1
|
Kaushik A, Kapoor S, Senapati S, Singh JP. Highly sensitive SERS substrates based on MoS 2-Au nanocomposites for detection of hazardous dyes and infectious bacteria. Colloids Surf B Biointerfaces 2025; 252:114676. [PMID: 40186924 DOI: 10.1016/j.colsurfb.2025.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Surface functionalization of two-dimensional materials with noble metal nanoparticles has unlocked new possibilities in Raman-based sensing by leveraging both chemical and electromagnetic enhancement effects. In this work, the optimized morphology of nanosheets of MoS2 adorned with Au NPs has been utilized for sensing of hazardous molecules Rhodamine B, N719 dye, and S. aureus, E. coli bacteria samples. MoS2 nanosheets were prepared by facile hydrothermal method and Au NPs were decorated onto the nanosheets' surface by reducing chloroauric acid solution. The Au nanoparticles concentration was optimized by altering the concentration of chloroauric acid solution. Rhodamine B and N719 dyes are known to be toxic and carcinogenic, if inhaled or indigested, whereas S. aureus and E. coli bacteria can cause skin infections, sepsis, food poisoning and severe diarrhoea. Therefore, detecting even trace concentrations of these molecules in the environment is critically important. The prepared SERS substrate successfully detects the Rhodamine B and N719 dyes up to 10-15 and 10-9 M concentrations. The highest enhancement factor obtained for Rhodamine B and N719 dyes are 5.2 × 107 and 2.1 × 107, respectively. The nanocomposite SERS substrate exhibits excellent signal uniformity and reproducibility with relative standard deviation value of around 10 %. Further, the nanocomposite substrate was employed for the sensing of infectious S. aureus and E. coli bacteria down to 102 cfu/mL. A charge transfer mechanism is also proposed between N719 dye and MoS2, along with the role of Au NPs, which produces the synergistic enhancement of the SERS signal.
Collapse
Affiliation(s)
- Arvind Kaushik
- Department of Physics, IIT Delhi, New Delhi 110016, India
| | - Sakshi Kapoor
- Nanoscale Research Facility, IIT Delhi, New Delhi 110016, India
| | - Sneha Senapati
- School of Interdisciplinary Research (SIRe), IIT Delhi, New Delhi 110016, India
| | - J P Singh
- Department of Physics, IIT Delhi, New Delhi 110016, India.
| |
Collapse
|
2
|
Chandio I, Rahujo S, Chandio ZA, Rashid MA, Rehman MU, Shar ZH, Thebo KH. Recent development in metal-organic frameworks-based electrochemical aptasensors for detection of cancer biomarkers. Bioelectrochemistry 2025; 165:109006. [PMID: 40393088 DOI: 10.1016/j.bioelechem.2025.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Aptasensors utilize aptamers as recognition elements, which offer high sensitivity, selectivity, ease of modification, outstanding stability, real-time detection, biocompatibility, cost-effectiveness, and good integration. Utilizing metal-organic framework (MOF)-based electrochemical aptasensors is a promising approach that is drawing significant attention. MOF-based aptasensors for cancer detection present a promising avenue, yet they face several challenges. The optimization of sensitivity and selectivity in the MOF-aptamer system is complex, requiring a delicate balance to distinguish the target analyte from interfering substances in physiological environments. Efficient immobilization of aptamers on MOF surfaces while maintaining their conformation and stability under physiological conditions poses a crucial challenge for robust sensing. Integrating MOFs and aptamers with transduction systems, such as electrodes in electrochemical sensors, is critical for achieving efficient signal transduction and maintaining sensor stability. Herein, the latest developments in MOF-based electrochemical aptasensors for detecting tumor markers will be discussed. Focus will be given on single metallic, bimetallic, and calcinated-based MOFs and their strengths and weaknesses will be summarized. Further, the synthesis strategy of electrochemical sensors is analyzed to meet the requirements of selectivity and sensitivity. Finally, the future perspectives for developing and applying electrochemical aptasensors are also discussed.
Collapse
Affiliation(s)
- Imamdin Chandio
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; National Centre of Excellence inraphene Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Sanam Rahujo
- National Centre of Excellence inraphene Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Zaheer Ahmed Chandio
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabi
| | - Misbah Ur Rehman
- Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | - Zahid H Shar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | |
Collapse
|
3
|
Ying Y, Fang M, Wang C, Yan Z, Xie H, Wu W, Tang Z, Liu Y. Large-Area Ultrathin Covalent-Organic Framework Membranes for Surface-Enhanced Raman Scattering: Optimal Performance Through Thickness Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501846. [PMID: 40135365 DOI: 10.1002/smll.202501846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Exploration and construction of novel π-conjugated organic semiconductors with low cost, small background interference, and excellent performance as surface-enhanced Raman scattering (SERS) substrates is one of the current focuses for the development of SERS technology. Based on precise control over synthesis conditions, a series of large-area tetraphenylporphyrin-based 2D covalent-organic framework membranes (2D-porphyrin-COFs) with high uniformity and precisely controllable thickness are constructed as SERS substrates. The delicate balance among the intensity of the substrate interference, the degree of π-conjugation extension, and the proportion of the edge-on channels within the total exposed region results in the optimal SERS performance of ultrathin multilayer 2D-porphyrin-COFs with the thickness between 5.0 to 9.0 nm toward MB, including the enhancement factor on the order of 105 and the experimental limit of detection down to 10-8 M, which are comparable to classic plasmonic metal substrates. This work highlights the powerful application potential of COFs in the SERS field and unveils thickness control as an effective strategy to facilitate the exploration of high-performance organic SERS substrates.
Collapse
Affiliation(s)
- Yue Ying
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Munan Fang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Congying Wang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Xie
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenxuan Wu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Veliz L, Lambin C, Cooper TT, McCarvell WM, Lajoie GA, Postovit LM, Lagugné-Labarthet F. Emerging SERS and TERS MoS 2 platforms for the characterization of plasma-derived extracellular vesicles. NANOSCALE 2025; 17:9926-9936. [PMID: 40163166 DOI: 10.1039/d4nr04926h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication processes. In addition, their biomolecular cargoes such as lipids, proteins, and nucleic acids are useful for identifying potential biomarkers related to different stages of cancer disease. However, the small size and heterogenicity of tumor-related EVs represent a major challenge in properly identifying the content of EVs' cargoes with common characterization protocols. To address these issues, surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) are powerful alternatives to assign the vibrational fingerprints to the biomolecules contained in cancer EVs, providing high specificity and spatial resolution. Transition metal dichalcogenides are particularly interesting as SERS and TERS substrates due to the high sensitivity of their 2D surface through coulombic and van der Waals interactions when in contact with an analyte or small object such as the charged membranes of EVs. These interactions induce subtle changes in the work function of the flakes which can be measured through drastic changes of optical processes. We investigate the use of MoS2 flakes synthesized by atmospheric pressure chemical vapor deposition as a potential label-free SERS and TERS platform for the identification of plasma EVs. To exemplify this technology, we isolated plasma EV samples from donors with early-stage [FIGO (I/II)] with high-grade serous carcinoma (HGSC) by size exclusion chromatography (SEC). Both surface- and tip-enhanced measurements were conducted individually, enabling the identification of a series of markers from ovarian cancer donors, highlighting the complementarity of SERS and TERS measurements.
