that are suitable for hydrogen gas sensing applications.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdulmajeed Hendi
- Physics Department & IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nilofar Asim
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohammad Ahmed Alghoul
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Rafiqul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Syed Muhammad Shakil Hussain
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
16
|
Samaha AC, Doumani J, Kritzell TE, Xu H, Baydin A, Ajayan PM, Tahchi ME, Kono J. Graphene Terahertz Devices for Sensing and Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401151. [PMID: 39087386 DOI: 10.1002/smll.202401151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Indexed: 08/02/2024]
Abstract
Graphene-based terahertz (THz) devices have emerged as promising platforms for a variety of applications, leveraging graphene's unique optoelectronic properties. This review explores recent advancements in utilizing graphene in THz technology, focusing on two main aspects: THz molecular sensing and THz wave modulation. In molecular sensing, the environment-sensitive THz transmission and emission properties of graphene are utilized for enabling molecular adsorption detection and biomolecular sensing. This capability holds significant potential, from the detection of pesticides to DNA at high sensitivity and selectivity. In THz wave modulation, crucial for next-generation wireless communication systems, graphene demonstrates remarkable potential in absorption modulation when gated. Novel device structures, spectroscopic systems, and metasurface architectures have enabled enhanced absorption and wave modulation. Furthermore, techniques such as spatial phase modulation and polarization manipulation have been explored. From sensing to communication, graphene-based THz devices present a wide array of opportunities for future research and development. Finally, advancements in sensing techniques not only enhance biomolecular analysis but also contribute to optimizing graphene's properties for communication by enabling efficient modulation of electromagnetic waves. Conversely, developments in communication strategies inform and enhance sensing capabilities, establishing a mutually beneficial relationship.
Collapse
Affiliation(s)
- Anna-Christina Samaha
- Laboratory of Biomaterials and Intelligent Materials, Department of Physics, Faculty of Sciences 2, Lebanese University, Jdeidet, 90656, Lebanon
| | - Jacques Doumani
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - T Elijah Kritzell
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Hongjing Xu
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Andrey Baydin
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Pulickel M Ajayan
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Mario El Tahchi
- Laboratory of Biomaterials and Intelligent Materials, Department of Physics, Faculty of Sciences 2, Lebanese University, Jdeidet, 90656, Lebanon
| | - Junichiro Kono
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Carbon Hub, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
17
|
Nisar S, Dastgeer G, Shazad ZM, Zulfiqar MW, Rasheed A, Iqbal MZ, Hussain K, Rabani I, Kim D, Irfan A, Chaudhry AR. 2D Materials in Advanced Electronic Biosensors for Point-of-Care Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401386. [PMID: 38894575 PMCID: PMC11336981 DOI: 10.1002/advs.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.
Collapse
Affiliation(s)
- Sobia Nisar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
| | - Ghulam Dastgeer
- Department of Physics & AstronomySejong UniversitySeoul05006Republic of Korea
| | - Zafar Muhammad Shazad
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Chemical Polymer and Composite EngineeringUniversity of Engineering & TechnologyFaisalabad CampusLahore38000Pakistan
| | - Muhammad Wajid Zulfiqar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Amir Rasheed
- School of Materials Science and EngineeringAnhui UniversityHefeiAnhui230601China
| | - Muhammad Zahir Iqbal
- Renewable Energy Research LaboratoryFaculty of Engineering SciencesGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiKhyber Pakhtunkhwa23640Pakistan
| | - Kashif Hussain
- THz Technical Research Center; Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdong Province518060China
- School of Materials Science and EngineeringCAPTPeking UniversityBeijing100871China
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Deok‐kee Kim
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Ahmad Irfan
- Department of ChemistryCollege of ScienceKing Khalid UniversityP. O. Box 9004Abha61413Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of PhysicsCollege of ScienceUniversity of BishaP.O. Box 551Bisha61922Saudi Arabia
| |
Collapse
|
18
|
Japri NF, Majid ZA, Ghoshal SK, Danial WH, See HH, Othman MZ. On the versatility of graphene-cellulose composites: An overview and bibliometric assessment. Carbohydr Polym 2024; 337:121969. [PMID: 38710542 DOI: 10.1016/j.carbpol.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 05/08/2024]
Abstract
Practical benefits of graphene-cellulose composites (GCC) are categorical. Diverse salient features like thermal and electrical conductivity, mechanical strength, and durability make GCC advantageous for widespread applications. Despite extensive studies the basic understanding of various fundamental aspects of this novel complex remains deficient. Based on this fact, a critical overview and bibliometric analysis involving the overall prospects of GCC was made wherein a total of 1245 research articles from the Scopus database published during the year 2002 to 2020 were used. For the bibliometric assessment, various criteria including the publication outputs, co-authorships, affiliated countries, and co-occurrences of the authors' keywords were explored. Environmental amiability, sustainability, economy, and energy efficiency of GCC were emphasized. In addition, the recent trends, upcoming challenges, and applied interests of GCC were highlighted. The findings revealed that the studies on GCC related to the energy storage, adsorption, sensing, and printing are ever-increasing, indicating the global research drifts on GCC. The bibliometric map analysis displayed that among the researchers from 61 countries/territories, China alone contributed about 50 % of the international publications. It is asserted that the current article may offer taxonomy to navigate into the field of GCC wherein stronger collaboration networks can be established worldwide through integrated research activities desirable for sustainable development.
