1
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Decreased frequency of Th22 cells and IL-22 cytokine in kidney transplant patients with active cytomegalovirus infection. BMC Immunol 2023; 24:18. [PMID: 37403036 PMCID: PMC10318775 DOI: 10.1186/s12865-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The immunity of CD4+ T cell subsets against human cytomegalovirus (HCMV) is considerable due to their essential role in controlling the infection in transplant individuals. Previously explained CD4+ subsets such as T helper (Th) 1 have been proven to have a protective role against HCMV infection, while the role of the recently identified Th22 subset has not been described yet. Here, the frequency changes of Th22 cells and the IL-22 cytokine production were investigated in kidney transplant recipients with and without HCMV infection. METHODS Twenty kidney transplant patients and ten healthy controls were enrolled in this study. Patients were categorized into HCMV + and HCMV- groups based on the HCMV DNA real-time PCR results. After isolating CD4+ T cells from PBMCs, the phenotype (CCR6+CCR4+CCR10+) and cytokine profile (IFN-γ-IL-17-IL-22+) of Th22 cells were analyzed by flow cytometry. The gene expression of Aryl Hydrocarbon Receptor (AHR) transcription factor was analyzed by real-time PCR. RESULTS The phenotype frequency of these cells was lower in recipients with infection than in those without infection and healthy controls (1.88 ± 0.51 vs. 4.31 ± 1.05; P = 0.03 and 4.22 ± 0.72; P = 0.01, respectively). A lower Th22 cytokine profile was observed in patients with infection than in the two other groups (0.18 ± 0.03 vs. 0.20 ± 0.03; P = 0.96 and 0.33 ± 0.05; P = 0.04, respectively). AHR expression was also lower in patients with active infection. CONCLUSIONS Overall, this study for the first time suggests that the reduced levels of Th22 subset and IL-22 cytokine in patients with active HCMV infection might indicate the protective role of these cells against HCMV.
Collapse
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Skipper CP, Hullsiek KH, Cresswell FV, Tadeo KK, Okirwoth M, Blackstad M, Hernandez-Alvarado N, Fernández-Alarcón C, Walukaga S, Martyn E, Ellis J, Ssebambulidde K, Tugume L, Nuwagira E, Rhein J, Meya DB, Boulware DR, Schleiss MR. Cytomegalovirus viremia as a risk factor for mortality in HIV-associated cryptococcal and tuberculous meningitis. Int J Infect Dis 2022; 122:785-792. [PMID: 35843498 PMCID: PMC9653033 DOI: 10.1016/j.ijid.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES CMV viremia is associated with increased mortality in persons with HIV. We previously demonstrated that CMV viremia was a risk factor for 10-week mortality in antiretroviral therapy (ART)-naïve persons with cryptococcal meningitis. We investigated whether similar observations existed over a broader cohort of patients with HIV-associated meningitis at 18 weeks. METHODS We prospectively enrolled Ugandans with cryptococcal or TB meningitis into clinical trials in 2015-2019. We quantified CMV DNA concentrations from stored baseline plasma or serum samples from 340 participants. We compared 18-week survival between those with and without CMV viremia. RESULTS We included 308 persons with cryptococcal meningitis and 32 with TB meningitis, of whom 121 (36%) had detectable CMV DNA. Baseline CD4+ T-cell counts (14 vs. 24 cells/µl; P = 0.07) and antiretroviral exposure (47% vs. 45%; P = 0.68) did not differ between persons with and without CMV viremia. The 18-week mortality was 50% (61/121) in those with CMV viremia versus 34% (74/219) in those without (P = 0.003). Detectable CMV viremia (adjusted hazard ratio [aHR] 1.60; 95% confidence interval [CI] 1.13-2.25; P = 0.008) and greater viral load (aHR 1.22 per log10 IU/ml increase; 95% CI 1.09-1.35; P <0.001) were positively associated with all-cause mortality through 18 weeks. CONCLUSION CMV viremia at baseline was associated with a higher risk of death at 18 weeks among persons with HIV-associated cryptococcal or TB meningitis, and the risk increased as the CMV viral load increased. Further investigation is warranted to determine whether CMV is a modifiable risk contributing to deaths in HIV-associated meningitis or is a biomarker of immune dysfunction.