Collapse
Affiliation(s)
- Lorena Veliz
- Department of Chemistry, Western University (The University of Western Ontario), 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| | - Cédric Lambin
- Department of Chemistry, Western University (The University of Western Ontario), 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Ave, Kingston, ON K7L 3N6, Canada
| | - W Michael McCarvell
- Department of Chemistry, Western University (The University of Western Ontario), 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Ave, Kingston, ON K7L 3N6, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, Western University (The University of Western Ontario), 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
5
|
Wang D, Chen Y, Zhang Q, Chen J, Li C, Luo Y, Jin Y, Qi X. SERS-Based Immunochromatographic Assay for Sensitive Detection of Escherichia coli O157:H7 Using a Novel WS 2-Au DTNB Nanotag. SENSORS (BASEL, SWITZERLAND) 2025; 25:2457. [PMID: 40285147 PMCID: PMC12031149 DOI: 10.3390/s25082457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
E. coli O157:H7 contamination in food and the environment poses a serious threat to human health. Rapid and sensitive identification of foodborne pathogens remains challenging. Here, we prepared tungsten disulfide (WS2)-Au nanocomposites coupled with the Raman signal molecule 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) and antibodies to replace the conventional colloidal gold nanoparticles and applied SERS-active nanotags in the SERS-ICA method for highly sensitive detection of E. coli O157:H7. The large surface area and numerous effective SERS hotspots of WS2-Au nanotags provide superior SERS signals. Under optimized conditions, this ICA achieves the quantitative detection of E. coli O157:H7 in a broad linear range of 8 × 102-8 × 107 CFU/mL and at a low detection limit of 175 CFU/mL. In addition, the test strip indicates high specificity for E. coli O157:H7 identification, favorable reproducibility, and shows good accuracy in the detection of actual food samples, such as milk and pork. The proposed assay can be used for rapid qualitative and quantitative detection of E. coli O157:H7 and has great potential for field application.
Collapse
Affiliation(s)
- Deying Wang
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Yan Chen
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Qi Zhang
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Junfei Chen
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Changhao Li
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Yunjing Luo
- College of Chemistry and Life Sciences, Beijing University of Technology, No. 100 Pingleyuan, Beijing 100124, China; (D.W.); (C.L.)
| | - Yong Jin
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian Road, Beijing 100123, China; (Y.C.); (Q.Z.); (J.C.)
| |
Collapse
|
6
|
Zhao S, Hou X, Cheng Y, Zhang Q, Zhao J, Tao L. Optical Synaptic Devices with Multiple Encryption Features Based on SERS-Revealed Charge-Transfer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503146. [PMID: 40200710 DOI: 10.1002/adma.202503146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.
Collapse
Affiliation(s)
- Shaoguang Zhao
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiangyu Hou
- Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Yue Cheng
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiman Zhang
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingwen Zhao
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Tao
- Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Gao Z, Yang H, Zhang J, Yang J, Hong L, Li ZY. Hollow Au nanoparticles for single-molecule Raman spectroscopy via a synergistic electromagnetic and chemical enhancement strategy. NANOSCALE 2025; 17:8741-8751. [PMID: 40072878 DOI: 10.1039/d4nr05311g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS2, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS. We have used hollow gold nanoparticles to form plasmonic nanogaps, which better match the wavelength of near-infrared pump lasers, thus maximizing the electromagnetic field enhancement within the nanogap and creating a more effective hotspot. Notably, our strategy has achieved universal, robust, fast, and uniform SM-SERS detection of three dye molecules (Rhodamine B, Rhodamine 6G and Crystal Violet) with a detection limit of 10 mol L-1. This innovative approach opens up new possibilities for bringing state-of-the-art optical imaging, monitoring, and spectroscopy technologies into the single-molecule science arena for disclosing more unknown physical, chemical, and biological properties and principles.
Collapse
Affiliation(s)
- Zihan Gao
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Haiyao Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Jianzhi Zhang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Jie Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
| | - Lihong Hong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
8
|
Simsek UB, Sakir M, Colak SG, Demir M. MXene as SERS-Active Substrate: Impact of Intrinsic Properties and Performance Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:91-109. [PMID: 39721057 DOI: 10.1021/acsami.4c17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A new member is incorporated into the SERS active materials family daily as a consequence of advances in materials science. Furthermore, it has been demonstrated that MXenes, which display remarkable physicochemical characteristics, are also encompassed within this family. This Review offers a comprehensive and systematic assessment of the potential of MXene structures in the context of SERS applications. First, the historical development of SERS-active substrates and the evolution of various substrates over time are analyzed. Subsequently, the formation and structural properties of MXene structures were subjected to a comprehensive and detailed examination. The principal objective of this Review is to elucidate the rationale behind the preference for MXene as a SERS-active substrate, given its distinctive physicochemical properties. In this context, while MXene's abundant surface functional groups represent a significant advantage, its high electrical conductivity, suitable flexibility, extensive two-dimensional surface areas, and antibacterial activity also warrant consideration in terms of potential applications. It is emphasized that, for MXene nanolayers to demonstrate optimal performance in SERS applications, a plan should be devised to consider these features. By increasing readers' awareness of using MXene as a SERS active substrate, potential opportunities for future application areas may be created.
Collapse
Affiliation(s)
- Utku Bulut Simsek
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
| | - Menekse Sakir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Türkiye
| | - Suleyman Gokhan Colak
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, TR31200 Hatay, Türkiye
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Türkiye
| |
Collapse
|
9
|
Xie Y, Xu J, Shao D, Liu Y, Qu X, Hu S, Dong B. SERS-Based Local Field Enhancement in Biosensing Applications. Molecules 2024; 30:105. [PMID: 39795162 PMCID: PMC11722145 DOI: 10.3390/molecules30010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.X.); (J.X.); (D.S.); (Y.L.); (X.Q.); (S.H.)
| |
Collapse
|
10
|
Ushkov A, Dyubo D, Belozerova N, Kazantsev I, Yakubovsky D, Syuy A, Tikhonowski GV, Tselikov D, Martynov I, Ermolaev G, Grudinin D, Melentev A, Popov AA, Chernov A, Bolshakov AD, Vyshnevyy AA, Arsenin A, Kabashin AV, Tselikov GI, Volkov V. Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:4. [PMID: 39791764 PMCID: PMC11721788 DOI: 10.3390/nano15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors.
Collapse
Affiliation(s)
- Andrei Ushkov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Dmitriy Dyubo
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Nadezhda Belozerova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Ivan Kazantsev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Dmitry Yakubovsky
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Alexander Syuy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Gleb V. Tikhonowski
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Daniil Tselikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Ilya Martynov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Georgy Ermolaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Dmitriy Grudinin
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Alexander Melentev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Anton A. Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Alexander Chernov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Alexey D. Bolshakov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 7–9, St. Petersburg 199034, Russia
- Center for Nanotechnologies, Alferov University, Khlopina 8/3, St. Petersburg 194021, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Andrey A. Vyshnevyy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Aleksey Arsenin
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Andrei V. Kabashin
- National Center for Scientific Research, LP3, Aix-Marseille University, CNRS, 13288 Marseille, France;
| | - Gleb I. Tselikov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Valentyn Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| |
Collapse
|
11
|
Kim YB, Behera S, Lee D, Namgung S, Park KD, Kim DS, Das B. Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material-Flexible Nanotip Array. BIOSENSORS 2024; 14:619. [PMID: 39727884 DOI: 10.3390/bios14120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS2 transferred onto a flexible metallic nanotip array. Using mechanical strain, the enhancement factor of 1L MoS2/nanotip is modulated from 1.23 to 8.72 for 2LA mode. For the same mode, the SERS intensity is enhanced by ~31 times when silver nanoparticles of ~13 nm diameter are deposited on 1L MoS2/nanotip, which is tuned up to ~34 times by compressive strain. The change in SERS enhancement factor is due to the decrease (increase) in gap width as the sample is bent inwardly (outwardly). This is corroborated by FEM structural and electromagnetic simulation. We also observed significant control over mode peak and linewidth, which may have applications in biosensing, chemical detection, and optoelectronics.