Collapse
Affiliation(s)
- Nur Faraliana Japri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - S K Ghoshal
- Physics Department & Laser Center, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | |
Collapse
|
19
|
Wirojsaengthong S, Chailapakul O, Tangkijvanich P, Henry CS, Puthongkham P. Size-Dependent Electrochemistry of Laser-Induced Graphene Electrodes. Electrochim Acta 2024; 494:144452. [PMID: 38881690 PMCID: PMC11173329 DOI: 10.1016/j.electacta.2024.144452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Laser-induced graphene (LIG) electrodes have become popular for electrochemical sensor fabrication due to their simplicity for batch production without the use of reagents. The high surface area and favorable electrocatalytic properties also enable the design of small electrochemical devices while retaining the desired electrochemical performance. In this work, we systematically investigated the effect of LIG working electrode size, from 0.8 mm to 4.0 mm diameter, on their electrochemical properties, since it has been widely assumed that the electrochemistry of LIG electrodes is independent of size above the microelectrode size regime. The background and faradaic current from cyclic voltammetry (CV) of an outer-sphere redox probe [Ru(NH3)6]3+ showed that smaller LIG electrodes had a higher electrode roughness factor and electroactive surface ratio than those of the larger electrodes. Moreover, CV of the surface-sensitive redox probes [Fe(CN)6]3- and dopamine revealed that smaller electrodes exhibited better electrocatalytic properties, with enhanced electron transfer kinetics. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy showed that the physical and chemical surface structure were different at the electrode center versus the edges, so the electrochemical properties of the smaller electrodes were improved by having rougher surface and more density of the graphitic edge planes, and more oxide-containing groups, leading to better electrochemistry. The difference could be explained by the different photothermal reaction time from the laser scribing process that causes different stable carbon morphology to form on the polymer surface. Our results give a new insight on relationships between surface structure and electrochemistry of LIG electrodes and are useful for designing miniaturized electrochemical devices.
Collapse
Affiliation(s)
- Supacha Wirojsaengthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Azimi Z, Alimohammadian M, Sohrabi B. Graphene Quantum Dots Based on Mechanical Exfoliation Methods: A Simple and Eco-Friendly Technique. ACS OMEGA 2024; 9:31427-31437. [PMID: 39072105 PMCID: PMC11270721 DOI: 10.1021/acsomega.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Graphene quantum dots (GQDs) are very precious, widely used, and face significant challenges in preparation methods. In this study, three mechanical methods are investigated for the preparation of GQDs. All of these methods are green, cost-effective, and simple. In fact, Graphite, as a main source of GQDs, is exfoliated and fragmented under mechanical forces by sonication and ball milling. This mechanical exfoliation method is effective for converting large flakes of graphite into quantum dots. Additionally, the proposed methods are simple and faster than other top-down GQD fabrication methods. High-power sonication is applied to graphene flakes by using the liquid-phase exfoliation method. The liquid phase consists of ethanol and water, which are completely eco-friendly. Exfoliation and fragmentation of graphene flakes are performed using different sonication and ball-milling times. The obtained results from the analysis of the synthesized GQDs exhibit pristine graphene's distinct structural, chemical, and optical properties. Several analyses, such as X-ray diffraction (XRD) and Fourier transform infrared spectroscopy, were applied to study the product structure. Dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) were used to examine product size and morphology, which confirmed the nanosize of GQDs. The smallest observed size of GQDs is approximately 23 nm. It is estimated that 95% of the nanoparticles are between 0.001 and 0.1 μm in size (41 nm). The optical properties of GQDs were investigated by using ultraviolet-visible and photoluminescence (PL) techniques. The PL peak wavelength is approximately 610 nm. Eventually, the results proved that the combined use of two methods, ultrasonication and ball milling during liquid-phase exfoliation, will be a simple, cheap, and suitable method for the production of GQDs.
Collapse
Affiliation(s)
- Zahra Azimi
- Surface Chemistry Research
Laboratory, Department of Chemistry, Iran
University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Mahsa Alimohammadian
- Surface Chemistry Research
Laboratory, Department of Chemistry, Iran
University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Beheshteh Sohrabi
- Surface Chemistry Research
Laboratory, Department of Chemistry, Iran
University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
21
|
Nguyen THT, Nguyen KT, Le BH, Nghiem XT, La DD, Nguyen DK, Nguyen HPT. Synthesis of magnetic Fe 3O 4/graphene aerogel for the removal of 2,4-dichlorophenoxyacetic acid herbicide from water. RSC Adv 2024; 14:22304-22311. [PMID: 39010918 PMCID: PMC11247437 DOI: 10.1039/d4ra03567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Graphene-based aerogels are among the lightest materials in the world and have been extensively studied for environmental remediation. In this work, an Fe3O4/graphene aerogel material was synthesized using the co-precipitation method. The prepared material was characterized using X-ray diffraction (XRD), scanning electron microscopy/X-ray energy dispersive spectroscopy (FESEM/EDX), infrared spectroscopy (FT-IR), and vibration sample magnetization (VSM). The results showed that the Fe3O4 nanoparticles with a particle size of less than 100 nm were well-distributed on the surface of the graphene aerogel. The prepared Fe3O4/graphene aerogel showed effective removal of 2,4-D herbicide from the aqueous solution with a maximal adsorption capacity of approximately 42.918 mg g-1. The adsorption isotherms and kinetics were investigated to study the adsorption behaviour of the resultant material. The saturation magnetism value of the aerogel was determined to be about 20.66 emu g-1, indicating that the adsorbent could be easily collected from the solution using an external magnet. These results implied that the prepared Fe3O4/graphene aerogel could be a promising adsorbent for the removal of 2,4-D herbicide from water.