Collapse
Affiliation(s)
- Caleb P Skipper
- University of Minnesota Medical School, Minneapolis, USA; Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | | | - Fiona V Cresswell
- Infectious Diseases Institute, Makerere University, Kampala, Uganda; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Kiiza K Tadeo
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Michael Okirwoth
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Mark Blackstad
- University of Minnesota Medical School, Minneapolis, USA
| | | | | | | | - Emily Martyn
- Infectious Diseases Institute, Makerere University, Kampala, Uganda; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jayne Ellis
- Infectious Diseases Institute, Makerere University, Kampala, Uganda; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Edwin Nuwagira
- Infectious Diseases Institute, Makerere University, Kampala, Uganda; Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joshua Rhein
- University of Minnesota Medical School, Minneapolis, USA
| | - David B Meya
- University of Minnesota Medical School, Minneapolis, USA; Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
3
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Risk assessment of Human cytomegalovirus infection in solid organ transplantation: Insight into
CD4
+
T cell subsets. Scand J Immunol 2022. [DOI: 10.1111/sji.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch Islamic Azad University Tehran Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
4
|
Deml L, Hüber CM, Barabas S, Spindler T, Cozzi E, Grossi P. Stimulatory Effect of CMV Immunoglobulin on Innate Immunity and on the Immunogenicity of CMV Antigens. Transplant Direct 2021; 7:e781. [PMID: 34712781 PMCID: PMC8547921 DOI: 10.1097/txd.0000000000001236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background. Cytomegalovirus (CMV) immunoglobulin (CMVIG) is used for the prophylaxis of CMV infection after transplantation. Beyond providing passive CMV-specific immunity, CMVIG exerts enhancing and suppressive immunomodulatory functions. Although the anti-inflammatory activities of CMVIG have been extensively documented, its immunostimulatory activities remain poorly characterized. Methods. This exploratory study analyzed the capacity of CMVIG to modulate cell-mediated innate and adaptive immunities in vitro on freshly isolated peripheral blood mononuclear cells (PBMCs) of CMV-seropositive and -seronegative healthy individuals, using interferon-γ (IFN-γ) enzyme-linked immunospot and intracellular cytokine staining assays. Results. We showed that CMVIG treatment increases the number of IFN-γ–secreting PBMCs of both CMV-seronegative and -seropositive individuals, indicating a global stimulatory effect on innate immune cells. Indeed, CMVIG significantly increased the frequency of natural killer cells producing the T helper cell 1–type cytokines tumor necrosis factor and IFN-γ. This was associated with the induction of interleukin-12–expressing monocytes and the activation of cluster of differentiation (CD) 4+ and CD8+ T cells, as measured by the expression of tumor necrosis factor and IFN-γ. Interestingly, stimulation of PBMCs from CMV-seropositive subjects with CMVIG-opsonized CMV antigens (phosphoprotein 65, CMV lysate) enhanced CD4+ and CD8+ T-cell activation, suggesting that CMVIG promotes the immunogenicity of CMV antigens. Conclusions. Our data demonstrate that CMVIG can stimulate effector cells of both innate and adaptive immunities and promote the immunogenicity of CMV antigens. These immunostimulatory properties might contribute to the protective effect against CMV infection mediated by CMVIG.