Collapse
Affiliation(s)
- Yong Bin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Satyabrat Behera
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dukhyung Lee
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Namgung
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bamadev Das
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Vo Huu T, Thi Thu HL, Nguyen Hoang L, Huynh Thuy Doan K, Duy KN, Anh TD, Le Thi Minh H, Huu KN, Le Vu Tuan H. Nanorod structure tuning and defect engineering of MoO x for high-performance SERS substrates. NANOSCALE 2024; 16:22297-22311. [PMID: 39539193 DOI: 10.1039/d4nr04368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In recent years, surface-enhanced Raman scattering (SERS) based on metal oxide semiconductors has been an active area of research and development, attracting significant scientific interest. These SERS substrates are known as plasmon-free SERS substrates because they are not based on noble metal nanoparticles but mainly on the defects, structure, and surface morphology of semiconductors to enhance the Raman signal. In this study, we fabricated a SERS substrate based on molybdenum oxide, using reactive DC magnetron sputtering and then used different simple and effective strategies to enhance the Raman signal. The results show that nanorod structure, oxygen deficiency engineering, phase engineering, and optical properties can be easily controlled by varying sputtering time and annealing time of MoOx SERS substrates. The analysis methods XRD, PL, and Raman show that with the optimal fabricated conditions. The presence of oxygen defects and a mixed MoO3, Mo9O26 phase structure in as well as the nanorod structure of MoOx SERS substrates could likely enhance Raman signals via a chemical mechanism (CM) and electromagnetic mechanism (EM). The MoOx SERS substrates were also used to detect R6G at low concentrations, with an EF of 1.14 × 106 (at 0.01 ppm), LOD of 0.01 ppm, and good temporal stability and reproducibility.
Collapse
Affiliation(s)
- Trong Vo Huu
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hong Le Thi Thu
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Long Nguyen Hoang
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khanh Huynh Thuy Doan
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khanh Nguyen Duy
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Tuan Dao Anh
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Huyen Le Thi Minh
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Fundamental Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Ke Nguyen Huu
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hung Le Vu Tuan
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 700000, Vietnam.
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
Sidnawi B, Zhao L, Li B, Wu Q. A new method for estimating nanoparticle deposition coverage from a set of weak-contrast SEM images. Ultramicroscopy 2024; 267:114048. [PMID: 39303670 DOI: 10.1016/j.ultramic.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate the sample and eliminate the possibility of reusing it for following processes. Conversely, examining the sample without any modifications, in pursuit of high-fidelity digital images of its unperturbed state, can come at the cost of low-quality images that are challenging to process. Here, a solution is proposed for the case where no brightness threshold is available to reliably judge whether a region is covered with nanomaterials. The method examines local brightness variability to detect nanomaterial deposits. Very good agreement with manually obtained values of the coverage is observed, and a strong case is made for the method's automatability. Although the developed methodology is showcased in the context of SEM images of Polydimethylsiloxane (PDMS) substrates on which silicone dioxide (SiO2) nanoparticles are assembled, the underlying concepts may be extended to situations where straightforward brightness thresholding is not viable.
Collapse
Affiliation(s)
- Bchara Sidnawi
- Department of Mechanical Engineering, Villanova University, PA 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA 19085, USA
| | - Liang Zhao
- Department of Mechanical Engineering, Villanova University, PA 19085, USA; Hybrid Nano-Architectures and Advanced Manufacturing Laboratory
| | - Bo Li
- Department of Mechanical Engineering, Villanova University, PA 19085, USA; Hybrid Nano-Architectures and Advanced Manufacturing Laboratory
| | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, PA 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA 19085, USA.
| |
Collapse
|
14
|
Jiang J, Liu M, Xu D, Jiang T, Zhang J. Quantitative detection of microcystin-LR in Bellamya aeruginosa by thin-layer chromatography coupled with surface-enhanced Raman spectroscopy based on in-situ ZIF-67/Ag NPs/Au NWs composite substrate. Food Chem 2024; 452:139481. [PMID: 38723565 DOI: 10.1016/j.foodchem.2024.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
As a hypertoxic natural toxin, the risk of Microcystin-leucine-arginine (MC-LR) residues in Bellamya aeruginosa deserves more attention. Herein, employing the conventional thin-layer chromatography (TLC) technology and a novel surface-enhanced Raman scattering (SERS) substrate, a TLC-SERS chip was fabricated for the purification and quantitative detection of MC-LR in complex samples. The substrate exhibited excellent SERS performance with an enhancement factor of 6.6 × 107, a low detection limit of 2.27 × 10-9 mM for MC-LR, excellent uniformity and reproducibility, as well as a wide linear range. With the application of TLC, the MC-LR was efficiently purified and the concentration was increased to >3 times. Ultimately, recovery rates fluctuated between 93.28% and 101.66% were obtained from the TLC-SERS chip. On balance, the TLC-SERS chip has a robust capacity for achieving rapid and stable quantitative detection of MC-LR, which promises to improve the efficiency of food safety monitoring.
Collapse
Affiliation(s)
- Jing Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Min Liu
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dalun Xu
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
15
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
16
|
Ehtesabi S, Richter M, Kupfer S, Gräfe S. Assessing plasmon-induced reactions by a combined quantum chemical-quantum/classical hybrid approach. NANOSCALE 2024; 16:15219-15229. [PMID: 39072363 PMCID: PMC11325215 DOI: 10.1039/d4nr02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
Collapse
Affiliation(s)
- Sadaf Ehtesabi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| |
Collapse
|
17
|
Hu M, Li K, Dang X, Yang C, Li X, Wang Z, Li K, Cao L, Hu X, Li Y, Wu N, Huang Z, Meng G. Phase-Tunable Molybdenum Boride Ceramics as an Emerging Sensitive and Reliable SERS Platform in Harsh Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308690. [PMID: 38470201 DOI: 10.1002/smll.202308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB2, and Mo2B5 phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.
Collapse
Affiliation(s)
- Mengen Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ke Li
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture, School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Xian Dang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Anhui University, Hefei, 230039, China
| | - Chengwan Yang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xinyang Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhen Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Kewei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Liang Cao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoye Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003-9303, USA
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Minassian H, Melikyan A, Goncalves MR, Petrosyan P. Ti 3C 2T xMXene as surface-enhanced Raman scattering substrate. NANOTECHNOLOGY 2024; 35:415702. [PMID: 38906117 DOI: 10.1088/1361-6528/ad5aa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The electromagnetic field enhancement mechanisms leading to surface-enhanced Raman scattering (SERS) of R6G molecules near Ti3C2TxMXene flakes of different shapes and sizes are analyzed theoretically in this paper. In COMSOL simulations for the enhancement factor (EF) of SERS, the dye molecule is modeled as a small sphere with polarizability spectrum based on experimental data. It is demonstrated, for the first time, that in the wavelength range of500 nm-1000 nm, the enhancement of Raman signals is largely conditioned by quadrupole surface plasmon (QSP) oscillations that induce a strong polarization of the MXene substrate. We show that the vis-NIR spectral range quadrupole SP resonances are strengthened due to interband transitions (IBTs), which provide EF values of the order of 105-107in agreement with experimental data. The weak sensitivity of the EF to the shape and size of MXene nanoparticles (NPs) is interpreted as a consequence of the low dependence of the absorption cross-section of QSP oscillations and IBT on the geometry of the flakes. This reveals a new feature: the independence of EF on the geometry of MXene substrates, which allows to avoid the monitoring of the shape and size of flakes during their synthesis. Thus, MXene flakes can be advantageous for the easy manufacturing of universal substrates for SERS applications. The electromagnetic SERS enhancement is determined by the 'lightning rod' and 'hot-spot' effects due to the partial overlapping of the absorption spectrum of the R6G molecule with these MXene resonances.