Collapse
Affiliation(s)
- Thu Hang Thi Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Kim Thuy Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Bao Hung Le
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Xuan Truong Nghiem
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Duc Duong La
- Institute of Chemistry & Materials Science 17 Hoang Sam Hanoi Vietnam
| | - Duy Khiem Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang Vietnam
- Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang Vietnam
| | - Hoai Phuong Thi Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| |
Collapse
|
22
|
Jin Q, Men K, Li G, Ou T, Lian Z, Deng X, Zhao H, Zhang Q, Ming A, Wei Q, Wei F, Tu H. Ultrasensitive Graphene Field-Effect Biosensors Based on Ferroelectric Polarization of Lithium Niobate for Breast Cancer Marker Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28896-28904. [PMID: 38770712 DOI: 10.1021/acsami.4c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we present a novel ultrasensitive graphene field-effect transistor (GFET) biosensor based on lithium niobate (LiNbO3) ferroelectric substrate for the application of breast cancer marker detection. The electrical properties of graphene are varied under the electrostatic field, which is generated through the spontaneous polarization of the ferroelectric substrate. It is demonstrated that the properties of interface between graphene and solution are also altered due to the interaction between the electrostatic field and ions. Compared with the graphene field-effect biosensor based on the conventional Si/SiO2 gate structure, our biosensor achieves a higher sensitivity to 64.7 mV/decade and shows a limit of detection down to 1.7 fM (equivalent to 12 fg·mL-1) on the detection of microRNA21 (a breast cancer marker). This innovative design combining GFETs with ferroelectric substrates holds great promise for developing an ultrahigh-sensitivity biosensing platform based on graphene that enables rapid and early disease diagnosis.
Collapse
Affiliation(s)
- Qingxi Jin
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Kuo Men
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Gangrong Li
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
| | - Tianlang Ou
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Ziwei Lian
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xin Deng
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Qingzhu Zhang
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Anjie Ming
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Qianhui Wei
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Feng Wei
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Hailing Tu
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| |
Collapse
|
23
|
Wang Q, Liu Q, Zhong G, Xu T, Zhang X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal Chem 2024; 96:8713-8720. [PMID: 38745346 DOI: 10.1021/acs.analchem.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 μA mM-1 cm-2 and a low limit detection of 1.21 μM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tailin Xu
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
24
|
Qing F, Guo X, Hou Y, Ning C, Wang Q, Li X. Toward the Production of Super Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310678. [PMID: 38708801 DOI: 10.1002/smll.202310678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The quality requirements of graphene depend on the applications. Some have a high tolerance for graphene quality and even require some defects, while others require graphene as perfect as possible to achieve good performance. So far, synthesis of large-area graphene films by chemical vapor deposition of carbon precursors on metal substrates, especially on Cu, remains the main way to produce high-quality graphene, which has been significantly developed in the past 15 years. However, although many prototypes are demonstrated, their performance is still more or less far from the theoretical property limit of graphene. This review focuses on how to make super graphene, namely graphene with a perfect structure and free of contaminations. More specially, this study focuses on graphene synthesis on Cu substrates. Typical defects in graphene are first discussed together with the formation mechanisms and how they are characterized normally, followed with a brief review of graphene properties and the effects of defects. Then, the synthesis progress of super graphene from the aspects of substrate, grain size, wrinkles, contamination, adlayers, and point defects are reviewed. Graphene transfer is briefly discussed as well. Finally, the challenges to make super graphene are discussed and a strategy is proposed.
Collapse
Affiliation(s)
- Fangzhu Qing
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Xiaomeng Guo
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuting Hou
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Congcong Ning
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qisong Wang
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xuesong Li
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| |
Collapse
|
25
|
Xiang J, Xu J, Li H, Chen L, Liu W. Distribution of oxygen-containing functional groups on defective graphene: properties engineering and Li adsorption. Phys Chem Chem Phys 2024; 26:12764-12777. [PMID: 38619495 DOI: 10.1039/d4cp00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, the distribution of oxygen-containing functional groups on graphene with vacancies and topological defects was systematically investigated using advanced computational methods and the structure models for multi-defect graphene oxides (GOs) were proposed. All potential adsorption sites were considered through an automated structure generation program to identify energetically favorable structures. Unlike the pristine graphene surface where oxygen-containing functional groups always aggregate with each other, we observed a tendency for them to preferentially adsorb near defects. Furthermore, they may also be distributed on the same side or both sides of the defective graphene. These multi-defect GOs can exhibit either metallic or semiconducting properties. Notably, upon adsorbing the same oxygen-containing functional groups onto the surface of defective graphene, their electronic characteristics become homogeneous. The coexistence of vacancy/topological defects and oxygen-containing functional groups within the graphene lattice introduces intriguing mechanical anisotropic properties to graphene, including the uncommon negative Poisson's ratio. Additionally, these materials exhibit anisotropic optical behavior, displaying heightened absorption within the infrared and visible regions compared to pristine graphene. Finally, it is found that Li atoms are adsorbed stably on the surfaces of multi-defect GOs via the formation of LinO/LimOH clusters. The research findings presented in this paper, encompassing the development of structural models for multi-defect GOs, could provide crucial insights into the properties and potential applications of graphene oxides.