Collapse
Affiliation(s)
- Ludwig Deml
- Lophius Biosciences GmbH, Regensburg, Germany
| | | | | | | | - Emanuele Cozzi
- Transplant Immunology Unit, University of Padua, Padova, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| |
Collapse
|
5
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
6
|
Braun C, Schlaweck S, Daecke SN, Brossart P, Heine A. The PI3Kδ inhibitor idelalisib impairs the function of human dendritic cells. Cancer Immunol Immunother 2021; 70:3693-3700. [PMID: 34173009 PMCID: PMC8571156 DOI: 10.1007/s00262-021-02988-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
The PI3Kδ-inhibitor Idelalisib is approved for the treatment of Non-Hodgkin lymphoma. However, its use has been decreased within the last years due to deleterious infections such as cytomegalovirus and pneumocystis jirovecii. Here, we have investigated the effect of Idelalisib on human monocyte-derived dendritic cells (DCs) as important players in the induction of immune responses. We found that Idelalisib-treated DCs displayed impaired T cell stimulatory function. PI3Kδ inhibition during differentiation resulted in decreased Interleukin-12, Interleukin-13 and TNFα production by DCs after lipopolysaccharide stimulation. Moreover, DCs showed decreased expression of the activation marker CD83 after Idelalisib treatment. Further, in line with this was the failure of Idelalisib-treated DCs to properly induce allogeneic T cells in a dose-dependent manner. Finally, activation of the NFκB pathway was also ablated in Idelalisib-treated DCs. Our results implicate that severe infectious complications may not only result from direct PI3Kδ-inhibition in T cells, but also from impaired DC function in Idelalisib-treated patients. Here, we provide new insight into the pathogenesis of Idelalisib-associated infectious complications. Our study may further provide a rationale for the use of Idelalisib as a novel therapeutic option in inflammatory diseases.
Collapse
Affiliation(s)
- Christiane Braun
- Medical Clinic III, Clinic for Oncology, Hematology, Immuno-Oncology and Rheumatology/Clinical Immunology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sebastian Schlaweck
- Medical Clinic III, Clinic for Oncology, Hematology, Immuno-Oncology and Rheumatology/Clinical Immunology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.,Faculty of Medicine, Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), University Hospital of Bonn, 53127, Bonn, Germany
| | - Solveig Nora Daecke
- Medical Clinic III, Clinic for Oncology, Hematology, Immuno-Oncology and Rheumatology/Clinical Immunology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III, Clinic for Oncology, Hematology, Immuno-Oncology and Rheumatology/Clinical Immunology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III, Clinic for Oncology, Hematology, Immuno-Oncology and Rheumatology/Clinical Immunology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Skipper C, Schleiss MR, Bangdiwala AS, Hernandez-Alvarado N, Taseera K, Nabeta HW, Musubire AK, Lofgren SM, Wiesner DL, Rhein J, Rajasingham R, Schutz C, Meintjes G, Muzoora C, Meya DB, Boulware DR. Cytomegalovirus Viremia Associated With Increased Mortality in Cryptococcal Meningitis in Sub-Saharan Africa. Clin Infect Dis 2020; 71:525-531. [PMID: 31504335 PMCID: PMC7384323 DOI: 10.1093/cid/ciz864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cryptococcal meningitis and tuberculosis are both important causes of death in persons with advanced human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Cytomegalovirus (CMV) viremia may be associated with increased mortality in persons living with HIV who have tuberculosis. It is unknown whether concurrent CMV viremia is associated with mortality in other AIDS-related opportunistic infections. METHODS We prospectively enrolled Ugandans living with HIV who had cryptococcal meningitis from 2010-2012. Subsequently, we analyzed stored baseline plasma samples from 111 subjects for CMV DNA. We compared 10-week survival rates among those with and without CMV viremia. RESULTS Of 111 participants, 52% (58/111) had detectable CMV DNA (median plasma viral load 498 IU/mL, interquartile range [IQR] 259-2390). All samples tested were positive on immunoglobin G serology. The median CD4+ T cell count was 19 cells/µL (IQR 9-70) and did not differ by the presence of CMV viremia (P = .47). The 10-week mortality rates were 40% (23/58) in those with CMV viremia and 21% (11/53) in those without CMV viremia (hazard ratio 2.19, 95% confidence interval [CI] 1.07-4.49; P = .03), which remained significant after a multivariate adjustment for known risk factors of mortality (adjusted hazard ratio 3.25, 95% CI 1.49-7.10; P = .003). Serum and cerebrospinal fluid cytokine levels were generally similar and cryptococcal antigen-specific immune stimulation responses did not differ between groups. CONCLUSIONS Half of persons with advanced AIDS and cryptococcal meningitis had detectable CMV viremia. CMV viremia was associated with an over 2-fold higher mortality rate. It remains unclear whether CMV viremia in severely immunocompromised persons with cryptococcal meningitis contributes directly to this mortality or may reflect an underlying immune dysfunction (ie, cause vs effect). CLINICAL TRIALS REGISTRATION NCT01075152.