Collapse
Affiliation(s)
- Hayk Minassian
- A. Alikhanian National Science Laboratory, Alikhanyan Str. Build. 2, 0036 Yerevan, Armenia
| | - Armen Melikyan
- Institute of Applied Problems of Physics of NAS, 25, Hr. Nersessian Str., 0014 Yerevan, Armenia
| | | | - Petros Petrosyan
- Yerevan State University, 1 Alek Manukyan Str., 0025 Yerevan, Armenia
| |
Collapse
|
19
|
Tukur F, Tukur P, Hunyadi Murph SE, Wei J. Advancements in mercury detection using surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs): a review. NANOSCALE 2024; 16:11384-11410. [PMID: 38868998 DOI: 10.1039/d4nr00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Mercury (Hg) contamination remains a major environmental concern primarily due to its presence at trace levels, making monitoring the concentration of Hg challenging. Sensitivity and selectivity are significant challenges in the development of mercury sensors. Surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs) are two distinct analytical methods developed and employed for mercury detection. In this review, we provide an overview of the key aspects of SERS and IIP methodologies, focusing on the recent advances in sensitivity and selectivity for mercury detection. By examining the critical parameters and challenges commonly encountered in this area of research, as reported in the literature, we present a set of recommendations. These recommendations cover solid and colloidal SERS substrates, appropriate Raman reporter/probe molecules, and customization of IIPs for mercury sensing and removal. Furthermore, we provide a perspective on the potential integration of SERS with IIPs to achieve enhanced sensitivity and selectivity in mercury detection. Our aim is to foster the establishment of a SERS-IIP hybrid method as a robust analytical tool for mercury detection across diverse fields.
Collapse
Affiliation(s)
- Frank Tukur
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| | - Panesun Tukur
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| | - Simona E Hunyadi Murph
- Savannah River National Laboratory (SRNL), Aiken, SC, 29808, USA.
- University of Georgia (UGA), Athens, GA, 30602, USA
| | - Jianjun Wei
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| |
Collapse
|
20
|
Buravets V, Hosek F, Burtsev V, Miliutina E, Maixner J, Lapcak L, Bajtosova L, Cieslar M, Procházka M, Minar J, Kolska Z, Svorcik V, Lyutakov O. Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS 2 Vapor. Inorg Chem 2024; 63:8215-8221. [PMID: 38655681 PMCID: PMC11080058 DOI: 10.1021/acs.inorgchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Frantisek Hosek
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vasilii Burtsev
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Elena Miliutina
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Maixner
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Ladislav Lapcak
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Lucia Bajtosova
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Miroslav Cieslar
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Michal Procházka
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Jan Minar
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Zdenka Kolska
- CENAB,
Faculty of Science, J. E. Purkyne University, Usti nad Labem 40096, Czech Republic
| | - Vaclav Svorcik
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
21
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
22
|
Uthappa UT, Nehra M, Kumar R, Dilbaghi N, Marrazza G, Kaushik A, Kumar S. Trends and prospects of 2-D tungsten disulphide (WS 2) hybrid nanosystems for environmental and biomedical applications. Adv Colloid Interface Sci 2023; 322:103024. [PMID: 37952364 DOI: 10.1016/j.cis.2023.103024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Recently, 2D layered transition metal dichalcogenides (TMDCs) with their ultrathin sheet nanostructure and diversified electronic structure have drawn attention for various advanced applications to achieve high-performance parameters. Unique 2D TMDCs mainly comprise transition metal and chalcogen element where chalcogen element layers sandwich the transition metal element layer. In such a case, various properties can be enhanced and controlled depending on the targeted application. Among manipulative 2D TMDCs, tungsten disulphide (WS2) is one of the emerging nano-system due to its fascinating properties in terms of direct band gap, higher mobility, strong photoluminescence, good thermal stability, and strong magnetic field interaction. The advancement in characterization techniques, especially scattering techniques, can help in study of opto-electronic properties of 2D TMDCs along with determination of layer variations and investigation of defect. In this review, the fabrication and applications are well summarized to optimize an appropriate WS2-TMDCs assembly according to focused field of research. Here, the scientific investigations on 2D WS2 are studied in terms of its structure, role of scattering techniques to study its properties, and synthesis routes followed by its potential applications for environmental remediation (e.g., photocatalytic degradation of pollutants, gas sensing, and wastewater treatment) and biomedical domain (e.g., drug delivery, photothermal therapy, biomedical imaging, and biosensing). Further, a special emphasis is given to the significance of 2D WS2 as a substrate for surface-enhanced Raman scattering (SERS). The discussion is further extended to commercial and industrial aspects, keeping in view major research gaps in existing research studies.
Collapse
Affiliation(s)
- U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA; United State, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
23
|
Cheng X, Yang X, Tu Z, Rong Z, Wang C, Wang S. Graphene oxide-based colorimetric/fluorescence dual-mode immunochromatography assay for simultaneous ultrasensitive detection of respiratory virus and bacteria in complex samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132192. [PMID: 37541116 DOI: 10.1016/j.jhazmat.2023.132192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
A point-of-care testing biosensor that supports direct, sensitive, and simultaneous identification of bacteria and virus is still lacking. In this study, an ultrasensitive immunochromatography assay (ICA) with colorimetric/fluorescence dual-signal output was proposed for flexible and accurate detection of respiratory virus and bacteria in complex samples. Colorimetric AuNPs of 16 nm and two layers of quantum dots (QDs) were coated onto the surface of monolayer graphene oxide (GO) layer by layer to form a multilayered dual-signal nanofilm. This material not only can generate strong colorimetric and fluorescence signals for ICA analysis but also can provide larger surface area, better stability, and superior dispersibility than conventional spherical nanomaterials. Two test lines were built onto the ICA strip to simultaneously detect common respiratory virus influenza A and respiratory bacteria Streptococcus pneumoniae. The dual-signal mode of assay greatly broadened the applied range of ICA method, in which the colorimetric mode allows for quick determination of virus/bacteria and the fluorescence mode ensures the highly sensitive and quantitative detection of target pathogens with detection limits down to 891 copies/mL and 17 cells/mL, respectively. The proposed dual-mode ICA can also be applied directly for real biological and environment samples, which suggests its great potential for field application.
Collapse
Affiliation(s)
- Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China
| | - Xingsheng Yang
- Bioinformatics Center of AMMS, Beijing 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China
| | - Zhijie Tu
- Bioinformatics Center of AMMS, Beijing 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China.
| | - Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, PR China.
| |
Collapse
|
24
|
Ke X, Chen J, Chang L, Zhou Z, Zhang W. Casting liquid PDMS on self-assembled bilayer polystyrene nanospheres to prepare a SERS substrate with two layers of nanopits for detection of p-nitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4582-4590. [PMID: 37655547 DOI: 10.1039/d3ay00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
p-Nitrophenol (PNP) is widely used in pesticides, pharmaceuticals, and dyestuffs. It is vital to detect trace PNP in the environment, because it poses significant environmental hazards due to its high toxicity. In this paper, a new method was reported for preparing a SERS substrate with excellent SERS activity by combining self-assembly techniques and flexible materials. First, the three-dimensional (3D) polystyrene (PS) photonic crystal (PC) structural master was fabricated by stacking two layers of self-assembled PS nanospheres with different diameters. Polydimethylsiloxane (PDMS) with a complementary structure to the master was obtained by casting, curing and peeling off. Finally, the PDMS-Ag substrate was fabricated by sputtering a thin Ag layer on the PDMS structure. The enhancement factor (EF) of the PDMS-Ag substrate was calculated to be 2.90 × 109 by using 4-amino thiophenol (ATP) as the probe molecule, and the limit of detection (LOD) for ATP can reach 10-11 M. And the RSD of the SERS intensity for the peak at 1078 cm-1 on the PDMS-Ag substrates from batch to batch was within 2%, indicating the high reproducibility of the as-prepared substrate. The quantitative analysis of PNP was achieved with a LOD of 10-8 M. Therefore, the PDMS-Ag substrate exhibits high sensitivity and reproducibility, and it can detect PNP in trace amounts, with great potential for detecting other contaminants.