Collapse
Affiliation(s)
- Jiang Xiang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Hongyan Li
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| |
Collapse
|
26
|
Malenfant-Thuot O, Morinière M, Côté M. Ab initiostudy of the processes of nitrogen functionalisation in graphene. NANOTECHNOLOGY 2024; 35:135702. [PMID: 38134442 DOI: 10.1088/1361-6528/ad1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Nitrogen functionalisation of graphene is studied with the help ofab initioelectronic structure methods. Both static formation energies and energy barriers obtained from nudged elastic band calculations are considered. If carbon defects are present in the graphene structure, low energy barriers on the order of 0.5 eV were obtained to incorporate nitrogen atoms inside the sheet. For defect-free graphene, much larger barriers in the range of 3.70-4.38 eV were found, suggesting an external energy source is required to complete this type of incorporation.
Collapse
Affiliation(s)
- Olivier Malenfant-Thuot
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Maxime Morinière
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Michel Côté
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
27
|
Li H, Xiang J, Chen L, Xu J, Liu W. Dense arrangement of crown ethers in graphene: novel graphitic carbon oxides with enhanced optoelectronic properties. Phys Chem Chem Phys 2024; 26:1428-1435. [PMID: 38112567 DOI: 10.1039/d3cp03902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Incorporating crown ethers into a graphene lattice presents an efficient means of tuning its properties and expanding its range of potential applications. This study employed density functional theory calculations to introduce a series of novel graphitic carbon oxides through the dense arrangement of crown ethers featuring varying cavity sizes within the graphene structure. These newly developed graphitic carbon oxides exhibit thermodynamic and dynamic stability. They also manifest improved stability relative to previously reported graphene oxides with similar oxygen content. Notably, a robust linear relationship is observed between the cohesive energies and the proportion of oxygen atoms. The electronic properties of these graphitic carbon oxides span a spectrum of characteristics, including semi-metallic, metallic, and semi-conducting behavior. Their calculated band gaps range from 0.11 eV to 4.38 eV. Specifically, our analysis reveals that C6G-1, characterized by its largest crown ether-like nanopore with six oxygen atoms, holds potential as a material for photocatalytic water splitting. Moreover, these materials exhibit anisotropic optical properties, showcasing a significant enhancement in absorption within the infrared and visible regions relative to pristine graphene. Given the successful experimental synthesis of crown ether in graphene, we anticipate that our findings will contribute to the widespread utilization of graphene derivatives in low-dimensional electronic, catalytic, and optical devices.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Jiang Xiang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| |
Collapse
|
28
|
Seo G, Lee G, Kim W, An I, Choi M, Jang S, Park YJ, Lee JO, Cho D, Park EC. Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front Bioeng Biotechnol 2023; 11:1313494. [PMID: 38179133 PMCID: PMC10765604 DOI: 10.3389/fbioe.2023.1313494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tuberculosis (TB) has high morbidity as a chronic infectious disease transmitted mainly through the respiratory tract. However, the conventional diagnosis methods for TB are time-consuming and require specialists, making the diagnosis of TB with point-of-care (POC) detection difficult. Here, we developed a graphene-based field-effect transistor (GFET) biosensor for detecting the MPT64 protein of Mycobacterium tuberculosis with high sensitivity as a POC detection platform for TB. For effective conjugation of antibodies, the graphene channels of the GFET were functionalized by immobilizing 1,5-diaminonaphthalene (1,5-DAN) and glutaraldehyde linker molecules onto the graphene surface. The successful immobilization of linker molecules with spatial uniformity on the graphene surface and subsequent antibody conjugation were confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. The GFET functionalized with MPT64 antibodies showed MPT64 detection with a detection limit of 1 fg/mL in real-time, indicating that the GFET biosensor is highly sensitive. Compared to rapid detection tests (RDT) and enzyme-linked immunosorbent assays, the GFET biosensor platform developed in this study showed much higher sensitivity but much smaller dynamic range. Due to its high sensitivity, the GFET biosensor platform can bridge the gap between time-consuming molecular diagnostics and low-sensitivity RDT, potentially aiding in early detection or management of relapses in infectious diseases.