Collapse
Affiliation(s)
- Caleb Skipper
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Mark R Schleiss
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | - Kabanda Taseera
- Department of Medicine, Mbarara University of Science and Technology, Uganda
| | - Henry W Nabeta
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Abdu K Musubire
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Sarah M Lofgren
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Darin L Wiesner
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Joshua Rhein
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | | | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, South Africa
| | - Conrad Muzoora
- Department of Medicine, Mbarara University of Science and Technology, Uganda
| | - David B Meya
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Poole E, Neves TC, Oliveira MT, Sinclair J, da Silva MCC. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front Cell Infect Microbiol 2020; 10:245. [PMID: 32582563 PMCID: PMC7296156 DOI: 10.3389/fcimb.2020.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Human Cytomegalovirus (HCMV) can cause a variety of health disorders that can lead to death in immunocompromised individuals and neonates. The HCMV lifecycle comprises both a lytic (productive) and a latent (non-productive) phase. HCMV lytic infection occurs in a wide range of terminally differentiated cell types. HCMV latency has been less well-studied, but one characterized site of latency is in precursor cells of the myeloid lineage. All known viral genes are expressed during a lytic infection and a subset of these are also transcribed during latency. The UL111A gene which encodes the viral IL-10, a homolog of the human IL-10, is one of these genes. During infection, different transcript isoforms of UL111A are generated by alternative splicing. The most studied of the UL111A isoforms are cmvIL-10 (also termed the "A" transcript) and LAcmvIL-10 (also termed the "B" transcript), the latter being a well-characterized latency associated transcript. Both isoforms can downregulate MHC class II, however they differ in a number of other immunomodulatory properties, such as the ability to bind the IL10 receptor and induce signaling through STAT3. There are also a number of other isoforms which have been identified which are expressed by differential splicing during lytic infection termed C, D, E, F, and G, although these have been less extensively studied. HCMV uses the viral IL-10 proteins to manipulate the immune system during lytic and latent phases of infection. In this review, we will discuss the literature on the viral IL-10 transcripts identified to date, their encoded proteins and the structures of these proteins as well as the functional properties of all the different isoforms of viral IL-10.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tainan Cerqueira Neves
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Martha Trindade Oliveira
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Zhai S, Sun B, Zhang Y, Zhao L, Zhang L. IL-17 aggravates renal injury by promoting podocyte injury in children with primary nephrotic syndrome. Exp Ther Med 2020; 20:409-417. [PMID: 32537005 PMCID: PMC7282090 DOI: 10.3892/etm.2020.8698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Primary nephrotic syndrome (PNS) is the most common chronic kidney disease in childhood, where podocyte injury is a key factor in the occurrence of kidney disease. In the present study, the expression of IL-17 in renal tissues of patients with PNS and its relationship with podocyte injury were examined. Reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and immunochemistry were used to measure the expression of IL-17 in renal biopsies of patients with ONS, including 