Collapse
Affiliation(s)
- Xiurui Ke
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Jinran Chen
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wei Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| |
Collapse
|
25
|
Yu Q, Xia X, Xu C, Wang W, Zheng S, Wang C, Gu B, Wang C. Introduction of a multilayered fluorescent nanofilm into lateral flow immunoassay for ultrasensitive detection of Salmonella typhimurium in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37455653 DOI: 10.1039/d3ay00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fast and sensitive identification of foodborne bacteria in complex samples is the key to the prevention and control of microbial infections. Herein, an ultrasensitive lateral flow assay (LFIA) based on multilayered fluorescent nanofilm (GO/DQD)-guided signal amplification was developed for the rapid and quantitative determination of Salmonella typhimurium (S. typhi). The film-like GO/DQD was prepared through the electrostatic mediated layer-by-layer assembly of numerous carboxylated CdSe/ZnS quantum dots (QDs) onto an ultrathin graphene oxide (GO) nanosheet, which possessed advantages including higher QD loading, larger surface areas, superior luminescence, and better stability, than traditional spherical nanomaterials. The antibody-modified GO/DQD can effectively attach onto a target bacterial cell to form a GO/DQD-bacteria immunocomplex containing almost ten thousand QDs, thus greatly improving the detection sensitivity of LFIA. The constructed GO/DQD-LFIA biosensor achieved the rapid and sensitive detection of S. typhi in 14 min with detection limits of as low as 9 cells/mL. Moreover, compared with traditional LFIA techniques for bacteria detection, the proposed assay exhibited excellent stability and accuracy in real food samples and enormously improved sensitivity (2-3 orders of magnitude), demonstrating its great potential in the field of rapid diagnosis.
Collapse
Affiliation(s)
- Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Xuan Xia
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Changyue Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Wenqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Shuai Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
26
|
Jin J, Guo Z, Fan D, Zhao B. Spotting the driving forces for SERS of two-dimensional nanomaterials. MATERIALS HORIZONS 2023; 10:1087-1104. [PMID: 36629521 DOI: 10.1039/d2mh01241c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, two-dimensional (2D) layered nanomaterials have become promising candidates for surface-enhanced Raman scattering (SERS) substrates due to their unique characteristics of ultrathin layer structure, outstanding optical properties and good biocompatibility, significantly contributing to remarkable SERS sensitivity, stability, and compatibility. Unlike traditional SERS substrates, 2D nanomaterials possess unparalleled layer-dependent, phase transition induced and anisotropic optical properties, which as driving forces significantly promote the SERS performance and development, as well as greatly enrich the SERS substrates and provide versatile resources for SERS research. For a profound understanding of the SERS effect of 2D nanomaterials, a review concentrating on these driving forces for SERS enhancement on 2D nanomaterials is written here for the first time, which strongly emphasizes the importance and influence of these driving forces on the SERS effect of 2D nanomaterials, including their intrinsic physical and chemical properties and external influencing factors. Moreover, the essential mechanisms of these driving forces for the SERS effect are also elaborated systematically. Finally, the challenges and future perspectives of SERS substrates based on 2D nanomaterials are concluded. This review will provide guiding principles and strategies for designing highly sensitive 2D nanomaterial SERS substrates and extending their potential applications based on SERS.
Collapse
Affiliation(s)
- Jing Jin
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhinan Guo
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dianyuan Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
27
|
Li M, Wei Y, Fan X, Li G, Tang X, Xia W, Hao Q, Qiu T. VSe 2-x O x @Pd Sensor for Operando Self-Monitoring of Palladium-Catalyzed Reactions. JACS AU 2023; 3:468-475. [PMID: 36873688 PMCID: PMC9975834 DOI: 10.1021/jacsau.2c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Operando monitoring of catalytic reaction kinetics plays a key role in investigating the reaction pathways and revealing the reaction mechanisms. Surface-enhanced Raman scattering (SERS) has been demonstrated as an innovative tool in tracking molecular dynamics in heterogeneous reactions. However, the SERS performance of most catalytic metals is inadequate. In this work, we propose hybridized VSe2-x O x @Pd sensors to track the molecular dynamics in Pd-catalyzed reactions. Benefiting from metal-support interactions (MSI), the VSe2-x O x @Pd realizes strong charge transfer and enriched density of states near the Fermi level, thereby strongly intensifying the photoinduced charge transfer (PICT) to the adsorbed molecules and consequently enhancing the SERS signals. The excellent SERS performance of the VSe2-x O x @Pd offers the possibility for self-monitoring the Pd-catalyzed reaction. Taking the Suzuki-Miyaura coupling reaction as an example, operando investigations of Pd-catalyzed reactions were demonstrated on the VSe2-x O x @Pd, and the contributions from PICT resonance were illustrated by wavelength-dependent studies. Our work demonstrates the feasibility of improved SERS performance of catalytic metals by modulating the MSI and offers a valid means to investigate the mechanisms of Pd-catalyzed reactions based on VSe2-x O x @Pd sensors.
Collapse
Affiliation(s)
| | | | - Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Tang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Weiqiao Xia
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
28
|
Li M, Zhou Y, Tang X, Zhang H, Wang S, Nie A, Fan X, Cheng Y, Qiu T. Monolayer Iron Oxychloride with a Resonant Band Structure for Ultrasensitive Molecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10166-10174. [PMID: 36753533 DOI: 10.1021/acsami.2c19841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional layered materials (2DLMs) are expected to be next-generation commercial sensors for surface-enhanced Raman scattering (SERS) sensing owing to their unique structural features and physicochemical properties. The low sensitivity and poor universality of 2DLMs are the dominant barriers toward their practical applications. Herein, we report that monolayer iron oxychloride (FeOCl) with a naturally suitable band structure is a promising candidate for ultrasensitive SERS sensing. The generally boosted Raman scattering cross section of different analyte-FeOCl systems benefits from the resonant photoinduced charge transfer processes and strong ground-state interactions. In addition, the strong adsorption ability of monolayer FeOCl is crucial for rapid detection in practical applications, which is proven to be much better than those of conventional SERS sensors. Consequently, monolayer FeOCl enables diverse SERS applications, including multicomponent analysis, chemical reaction monitoring, and indirect ion sensing.
Collapse
Affiliation(s)
- Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yu Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Tang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Hao Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shaolong Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
29
|
Jebakumari KAE, Murugasenapathi NK, Palanisamy T. Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review. BIOSENSORS 2023; 13:102. [PMID: 36671937 PMCID: PMC9855472 DOI: 10.3390/bios13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional nanostructures (2DNS) attract tremendous interest and have emerged as potential materials for a variety of applications, including biomolecule sensing, due to their high surface-to-volume ratio, tuneable optical and electronic properties. Advancements in the engineering of 2DNS and associated technologies have opened up new opportunities. Surface-enhanced Raman scattering (SERS) is a rapid, highly sensitive, non-destructive analytical technique with exceptional signal amplification potential. Several structurally and chemically engineered 2DNS with added advantages (e.g., π-π* interaction), over plasmonic SERS substrates, have been developed specifically towards biomolecule sensing in a complex matrix, such as biological fluids. This review focuses on the recent developments of 2DNS-SERS substrates for biomolecule sensor applications. The recent advancements in engineered 2DNS, particularly for SERS substrates, have been systematically surveyed. In SERS substrates, 2DNS are used as either a standalone signal enhancer or as support for the dispersion of plasmonic nanostructures. The current challenges and future opportunities in this synergetic combination have also been discussed. Given the prospects in the design and preparation of newer 2DNS, this review can give a critical view on the current status, challenges and opportunities to extrapolate their applications in biomolecule detection.