Collapse
Affiliation(s)
- Giwan Seo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Wooyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Inyoung An
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Myungwoo Choi
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sojeong Jang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-O. Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Edmond Changkyun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
30
|
Makwana M, Patel AM. Identification of microbes using single-layer graphene-based nano biosensors. J Mol Model 2023; 29:382. [PMID: 37987806 DOI: 10.1007/s00894-023-05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
CONTEXT Graphene based nano sensors have huge potential in an era of sensor technology. The objective of this study is to create a sensor by investigating the vibration responses of cantilever and bridged boundary conditioned single layer graphene sheets (SLGS) with various attached microorganisms on the tip and at the centre of the sheet. The Parvoviridae, Flaviviridae, and Polyomaviridae biological substances have been comprehensively investigated here. For the Parvoviridae, Polyomaviridae, and Flaviviridae categories of targeted microbes, the sizes are 21nm, 40nm, and 45nm, respectively. The Parvoviridae family has a maximum frequency of 1.87x107 Hz with a cantilever condition and a mass of 4.2441 Zg, and for a bridged condition, it demonstrates a maximum frequency of 1.23x108 Hz with the same mass on armchair SLG (5 5). The data analysis shows that 3.0041 Zg mass of the Mimivirus has the lowest frequency. It demonstrates explicitly that the rate of frequency decreases as the value of mass increases. When compared to chiral SLG, the armchair single layer graphene sheet performs better. The research indicates that the dynamic properties are significantly influenced by the mass of various biological organisms. The application of this sensor will enable the detection of microorganisms or viruses that can be connected to SLG. METHODS In this research, the application of Single Layer Graphene (SLG) as a virus sensing device is explored. Atomistic finite element method (AFEM) has been used to carry out the dynamic analysis of SLG. Molecular dynamic analysis and simulations have been performed to see how SLG behaves when employed as sensors for biological entities and when they are exposed to bridged and cantilever boundary conditions. The frequency analysis was performed using ANSYS APDL software. SLG of various chirality has been utilised in the investigation. By altering the applied mass of a biological object, the difference in frequency observed. The idea behind mass detection employing nano biosensors is built on the concept that the stiffness of a biomolecule changes as its mass changes, making the resonant frequency extremely sensitive to that change. A shift in the resonance frequency results from a change in the associated mass on the graphene sheet. The main challenge in mass detection is estimating the variation in resonant frequency driven by the mass of the connected molecule. The SLG-based biosensor has a specific application in the early identification of diseases. The biosensor investigated in this article is novel, whereas the biosensors that are presently on the market operate using the ionization method. The simulations result shows SLG based biosensor's sensitivity considerably faster than an existing one.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, Vallabh Vidyanagar, Gujarat, India.
| | - Ajay M Patel
- Mechatronics Engineering Department, G.H. Patel College of Engineering & Technology, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
31
|
Kim M, Joo SH, Wang M, Menabde SG, Luo D, Jin S, Kim H, Seong WK, Jang MS, Kwak SK, Lee SH, Ruoff RS. Direct Electrochemical Functionalization of Graphene Grown on Cu Including the Reaction Rate Dependence on the Cu Facet Type. ACS NANO 2023; 17:18914-18923. [PMID: 37781814 DOI: 10.1021/acsnano.3c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We present an electrochemical method to functionalize single-crystal graphene grown on copper foils with a (111) surface orientation by chemical vapor deposition (CVD). Graphene on Cu(111) is functionalized with 4-iodoaniline by applying a constant negative potential, and the degree of functionalization depends on the applied potential and reaction time. Our approach stands out from previous methods due to its transfer-free method, which enables more precise and efficient functionalization of single-crystal graphene. We report the suggested effects of the Cu substrate facet by comparing the reactivity of graphene on Cu(111) and Cu(115). The electrochemical reaction rate changes dramatically at the potential threshold for each facet. Kelvin probe force microscopy was used to measure the work function, and the difference in onset potentials of the electrochemical reaction on these two different facets are explained in terms of the difference in work function values. Density functional theory and Monte Carlo calculations were used to calculate the work function of graphene and the thermodynamic stability of the aniline functionalized graphene on these two facets. This study provides a deeper understanding of the electrochemical behavior of graphene (including single-crystal graphene) on Cu(111) and Cu(115). It also serves as a basis for further study of a broad range of reagents and thus functional groups and of the role of metal substrate beneath graphene.
Collapse
Affiliation(s)
- Minhyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sergey G Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunghwan Jin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeongjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Won Kyung Seong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sun Hwa Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
32
|
Zhang R, Wang Z, Hou Q, Yuan X, Yong Y, Cui H, Li X. First-principles insights into the C 6N 7 monolayer as a highly efficient sensor and scavenger for the detection of selective volatile organic compounds. RSC Adv 2023; 13:28703-28712. [PMID: 37790102 PMCID: PMC10542849 DOI: 10.1039/d3ra05573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
The design of new gas sensors and scavengers of volatile organic compounds (VOCs) is desirable for VOC enriching, separation and utilization. Herein, first-principles methods were performed to investigate the potential of C6N7 monolayers as highly efficient sensors and scavengers for selective VOCs (toluene, benzene, vinyl chloride, ethane, methanal, acetone, ethanol, and acetaldehyde). The physisorption of toluene, benzene, acetone, ethanol, acetaldehyde, and methanal has relatively high adsorption strength and can significantly tune the electronic properties and work function (Φ) of the C6N7, indicating that the C6N7 monolayer is highly sensitive and selective to these VOC gases. In addition, the desorption time of benzene, acetone, ethanol, acetaldehyde, and methanal is about 3, 0.4, 2.0 × 10-2, 3.0 × 10-2, and 3.6 × 10-5 s at 300 K, respectively, indicating that the C6N7-based sensor has high reusability at room temperature. The recovery time of toluene was about 7.8 × 102 s at 300 K, showing disposable toluene gas sensing of the monolayer. Our work confirms that the C6N7 monolayer as a resistance-type and Φ-type gas sensor and scavenger is highly sensitive, selective and reusable for VOCs (benzene, acetone, ethanol, acetaldehyde, and methanol), but is a disposable toluene gas sensor and scavenger at room temperature.