9 patients with minimal change nephrotic syndrome (MCNS), 15 patients with mesangial proliferative glomerulonephritis (MsPGN) and 9 patients with focal segmental glomerulosclerosis (FSGS), in addition to 15 normal kidney tissues. IL-17 was found to be highly expressed in the renal tissues from patients with PNS, with the highest expression levels found in tissues from patients with FSGS and the lowest in those from MCNS. A negative correlation was observed between the levels of IL-17 mRNA and PCX mRNA in renal tissues, whereas a positive correlation between IL-17 mRNA levels and the number of urinary podocytes in patients with PNS was found. In vitro, IL-17 induced podocyte apoptosis and reduced the expression of markers associated with podocytes, including Wilm's tumor 1, nephrin, synaptopodin and podocalyxin, whilst increasing the levels of Fas, Fas ligand (FasL), active-caspase-8, active-caspase-3 and phosphorylated-p65. However, treatment with helenalin, a NF-κB inhibitor, decreased p65 phosphorylation, attenuated IL-17-induced podocyte apoptosis and suppressed the IL-17-activated Fas/FasL/caspase-8/caspase-3 apoptotic pathway. Taken together, these observations suggest that IL-17 was highly expressed in renal tissues from patients with PNS, where it induced podocyte apoptosis by activating the Fas/FasL/caspase-8/caspase-3 apoptotic pathway in a NF-κB-dependent manner.
Collapse
Affiliation(s)
- Shubo Zhai
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baichao Sun
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lengyue Zhao
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Al Mana H, Yassine HM, Younes NN, Al-Mohannadi A, Al-Sadeq DW, Alhababi D, Nasser EA, Nasrallah GK. The Current Status of Cytomegalovirus (CMV) Prevalence in the MENA Region: A Systematic Review. Pathogens 2019; 8:213. [PMID: 31683687 PMCID: PMC6963600 DOI: 10.3390/pathogens8040213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus worldwide. According to the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO), CMV infects people of all ages, and by the age of five, approximately one-third of children in the United States are infected. Although the infection is generally asymptomatic, it can cause severe disease in immunocompromised patients, transplant and transfusion recipients, as well as newborn neonates. The objective of this study is to systematically review published literature on CMV in the MENA region to estimate its incidence in the region and describe its epidemiological and clinical significance. The literature was searched through four scientific databases: PubMed, Scopus, Science Direct, and Web of Science. A total of 72 studies from 11 countries satisfied the inclusion criteria, covering a period from 1988-2019. The CMV IgG seroprevalence ranged from 8.7%-99.2% (SD = 38.95%). CMV incidence in these countries ranged between 1.22% and 77% in transplant and transfusion recipients, with an increase in incidence with advanced age. However, the incidence rate was unclear for congenital CMV due to the variability of the reporting. This review highlights the need for more robust and well-designed studies to better estimate CMV incidence in the MENA region, standardize diagnostic criteria, and consider prophylactic and pre-emptive treatments to limit the morbidity and mortality of the disease.
Collapse
Affiliation(s)
- Hassan Al Mana
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.
| | - Hadi M Yassine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.
| | - Nadin N Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
| | - Duaa W Al-Sadeq
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
| | - Elham A Nasser
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, PO Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.