Collapse
Affiliation(s)
- K. A. Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - N. K. Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
30
|
Xue X, Chen L, Zhao C, Qiao Y, Wang J, Shi J, Lin Y, Chang L. Tailored FTO/Ag/ZIF-8 structure as SERS substrate for ultrasensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121693. [PMID: 35917613 DOI: 10.1016/j.saa.2022.121693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a series of F-doped SnO2/Ag/zeolite imidazole framework (FTO/Ag/ZIF-8) sandwich structure have been successfully fabricated via a magnetic sputtering method and serve as surface-enhanced Raman scattering (SERS) substrate. The magnetic sputtering time of Ag was adjusted to obtain the optimal SERS substrate. The commonly used 4-mercaptobenzoic acid (4-MBA) molecules was selected for the SERS experiment. When the sputtering time of Ag nanoparticles (NPs) was 120 s, the FTO/Ag/ZIF-8 substrate showed the maximum SERS performance. In the system, the electromagnetic mechanism (EM) and charge-transfer (CT) enhancement mechanism have synergistic effect on the SERS phenomenon. Ag NPs was used to generate electromagnetic hot spots, which was beneficial to the EM mechanism. ZIF-8 could adsorb and capture more 4-MBA probe molecules to the hotspots. At the same time, CT happened between Ag, ZIF-8, and 4-MBA probe molecules, which was attribute to the CM mechanism. The enhancement factor (EF) of the composite SERS substrate was as high as 7.67 × 106. The detection limit of the substrate can reach 10-9 M of 4-MBA probe molecules. Moreover, the SERS templates showed good stability, the SERS signals almost unchanged after naturally kept for 6 months. Besides, due to the high sensitivity and good stability of the substrates, this work might broaden the potential practical application of SERS.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Jing Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yanan Lin
- Jilin No. 1 Middle School, 132022 Jilin, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|
31
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Wang W, Yang X, Rong Z, Tu Z, Zhang X, Gu B, Wang C, Wang S. Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses. NANO RESEARCH 2022; 16:3063-3073. [PMID: 36312892 PMCID: PMC9589541 DOI: 10.1007/s12274-022-5043-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED A lateral flow immunoassay (LFA) biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic. Here, we propose a multiplex LFA method for the on-site, rapid, and highly sensitive screening of multiple respiratory viruses, using a multilayered film-like fluorescent tag as the performance enhancement and signal amplification tool. This film-like three-dimensional (3D) tag was prepared through the layer-by-layer assembly of highly photostable CdSe@ZnS-COOH quantum dots (QDs) onto the surfaces of monolayer graphene oxide nanosheets, which can provide larger reaction interfaces and specific active surface areas, higher QD loads, and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications. The constructed fluorescent LFA biosensor can simultaneously and sensitively quantify SARS-CoV-2, influenza A virus, and human adenovirus with low detection limits (8 pg/mL, 488 copies/mL, and 471 copies/mL), short assay time (15 min), good reproducibility, and high accuracy. Moreover, our proposed assay has great potential for the early diagnosis of respiratory virus infections given its robustness when validated in real saliva samples. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Section S1 Experimental section, Section S2 Calculation of the maximum number of QDs on the GO@TQD nanofilm, Section S3 Optimization of the LFA method, and Figs. S1-S17 mentioned in the main text) is available in the online version of this article at 10.1007/s12274-022-5043-6.
Collapse
Affiliation(s)
- Wenqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Xingsheng Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Zhen Rong
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Zhijie Tu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Xiaochang Zhang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000 China
| | - Chongwen Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000 China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| |
Collapse
|
33
|
Chen C, Zhang W, Duan P, Liu W, Shafi M, Hu X, Zhang C, Zhang C, Man B, Liu M. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe x nanosheets. OPTICS EXPRESS 2022; 30:37795-37814. [PMID: 36258361 DOI: 10.1364/oe.473965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Improving the photo-induced charge transfer (PICT) efficiency by adjusting the energy levels difference between adsorbed probe molecules and substrate materials is a key factor for boosting the surface enhanced Raman scattering (SERS) based on the chemical mechanism (CM). Herein, a new route to improve the SERS activity of two-dimensional (2D) selenium and tin compounds (SnSex, 1 ≤ x ≤ 2) by the hybrid phase materials is researched. The physical properties and the energy band structure of SnSex were analyzed. The enhanced SERS activity of 2D SnSex can be attribute to the coupling of the PICT resonance caused by the defect energy levels induced by Se vacancy and the molecular resonance Raman scattering (RRS). This established a relationship between the physical properties and SERS activity of 2D layered materials. The resonance probe molecule, rhodamine (R6G), which is used to detect the SERS performance of SnSex nanosheets. The enhancement factor (EF) of R6G on the optimized SnSe1.35 nanosheets can be as high as 2.6 × 106, with a detection limit of 10-10 M. The SERS result of the environmental pollution, thiram, shows that the SnSex nanosheets have a practical application in trace SERS detection, without the participation of metal particles. These results demonstrate that, through hybrid phase materials, the SERS sensitivity of 2D layered nanomaterials can be improved. It provides a kind of foreground non-metal SERS substrate in monitoring or detecting and provide a deep insight into the chemical SERS mechanism based on 2D layered materials.
Collapse
|
34
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
35
|
Rahaman M, Zahn DRT. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:333001. [PMID: 35671747 DOI: 10.1088/1361-648x/ac7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have grown fast into an extraordinary research field due to their unique physical properties compared to other semiconducting materials. The class of materials proved extremely fertile for both fundamental studies and a wide range of applications from electronics/spintronics/optoelectronics to photocatalysis and CO2reduction. 2D materials are highly confined in the out-of-plane direction and often possess very good environmental stability. Therefore, they have also become a popular material system for the manipulation of optoelectronic properties via numerous external parameters. Being a versatile characterization technique, Raman spectroscopy is used extensively to study and characterize various physical properties of 2D materials. However, weak signals and low spatial resolution hinder its application in more advanced systems where decoding local information plays an important role in advancing our understanding of these materials for nanotechnology applications. In this regard, plasmon-enhanced Raman spectroscopy has been introduced in recent time to investigate local heterogeneous information of 2D semiconductors. In this review, we summarize the recent progress of plasmon-enhanced Raman spectroscopy of 2D semiconductors. We discuss the current state-of-art and provide future perspectives on this specific branch of Raman spectroscopy applied to 2D semiconductors.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104 Pennsilvania, United States of America
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
36
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
37
|
Akkanen STM, Fernandez HA, Sun Z. Optical Modification of 2D Materials: Methods and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110152. [PMID: 35139583 DOI: 10.1002/adma.202110152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
2D materials are under extensive research due to their remarkable properties suitable for various optoelectronic, photonic, and biological applications, yet their conventional fabrication methods are typically harsh and cost-ineffective. Optical modification is demonstrated as an effective and scalable method for accurate and local in situ engineering and patterning of 2D materials in ambient conditions. This review focuses on the state of the art of optical modification of 2D materials and their applications. Perspectives for future developments in this field are also discussed, including novel laser tools, new optical modification strategies, and their emerging applications in quantum technologies and biotechnologies.