Collapse
Affiliation(s)
- Ruishan Zhang
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Zihao Wang
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Qihua Hou
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Xiaobo Yuan
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Yongliang Yong
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
- Advanced Materials Science Innovation Center, Longmen Laboratory Luoyang 471003 China
| | - Hongling Cui
- School of Physics and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Xinli Li
- Advanced Materials Science Innovation Center, Longmen Laboratory Luoyang 471003 China
- School of Materials Science and Engineering, Henan University of Science and Technology Luoyang 471023 China
| |
Collapse
|
33
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
34
|
Bai R, Tolman NL, Peng Z, Liu H. Influence of Atmospheric Contaminants on the Work Function of Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12159-12165. [PMID: 37581604 PMCID: PMC10469443 DOI: 10.1021/acs.langmuir.3c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Indexed: 08/16/2023]
Abstract
Airborne hydrocarbon contamination occurs rapidly on graphitic surfaces and negatively impact many of their material properties, yet much of the molecular details of the contamination remains unknown. We use Kelvin probe force microscopy (KPFM) to study the time evolution of the surface potential of graphite exposed to ambient. After exfoliation in air, the surface potential of graphite is not homogeneous and contains features that are absent in the topography image. In addition, the heterogeneity of the surface potential images increased in the first few days followed by a decrease at longer exposure times. These observations are strong support of slow conformation change, phase separation, and/or dynamic displacement of the adsorbed airborne contaminants.
Collapse
Affiliation(s)
- Ruobing Bai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathan L. Tolman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenbo Peng
- Chemical
Engineering College, Ningbo Polytechnic, Ningbo, Zhejiang 315806, P. R. China
| | - Haitao Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
35
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
36
|
Medvedeva AS, Dyakova EI, Kuznetsova LS, Mironov VG, Gurkin GK, Rogova TV, Kharkova AS, Melnikov PV, Naumova AO, Butusov DN, Arlyapov VA. A Two-Mediator System Based on a Nanocomposite of Redox-Active Polymer Poly(thionine) and SWCNT as an Effective Electron Carrier for Eukaryotic Microorganisms in Biosensor Analyzers. Polymers (Basel) 2023; 15:3335. [PMID: 37631392 PMCID: PMC10459408 DOI: 10.3390/polym15163335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Electropolymerized thionine was used as a redox-active polymer to create a two-mediated microbial biosensor for determining biochemical oxygen demand (BOD). The electrochemical characteristics of the conducting system were studied by cyclic voltammetry and electrochemical impedance spectroscopy. It has been shown that the most promising in terms of the rate of interaction with the yeast B. adeninivorans is the system based on poly(thionine), single-walled carbon nanotubes (SWCNT), and neutral red (kint = 0.071 dm3/(g·s)). The biosensor based on this system is characterized by high sensitivity (the lower limit of determined BOD concentrations is 0.4 mgO2/dm3). Sample analysis by means of the developed analytical system showed that the results of the standard dilution method and those using the biosensor differed insignificantly. Thus, for the first time, the fundamental possibility of effectively using nanocomposite materials based on SWCNT and the redox-active polymer poly(thionine) as one of the components of two-mediator systems for electron transfer from yeast microorganisms to the electrode has been shown. It opens up prospects for creating stable and highly sensitive electrochemical systems based on eukaryotes.
Collapse
Affiliation(s)
- Anastasia S. Medvedeva
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Elena I. Dyakova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Lyubov S. Kuznetsova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Vladislav G. Mironov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - George K. Gurkin
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Tatiana V. Rogova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Anna S. Kharkova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Pavel V. Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alina O. Naumova
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Denis N. Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Vyacheslav A. Arlyapov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| |
Collapse
|
37
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
38
|
Borsatto JVB, Lanças FM. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules 2023; 28:5134. [PMID: 37446796 DOI: 10.3390/molecules28135134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides an overview of recent advancements in applying graphene-based materials as sorbents for liquid chromatography (LC) analysis. Graphene-based materials are promising for analytical chemistry, including applications as sorbents in liquid chromatography. These sorbents can be functionalized to produce unique extraction or stationary phases. Additionally, graphene-based sorbents can be supported in various materials and have consequently been applied to produce various devices for sample preparation. Graphene-based sorbents are employed in diverse applications, including food and environmental LC analysis. This review summarizes the application of graphene-based materials in food and environmental water analysis in the last five years (2019 to 2023). Offline and online sample preparation methods, such as dispersive solid phase microextraction, stir bar sorptive extraction, pipette tip solid phase extraction, in-tube solid-phase microextraction, and others, are reviewed. The review also summarizes the application of the columns produced with graphene-based materials in separating food and water components and contaminants. Graphene-based materials have been reported as stationary phases for LC columns. Graphene-based stationary phases have been reported in packed, monolithic, and open tubular columns and have been used in LC and capillary electrochromatography modes.
Collapse
Affiliation(s)
- João V B Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| | - Fernando M Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| |
Collapse
|
39
|
Borsatto JVB, Maciel EVS, Cifuentes A, Lanças FM. Applicability and Limitations of a Capillary-LC Column-Switching System Using Hybrid Graphene-Based Stationary Phases. Molecules 2023; 28:4999. [PMID: 37446660 DOI: 10.3390/molecules28134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.