| |
Collapse
|
11
|
Biraro IA, Egesa M, Toulza F, Levin J, Cose S, Joloba M, Smith S, Dockrell HM, Katamba A, Elliott AM. Impact of co-infections and BCG immunisation on immune responses among household contacts of tuberculosis patients in a Ugandan cohort. PLoS One 2014; 9:e111517. [PMID: 25372043 PMCID: PMC4221037 DOI: 10.1371/journal.pone.0111517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/30/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tuberculosis incidence in resource poor countries remains high. We hypothesized that immune modulating co-infections such as helminths, malaria, and HIV increase susceptibility to latent tuberculosis infection (LTBI), thereby contributing to maintaining the tuberculosis epidemic. METHODS Adults with sputum-positive tuberculosis (index cases) and their eligible household contacts (HHCs) were recruited to a cohort study between May 2011 and January 2012. HHCs were investigated for helminths, malaria, and HIV at enrolment. HHCs were tested using the QuantiFERON-TB Gold In-Tube (QFN) assay at enrolment and six months later. Overnight whole blood culture supernatants from baseline QFN assays were analyzed for cytokine responses using an 11-plex Luminex assay. Associations between outcomes (LTBI or cytokine responses) and exposures (co-infections and other risk factors) were examined using multivariable logistic and linear regression models. RESULTS We enrolled 101 index cases and 291 HHCs. Among HHCs, baseline prevalence of helminths was 9% (25/291), malaria 16% (47/291), HIV 6% (16/291), and LTBI 65% (179/277). Adjusting for other risk factors and household clustering, there was no association between LTBI and any co-infection at baseline or at six months: adjusted odds ratio (95% confidence interval (CI); p-value) at baseline for any helminth, 1.01 (0.39-2.66; 0.96); hookworm, 2.81 (0.56-14.14; 0.20); malaria, 1.06 (0.48-2.35; 0.87); HIV, 0.74 (0.22-2.47; 0.63). HHCs with LTBI had elevated cytokine responses to tuberculosis antigens but co-infections had little effect on cytokine responses. Exploring other risk factors, Th1 cytokines among LTBI-positive HHCs with BCG scars were greatly reduced compared to those without scars: (adjusted geometric mean ratio) IFNγ 0.20 (0.09-0.42), <0.0001; IL-2 0.34 (0.20-0.59), <0.0001; and TNFα 0.36 (0.16-0.79), 0.01. CONCLUSIONS We found no evidence that co-infections increase the risk of LTBI, or influence the cytokine response profile among those with LTBI. Prior BCG exposure may reduce Th1 cytokine responses in LTBI.
Collapse
Affiliation(s)
- Irene A. Biraro
- College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Moses Egesa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Frederic Toulza
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan Levin
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Moses Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Steven Smith
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Achilles Katamba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Comparison of the effect of standard and novel immunosuppressive drugs on CMV-specific T-cell cytokine profiling. Transplantation 2013; 95:448-55. [PMID: 23274966 DOI: 10.1097/tp.0b013e318276a19f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data on how different immunosuppressive drugs affect cytomegalovirus (CMV)-specific T-cell responses may help guide more rational modification of immunosuppression in patients with CMV replication. We assessed the in vitro effects of individual standard and novel immunosuppressive drugs on a broad range of CMV-specific T-cell responses. METHODS Peripheral blood mononuclear cells from healthy CMV-seropositive donors were preincubated with serial dilutions of tacrolimus, mycophenolate (MPA), sirolimus, tofacitinib, and belatacept. CMV-pp65 or CMV-pp72 peptide pools were used for stimulation. CMV-specific cytokine (Th1 and Th2) and chemokine responses were determined (a total of 5400 measurements). P<0.01 was set as significant. RESULTS After CMV stimulation, dose-dependent suppression of Th1, Th2, and chemokines was seen, but significant differences between drugs were present. For example, tacrolimus was more potent in inhibiting CMV-specific Th1 cytokines versus Th2, whereas MPA preferentially inhibited Th2 cytokines. In a comparison of the relative potency of each drug at different dosing ranges, tacrolimus had the strongest Th1 inhibitory effect (median inhibition of interferon-γ at 97.5%; P=0.004-0.008) followed by sirolimus (median inhibition at 82.4%). The remaining agents (MPA, belatacept, and tofacitinib) had less apparent dose-dependent effects on interferon-γ (belatacept median inhibition at 21.5%; P=0.004 vs. tacrolimus). CONCLUSION Immunosuppression-specific and dose-dependent reductions in CMV-specific cytokine release were observed with significant differences in Th1 versus Th2 profiles and in relative potency of the drugs.