Collapse
Affiliation(s)
| | - Henry Alexander Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
38
|
Rashid MA, Muneer S, Alhamhoom Y, Islam N. Rapid Assay for the Therapeutic Drug Monitoring of Edoxaban. Biomolecules 2022; 12:biom12040590. [PMID: 35454179 PMCID: PMC9027065 DOI: 10.3390/biom12040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Edoxaban is a direct oral anticoagulant (DOAC) that has been recently indicated for the treatment of pulmonary embolism (PE) in SARS-CoV-2 infections. Due to its pharmacokinetic variability and a narrow therapeutic index, the safe administration of the drug requires its therapeutic drug monitoring (TDM) in patients receiving the treatment. In this work, we present a label-free method for the TDM of edoxaban by surface enhanced Raman spectroscopy (SERS). The new method utilises the thiol chemistry of the drug to chemisorb its molecules onto a highly sensitive SERS substrate. This leads to the formation of efficient hotspots and a strong signal enhancement of the drug Raman bands, thus negating the need for a Raman reporter for its SERS quantification. The standard samples were run with a concentration range of 1.4 × 10−4 M to 10−12 M using a mobile phase comprising of methanol/acetonitrile (85:15 v/v) at 291 nm followed by the good linearity of R2 = 0.997. The lowest limit of quantification (LOQ) by the SERS method was experimentally determined to be 10−12 M, whereas LOQ for HPLC-UV was 4.5 × 10−7 M, respectively. The new method was used directly and in a simple HPLC-SERS assembly to detect the drug in aqueous solutions and in spiked human blood plasma down to 1 pM. Therefore, the SERS method has strong potential for the rapid screening of the drug at pathology labs and points of care.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
- Correspondence:
| | - Saiqa Muneer
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Nazrul Islam
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
39
|
Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens Bioelectron 2022; 202:113995. [DOI: 10.1016/j.bios.2022.113995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
|
40
|
Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X. Defect-Rich Monolayer MoS 2 as a Universally Enhanced Substrate for Surface-Enhanced Raman Scattering. NANOMATERIALS 2022; 12:nano12060896. [PMID: 35335709 PMCID: PMC8953205 DOI: 10.3390/nano12060896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023]
Abstract
Monolayer 2H-MoS2 has been widely noticed as a typical transition metal dichalcogenides (TMDC) for surface-enhanced Raman scattering (SERS). However, monolayer MoS2 is limited to a narrow range of applications due to poor detection sensitivity caused by the combination of a lower density of states (DOS) near the Fermi energy level as well as a rich fluorescence background. Here, surfaced S and Mo atomic defects are fabricated on a monolayer MoS2 with a perfect lattice. Defects exhibit metallic properties. The presence of defects enhances the interaction between MoS2 and the detection molecule, and it increases the probability of photoinduced charge transfer (PICT), resulting in a significant improvement of Raman enhancement. Defect-containing monolayer MoS2 enables the fluorescence signal of many dyes to be effectively burst, making the SERS spectrum clearer and making the limits of detection (LODs) below 10−8 M. In conclusion, metallic defect-containing monolayer MoS2 becomes a promising and versatile substrate capable of detecting a wide range of dye molecules due to its abundant DOS and effective PICT resonance. In addition, the synergistic effect of surface defects and of the MoS2 main body presents a new perspective for plasma-free SERS based on the chemical mechanism (CM), which provides promising theoretical support for other TMDC studies.
Collapse
Affiliation(s)
- Shiyu Sun
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Ruihao Sun
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Dan Wang
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Guanliang Sun
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Xingshuang Zhang
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Hongyu Gong
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Yong Li
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Meng Gao
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
| | - Dongwei Li
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
- Correspondence: (D.L.); (G.X.); (X.L.)
| | - Guanchen Xu
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
- Correspondence: (D.L.); (G.X.); (X.L.)
| | - Xiu Liang
- Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (S.S.); (R.S.); (D.W.); (G.S.); (X.Z.); (H.G.); (Y.L.); (M.G.)
- Correspondence: (D.L.); (G.X.); (X.L.)
| |
Collapse
|
41
|
Hybrid Enhancement of Surface-Enhanced Raman Scattering Using Few-Layer MoS2 Decorated with Au Nanoparticles on Si Nanosquare Holes. NANOMATERIALS 2022; 12:nano12050786. [PMID: 35269274 PMCID: PMC8912446 DOI: 10.3390/nano12050786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
By combining the excellent biocompatibility of molybdenum disulfide (MoS2), excellent surface-enhanced Raman scattering (SERS) activity of Au nanoparticles (Au NPs), and large surface area of Si nanosquare holes (NSHs), a structure in which MoS2 is decorated with Au NPs on Si NSHs, was proposed for SERS applications. The NSH structure fabricated by e-beam lithography possessed 500 nm of squares and a depth of approximately 90 nm. Consequently, a few-layer MoS2 thin films (2–4 layers) were grown by the sulfurization of the MoO3 thin film deposited on Si NSHs. SERS measurements indicated that MoS2 decorated with Au NPs/Si NSHs provided an extremely low limit of detection (ca. 10−11 M) for R6G, with a high enhancement factor (4.54 × 109) relative to normal Raman spectroscopy. Our results revealed that a large surface area of the NSH structure would probably absorb more R6G molecules and generate more excitons through charge transfer, further leading to the improvement of the chemical mechanism (CM) effect between MoS2 and R6G. Meanwhile, the electromagnetic mechanism (EM) produced by Au NPs effectively enhances SERS signals. The mechanism of the SERS enhancement in the structure is described and discussed in detail. By combining the hybrid effects of both CM and EM to obtain a highly efficient SERS performance, MoS2 decorated with Au NPs/Si NSHs is expected to become a new type of SERS substrate for biomedical detection.
Collapse
|
42
|
Mandado M, Ramos-Berdullas N. Confinement on the optical response in h-BNCs: Towards highly efficient SERS-active 2D substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120451. [PMID: 34627018 DOI: 10.1016/j.saa.2021.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Several experimental and theoretical studies have shown that 2D hybrid structures formed by boron, nitrogen and carbon atoms (h-BNCs) possess a highly tunable linear and non-linear optical responses. Recent advances towards the controlled synthesis of these unique structures have motivated an important number of experimental and theoretical work. In this work, the confinement on the optical response induced by boron-nitride (BN) strings in h-BNC 2D structures is investigated using time-dependent density functional theory (TDDFT) and electron density response properties. The number of surrounding BN strings (NBN) necessary to "isolate" the optical modes of a carbon nanoisland (nanographene) from the remaining substrate has been characterized in two different nanoisland models: benzene and pyrene. It was found that for NBN ≥ 3 the excitation wavelengths of the optically active modes remain constant and the changes in the transition densities, the ground to excited state density differences and their associated electron deformation orbitals are negligible and strongly confined within the carbon nanoisland. Using a water molecule as model system, Raman enhancement factors of 10 [6] for the water vibrational modes are obtained when these electromagnetic "hot spots" are activated by an external electromagnetic field. The high tunability of the optical absorption bands of nanographenes through changes in size and morphology makes h-BNCs be perfect materials to construct platforms for surface enhancement Raman spectroscopy (SERS) for a wide range of laser sources.
Collapse
Affiliation(s)
- Marcos Mandado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | - Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
43
|
Song G, Cong S, Zhao Z. Defect engineering in semiconductor-based SERS. Chem Sci 2022; 13:1210-1224. [PMID: 35222907 PMCID: PMC8809400 DOI: 10.1039/d1sc05940h] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Semiconductor-based surface enhanced Raman spectroscopy (SERS) platforms take advantage of the multifaceted tunability of semiconductor materials to realize specialized sensing demands in a wide range of applications. However, until quite recently, semiconductor-based SERS materials have generally exhibited low activity compared to conventional noble metal substrates, with enhancement factors (EF) typically reaching 103, confining the study of semiconductor-based SERS to purely academic settings. In recent years, defect engineering has been proposed to effectively improve the SERS activity of semiconductor materials. Defective semiconductors can now achieve noble-metal-comparable SERS enhancement and exceedingly low, nano-molar detection concentrations towards certain molecules. The reason for such success is that defect engineering effectively harnesses the complex enhancement mechanisms behind the SERS phenomenon by purposefully tailoring many physicochemical parameters of semiconductors. In this perspective, we introduce the main defect engineering approaches used in SERS-activation, and discuss in depth the electromagnetic and chemical enhancement mechanisms (EM and CM, respectively) that are influenced by these defect engineering methods. We also introduce the applications that have been reported for defective semiconductor-based SERS platforms. With this perspective we aim to meet the imperative demand for a summary on the recent developments of SERS material design based on defect engineering of semiconductors, and highlight the attractive research and application prospects for semiconductor-based SERS.