Collapse
Affiliation(s)
- João Victor Basolli Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Edvaldo Vasconcelos Soares Maciel
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Fernando Mauro Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
| |
Collapse
|
40
|
Ha CV, Nguyen Thi BN, Trang PQ, Ponce-Pérez R, Guerrero-Sanchez J, Hoat DM. Novel germanene-arsenene and germanene-antimonene lateral heterostructures: interline-dependent electronic and magnetic properties. Phys Chem Chem Phys 2023; 25:14502-14510. [PMID: 37190945 DOI: 10.1039/d3cp00828b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Seamlessly stitching two-dimensional (2D) materials may lead to the emergence of novel properties triggered by the interactions at the interface. In this work, a series of 2D lateral heterostructures (LHSs), namely germanene-arsenene (Gem-As8-m) and germanene-antimonene (Gem-Sb8-m), are investigated using first-principles calculations. The results demonstrate a strong interline-dependence of the electronic and magnetic properties. Specifically, the LHS formation along an armchair line preserves the non-magnetic nature of the original materials. However, this is an efficient approach to open the electronic band gap of the germanene monolayer, where band gaps as large as 0.74 and 0.76 eV are induced for Ge2-As6 and Ge2-Sb6 LHSs, respectively. Meanwhile, magnetism may appear in the zigzag-LHSs depending on the chemical composition (m = 3, 4, 5, and 6 for germanene-arsenene and m = 2, 3, 4, 5, and 6 for germanene-antimonene), where total magnetic moments between 0.13 and 0.50 μB are obtained. Herein, magnetic properties are produced mainly by the spin-up state of Ge atoms at the interface, where a small contribution comes from As(Sb) atoms. Spin-resolved band structures show a multivalley profile in both the valence band and the conduction band with a topological insulator-like behavior, where the interface states are derived mainly from the interface Ge-pz state. The results introduce new 2D lateral heterostructures with novel electronic and magnetic properties to allow new functionalities, which could be further explored for optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Chu Viet Ha
- Faculty of Physics, TNU-University of Education, Thai Nguyen, Vietnam
| | - Bich Ngoc Nguyen Thi
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Quynh Trang
- Faculty of Physics, TNU-University of Education, Thai Nguyen, Vietnam
| | - R Ponce-Pérez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Código Postal 22800, Baja California, Mexico
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Código Postal 22800, Baja California, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
41
|
Ciou SH, Hsieh AH, Lin YX, Sei JL, Govindasamy M, Kuo CF, Huang CH. Sensitive label-free detection of the biomarker phosphorylated tau-217 protein in Alzheimer's disease using a graphene-based solution-gated field effect transistor. Biosens Bioelectron 2023; 228:115174. [PMID: 36933321 DOI: 10.1016/j.bios.2023.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is generally diagnosed using advanced imaging, but recent research suggests early screening using biomarkers in peripheral blood is feasible; among them, plasma tau proteins phosphorylated at threonine 231, threonine 181, and threonine 217 (p-tau217) are potential targets. A recent study indicates that the p-tau217 protein is the most efficacious biomarker. However, a clinical study found a pg/ml threshold for AD screening beyond standard detection methods. A biosensor with high sensitivity and specificity p-tau217 detection has not yet been reported. In this study, we developed a label-free solution-gated field effect transistor (SGFET)-based biosensor featuring a graphene oxide/graphene (GO/G) layered composite. The top layer of bilayer graphene grown using chemical vapor deposition was functionalized with oxidative groups serving as active sites for forming covalent bonds with the biorecognition element (antibodies); the bottom G could act as a transducer to respond to the attachment of the target analytes onto the top GO conjugated with the biorecognition element via π-π interactions between the GO and G layers. With this unique atomically layered G composite, we obtained a good linear electrical response in the Dirac point shift to p-tau217 protein concentrations in the range of 10 fg/ml to 100 pg/ml. The biosensor exhibited a high sensitivity of 18.6 mV/decade with a high linearity of 0.991 in phosphate-buffered saline (PBS); in human serum albumin, it showed approximately 90% of the sensitivity (16.7 mV/decade) in PBS, demonstrating high specificity. High stability of the biosensor was also displayed in this study.
Collapse
Affiliation(s)
- Sian-Hong Ciou
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Ao-Ho Hsieh
- Novascope Diagnostics Inc., Taipei City, 10546, Taiwan
| | - Yu-Xiu Lin
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Jhao-Liang Sei
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Novascope Diagnostics Inc., Taipei City, 10546, Taiwan.
| |
Collapse
|
42
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
43
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
44
|
Jiang X, Wu F, Huang X, He S, Han Q, Zhang Z, Liu W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:751. [PMID: 36839120 PMCID: PMC9958802 DOI: 10.3390/nano13040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
As new psychoactive substances (commonly known as "the third generation drugs") have characteristics such as short-term emergence, rapid updating, and great social harmfulness, there is a large gap in the development of their detection methods. Herein, graphite oxide (GO) was first prepared and immobilized with a reversible addition-fragmentation chain transfer (RAFT) agent, then a new psychoactive substance (4-MEC) was chosen as a template, and then the surface RAFT polymerization of methacrylamide (MAAM) was carried out by using azobisisobutyronitrile (AIBN) as an initiator and divinylbenzene (DVB) as a cross-linker. After the removal of the embedded template, graphene oxide modified by molecularly imprinted polymers (GO-MIPs) was finally obtained. Owing to the specific imprinted cavities for 4-MEC, the satisfactory selectivity and stability of the GO-MIP nanocomposite have been demonstrated. The GO-MIP nanocomposite was then used to fabricate the electrochemical sensor, which displayed a high selectivity in detecting 4-MEC over a linear concentration range between 5 and 60 μg mL-1 with a detection limit of 0.438 μg mL-1. As a result, the GO-MIPs sensor developed an accurate, efficient, convenient, and sensitive method for public security departments to detect illicit drugs and new psychoactive substances.