Collapse
|
13
|
Dirks J, Egli A, Sester U, Sester M, Hirsch HH. Blockade of programmed death receptor-1 signaling restores expression of mostly proinflammatory cytokines in anergic cytomegalovirus-specific T cells. Transpl Infect Dis 2012; 15:79-89. [PMID: 23176118 DOI: 10.1111/tid.12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/16/2012] [Accepted: 07/24/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Programmed death receptor-1 (PD-1) compromises cytomegalovirus (CMV)-specific T-cell responses and has been linked to CMV viremia after transplantation. An impaired functional and proliferative capacity of PD-1-positive CMV-specific T cells may be reversed by the antibody-mediated blockade of PD-1 signaling. However, knowledge is limited on changes in "cytokinome" expression profiles associated with reversal of functional exhaustion. METHODS The "cytokinome" was analyzed by 27-plex Luminex technology comparing renal transplant recipients with low (n = 5) and high (n = 5) PD-1 expression on CMV-specific T cells. The effect of blocking PD-1 by PD-ligand (PD-L) antibodies on restoration of cytokine expression was examined. RESULTS CMV-specific cytokine release and proliferation was lower in patients with high PD-1 expression on CMV-specific T cells. Antibody-mediated blockade of PD-L in CMV-stimulated samples restored expression levels of interleukin (IL)-1β, IL-2, IL-6, IL-9, IL-10, granulocyte colony-stimulating factor, interferon-γ, macrophage inflammatory protein-1α, and tumor necrosis factor-α. By contrast, no profound effect was observed for controls or patients with low PD-1 expression, or in staphylococcal enterotoxin B-stimulated cells. CONCLUSION Taken together, this pilot study provides evidence that a high PD-1 expression on CMV-specific T cells actively impairs proliferation and "cytokinome" responses in an antigen-specific manner. Importantly, blockade of PD-L restores CMV-specific T-cell proliferation and expression of a panel of different proinflammatory and/or type 1 cytokines, suggesting a common but as yet unknown regulatory principle. We conclude that PD-1 exhaustion is reversible and potentially amenable to therapeutic ex vivo and possibly in vivo manipulation. However, detailed knowledge of the differential effects on the "cytokinome" will be necessary to increase the safety and the efficacy of such manipulations.
Collapse
Affiliation(s)
- J Dirks
- Department of Transplant and Infection Immunology, Institute of Virology, Saarland University, Homburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Correia-Silva JF, Resende RG, Arão TC, Abreu MHNG, Teixeira MM, Bittencourt H, Silva TA, Gomez RS. HCMV gB genotype and its association with cytokine levels in hematopoietic stem cell transplantation. Oral Dis 2011; 17:530-7. [PMID: 21332604 DOI: 10.1111/j.1601-0825.2011.01801.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Glycoprotein B (gB) has been implicated in determining the pathogenicity and clinical outcomes of human cytomegalovirus (HCMV) disease. OBJECTIVE The purpose of this study was to assess the prevalence of gB genotypes in allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the relationship between it and cytokine levels in saliva and blood samples. The impact of these parameters on patients' survival was also investigated. METHODS Samples were obtained from 63 patients receiving an allo-HSCT. HCMV gB genotyping was carried out by multiplex nested PCR. The cytokine levels were assessed using ELISA assay. RESULTS A single or mixed genotype infection was detected in the saliva and blood of 36/63 and 52/63 subjects, respectively. Patients with gB2 in their saliva showed lower IL-10 levels in comparison with patients without gB2. Reduced blood levels of IFN-γ and IL-1β were also found in recipients with the HCMV gB4 genotype compared with patients without it. Decreased IL-1β and increased IL-10 blood levels were associated with lower survival. However, HCMV gB genotypes have no impact on patient outcome. CONCLUSION Decreased IL-1β and increased IL-10 levels in the blood are associated with lower survival. HCMV genotypes are associated with different cytokine levels in saliva and blood.
Collapse
Affiliation(s)
- J F Correia-Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|