Collapse
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Gusu Laboratory of Materials Suzhou 215123 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
| |
Collapse
|
44
|
Xue X, Chen L, Wang L, Wang C, Qiao Y, Zhao C, Wang H, Nie P, Shi J, Chang L. Facile fabrication of PS/Cu 2S/Ag sandwich structure as SERS substrate for ultra-sensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120370. [PMID: 34536887 DOI: 10.1016/j.saa.2021.120370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, a serials of PS(polystyrene)/Cu2S/Ag sandwich substrates were successfully constructed using the magnetic sputtering method by adjusting the Ag sputtering time (0 min, 2 min, 4 min, 6 min, 8 min and 10 min) and used as the surface-enhanced Raman scattering (SERS) substrates. When the Ag sputtering time was 6 min, the strongest SERS signal was observed. The optimized SERS substrate has strong SERS activity on 4-mercaptobenzoic acid (4-MBA), the minimum detection limit was 10-13 M and the enhancement factor was as high as 4.7 × 107. In addition, the SERS signals were highly reproducible with small standard deviation. The SERS enhancement mechanism of the PS/Cu2S/Ag system was attributed to the synergistic effect of the chemical mechanism and the electromagnetic enhancement mechanism. This strategy has find a new way for manufacturing SERS activity sensor with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Li Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Chunxu Wang
- College of Information & Technology, Jilin Normal University, Siping 136000, China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| |
Collapse
|
45
|
Yuan C, Fang J, de la Chapelle ML, Zhang Y, Zeng X, Huang G, Yang X, Fu W. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Zhou X, Zhao X, Gu S, Gao K, Xie F, Wang X, Tang Z. A novel sensitive ACNTs-MoO 2 SERS substrate boosted by synergistic enhancement effect. Phys Chem Chem Phys 2021; 23:20645-20653. [PMID: 34515272 DOI: 10.1039/d1cp03174k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Integrating chemical enhancement (CM) and electromagnetic enhancement (EM) into one substrate is of great significance, but as far as we know, little research has been done on this project. In this paper, the novel bead chain like acidified carbon nanotubes-MoO2 (ACNTs-M) were designed by a simple two-step hydrothermal synthesis method. Benefitting from a good adsorption capacity, chemical enhancement and surface electromagnetic field enhancement effect, ACNTs-M exhibits a stunning SERS performance. The maximum enhancement factor (EF) of 5.13 × 107 is obtained with R6G molecules on ACNTs-M. The limit of detection (LOD) of R6G is 10-10 M. In addition, ACNTs-M also exhibits SERS sensitivity of other organic dyes (CV, RhB and MB). The results of Raman signal enhancement mechanism research verified that the synergy of CM and EM is the reason for the high SERS sensitivity of ACNTs-M. We believe that our work may bring cutting edge of development of stable and highly sensitive nonmetal SERS substrates.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuo Gu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Kaiyue Gao
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Fazhi Xie
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Xiufang Wang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
47
|
Ahn JG, Yeo G, Han Y, Park Y, Hong JW, Lim H. Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au-Au Nanogap. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42176-42182. [PMID: 34435778 DOI: 10.1021/acsami.1c10919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanogaps between Au nanoparticles and Au substrates are the simplest systems that generate extremely high electric fields at hotspots for surface-enhanced Raman spectroscopy (SERS). However, the electric field cancellation at the hotspots in the systems can cause the reduction of Raman signal when two metallic materials are physically contacted due to the low concentration of analytes. Here, we propose an atomically thin hexagonal boron nitride (h-BN) shielding layer for Au substrates, which can be used as an insulating spacer to prevent electrical shorts at nanogaps. Experimental investigation of the SERS effect combined with theoretical studies by finite-difference time-domain simulations demonstrate that the Au NP/h-BN/Au substrate structure has excellent performance in electrical short prevention, thus facilitating ultrasensitive Raman detection. The outstanding chemical and thermal stability of h-BN allow the efficient recycling of the SERS substrate by protecting the Au surface during the removal of Au NPs and molecular analytes by chemical and thermal processes.
Collapse
Affiliation(s)
- Jong-Guk Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Gyeonghun Yeo
- Department of Physics, Chonnam National University (CNU), Gwangju 61186, Republic of Korea
| | - Yeji Han
- Department of Chemistry and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Younghee Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jong Wook Hong
- Department of Chemistry and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
48
|
Mugo SM, Lu W. Determination of β-Estradiol by Surface-Enhance Raman Spectroscopy (SERS) Using a Surface Imprinted Methacrylate Polymer on Nanoporous Biogenic Silica. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1932969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, Edmonton, AB, Canada
| | - Weihao Lu
- Physical Sciences Department, MacEwan University, Edmonton, AB, Canada
| |
Collapse
|
49
|
Zhu W, Feng X, Liu Z, Zhao M, He P, Yang S, Tang S, Chen D, Guo Q, Wang G, Ding G. Sensitive, Reusable, Surface-Enhanced Raman Scattering Sensors Constructed with a 3D Graphene/Si Hybrid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23081-23091. [PMID: 33957757 DOI: 10.1021/acsami.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates based on graphene and its derivatives have recently attracted attention among those interested in the detection of trace molecules; however, these substrates generally show poor uniformity, an unsatisfactory enhancement factor, and require a complex fabrication process. Herein, we design and fabricate three-dimensional (3D) graphene/silicon (3D-Gr/Si) heterojunction SERS substrates to detect various types of molecules. Notably, the detection limit of 3D-Gr/Si can reach 10-10 M for rhodamine 6G (R6G) and rhodamine B (RB), 10-7 M for crystal violet (CRV), copper(II) phthalocyanine (CuPc), and methylene blue (MB), 10-8 M for dopamine (DA), 10-6 M for bovine serum albumin (BSA), and 10-5 M for melamine (Mel), which is superior to most reported graphene-based SERS substrates. Besides, the proposed 3D-Gr/Si heterojunction SERS substrates can achieve a high uniformity with relative standard deviations (RSDs) of less than 5%. Moreover, the 3D-Gr/Si SERS substrates are reusable after washing with ethyl alcohol to remove the adsorbed molecules. These excellent SERS performances are attributed to the novel 3D structure and abundantly exposed atomically thin edges, which facilitate charge transfer between 3D-Gr and probe molecules. We believe that the 3D-Gr/Si heterojunction SERS substrates offer potential for practical applications in biochemical molecule detection and provide insight into the design of high-performance SERS substrates.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Xiaoqiang Feng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Zhiduo Liu
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Menghan Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Peng He
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Guqiao Ding
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
50
|
Large Area Few-Layer Hexagonal Boron Nitride as a Raman Enhancement Material. NANOMATERIALS 2021; 11:nano11030622. [PMID: 33801504 PMCID: PMC7998565 DOI: 10.3390/nano11030622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Increasingly, two-dimensional (2D) materials are being investigated for their potential use as surface-enhanced Raman spectroscopy (SERS) active substrates. Hexagonal Boron Nitride (hBN), a layered 2D material analogous to graphene, is mostly used as a passivation layer/dielectric substrate for nanoelectronics application. We have investigated the SERS activity of few-layer hBN film synthesized on copper foil using atmospheric pressure chemical vapor deposition. We have drop casted the probe molecules onto the hBN substrate and measured the enhancement effect due to the substrate using a 532 nm excitation laser. We observed an enhancement of ≈103 for malachite green and ≈104 for methylene blue and rhodamine 6G dyes, respectively. The observed enhancement factors are consistent with the theoretically calculated interaction energies of MB > R6G > MG with a single layer of hBN. We also observed that the enhancement is independent of the film thickness and surface morphology. We demonstrate that the hBN films are highly stable, and even for older hBN films prepared 7 months earlier, we were able to achieve similar enhancements when compared to freshly prepared films. Our detailed results and analyses demonstrate the versatility and durability of hBN films for SERS applications.
Collapse
|