Collapse
Affiliation(s)
- Xue Jiang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shan He
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Zihua Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| |
Collapse
|
45
|
Kumar THV, Srinivasan S, Krishnan V, Vaidyanathan R, Babu KA, Natarajan S, Veerapandian M. Peptide-based direct electrochemical detection of receptor binding domains of SARS-CoV-2 spike protein in pristine samples. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133052. [PMID: 36438197 PMCID: PMC9682882 DOI: 10.1016/j.snb.2022.133052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
RNA isolation and amplification-free user-friendly detection of SARS-CoV-2 is the need of hour especially at resource limited settings. Herein, we devised the peptides of human angiotensin converting enzyme-2 (hACE-2) as bioreceptor at electrode interface for selective targeting of receptor binding domains (RBD) of SARS-CoV-2 spike protein (SP). Disposable carbon-screen printed electrode modified with methylene blue (MB) electroadsorbed graphene oxide (GO) has been constructed as cost-efficient and scalable platform for hACE-2 peptide-based SARS-CoV-2 detection. In silico molecular docking of customized 25 mer peptides with RBD of SARS-CoV-2 SP were validated by AutoDock CrankPep. N-terminal region of ACE-2 showed higher binding affinity of - 20.6 kcal/mol with 15 H-bond, 9 of which were < 3 Å. Electrochemical biosensing of different concentrations of SPs were determined by cyclic voltammetry (CV) and chronoamperometry (CA), enabling a limit of detection (LOD) of 0.58 pg/mL and 0.71 pg/mL, respectively. MB-GO devised hACE-2 peptide platform exert an enhanced current sensitivity of 0.0105 mA/pg mL-1 cm-2 (R2 = 0.9792) (CV) and 0.45 nA/pg mL-1 (R2 = 0.9570) (CA) against SP in the range of 1 pg/mL to 1 µg/mL. For clinical feasibility, nasopharyngeal and oropharyngeal swab specimens in viral transport medium were directly tested with the prepared peptide biosensor and validated with RT-PCR, promising for point-of-need analysis.
Collapse
Affiliation(s)
- T H Vignesh Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sowmiya Srinivasan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Vinoth Krishnan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rama Vaidyanathan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Kannadasan Anand Babu
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Sudhakar Natarajan
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Manaf BAA, Hong SP, Rizwan M, Arshad F, Gwenin C, Ahmed MU. Recent advancement in sensitive detection of carcinoembryonic antigen using nanomaterials based immunosensors. SURFACES AND INTERFACES 2023; 36:102596. [DOI: 10.1016/j.surfin.2022.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
47
|
Feature-rich electronic and magnetic properties in silicene monolayer induced by nitrogenation: A first-principles study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
49
|
Mia AK, Meyyappan M, Giri PK. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications. BIOSENSORS 2023; 13:169. [PMID: 36831935 PMCID: PMC9953520 DOI: 10.3390/bios13020169] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/13/2023]
Abstract
There has been an exponential surge in reports on two-dimensional (2D) materials ever since the discovery of graphene in 2004. Transition metal dichalcogenides (TMDs) are a class of 2D materials where weak van der Waals force binds individual covalently bonded X-M-X layers (where M is the transition metal and X is the chalcogen), making layer-controlled synthesis possible. These individual building blocks (single-layer TMDs) transition from indirect to direct band gaps and have fascinating optical and electronic properties. Layer-dependent opto-electrical properties, along with the existence of finite band gaps, make single-layer TMDs superior to the well-known graphene that paves the way for their applications in many areas. Ultra-fast response, high on/off ratio, planar structure, low operational voltage, wafer scale synthesis capabilities, high surface-to-volume ratio, and compatibility with standard fabrication processes makes TMDs ideal candidates to replace conventional semiconductors, such as silicon, etc., in the new-age electrical, electronic, and opto-electronic devices. Besides, TMDs can be potentially utilized in single molecular sensing for early detection of different biomarkers, gas sensors, photodetector, and catalytic applications. The impact of COVID-19 has given rise to an upsurge in demand for biosensors with real-time detection capabilities. TMDs as active or supporting biosensing elements exhibit potential for real-time detection of single biomarkers and, hence, show promise in the development of point-of-care healthcare devices. In this review, we provide a historical survey of 2D TMD-based biosensors for the detection of bio analytes ranging from bacteria, viruses, and whole cells to molecular biomarkers via optical, electronic, and electrochemical sensing mechanisms. Current approaches and the latest developments in the study of healthcare devices using 2D TMDs are discussed. Additionally, this review presents an overview of the challenges in the area and discusses the future perspective of 2D TMDs in the field of biosensing for healthcare devices.
Collapse
Affiliation(s)
- Abdul Kaium Mia
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - M. Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P. K. Giri
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
50
|
Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, Pereira MDC. Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker. Talanta 2023; 252:123838. [DOI: 10.1016/j.talanta.2022.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|