1
|
Tong Y, Guo S, Li T, Yang K, Gao W, Peng F, Zou X. Gut microbiota and renal fibrosis. Life Sci 2024; 357:123072. [PMID: 39307181 DOI: 10.1016/j.lfs.2024.123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Renal fibrosis represents a critical pathological condition in the progression of renal dysfunction, characterized by aberrant accumulation of extracellular matrix (ECM) and structural alterations in renal tissue. Recent research has highlighted the potential significance of gut microbiota and demonstrated their influence on host health and disease mechanisms through the production of bioactive metabolites. This review examines the role of alterations in gut microbial composition and their metabolites in the pathophysiological processes underlying renal fibrosis. It delineates current therapeutic interventions aimed at modulating gut microbiota composition, encompassing dietary modifications, pharmacological approaches, and probiotic supplementation, while evaluating their efficacy in mitigating renal fibrosis. Through a comprehensive analysis of current research findings, this review enhances our understanding of the bidirectional interaction between gut microbiota and renal fibrosis, establishing a theoretical foundation for future research directions and potential clinical applications in this domain.
Collapse
Affiliation(s)
- Yinghao Tong
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shangze Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ting Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Kexin Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
3
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
4
|
Watari S, Araki M, Wada K, Yoshinaga K, Maruyama Y, Mitsui Y, Sadahira T, Kubota R, Nishimura S, Kobayashi Y, Takeuchi H, Tanabe K, Kitagawa M, Morinaga H, Kitamura S, Sugiyama H, Wada J, Watanabe M, Watanabe T, Nasu Y. ABO Blood Incompatibility Positively Affects Early Graft Function: Single-Center Retrospective Cohort Study. Transplant Proc 2021; 53:1494-1500. [PMID: 33931247 DOI: 10.1016/j.transproceed.2021.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the association between ABO-incompatible (ABO-I) kidney transplantation and early graft function. METHODS We retrospectively analyzed 95 patients who underwent living donor kidney transplantation between May 2009 and July 2019. It included 61 ABO-compatible (ABO-C) and 34 ABO-I transplantations. We extracted data on immunologic profile, sex, age, cold ischemic time, type of immunosuppression, and graft function. Two definitions were used for slow graft function (SGF) as follows: postoperative day (POD) 3 serum creatinine level >3 mg/dL and estimated glomerular filtration rate (eGFR) <20 mL/min/1.73 m2. Logistic regression analysis was performed to analyze the effect of ABO-I on the incidence of SGF. RESULTS The characteristics between the ABO-C and ABO-I were not different. ABO-I received rituximab and plasma exchange. Patients also received tacrolimus and mycophenolate mofetil for 2 weeks and prednisolone for 1 week before transplantation as preconditioning. Of the 95 study patients, 19 (20%) and 21 (22%) were identified with SGF according to POD 3 serum creatinine level or eGFR, respectively. Multivariable analysis revealed that ABO-I significantly reduced the incidence of SGF (odds ratio, 0.15; 95% confidence interval, 0.03-0.7; P = .02), and cold ischemic time >150 min increased the incidence of SGF (odds ratio, 6.5; 95% confidence interval, 1.7-25; P = .006). Similar results were identified in POD 3 eGFR. Inferior graft function in patients with SGF was identified up to 6 months after transplantation. CONCLUSION ABO-I reduces the incidence of SGF, which is associated with an inferior graft function up to 6 months.
Collapse
Affiliation(s)
- Shogo Watari
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan.
| | - Koichiro Wada
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Kasumi Yoshinaga
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Yuki Maruyama
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Yosuke Mitsui
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Risa Kubota
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Shingo Nishimura
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Yasuyuki Kobayashi
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Hidemi Takeuchi
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Masashi Kitagawa
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Hiroshi Morinaga
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Toyohiko Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Kita-ku, Okayama, Japan
| |
Collapse
|
5
|
Guiteras J, De Ramon L, Crespo E, Bolaños N, Barcelo-Batllori S, Martinez-Valenzuela L, Fontova P, Jarque M, Torija A, Bestard O, Resina D, Grinyó JM, Torras J. Dual and Opposite Costimulatory Targeting with a Novel Human Fusion Recombinant Protein Effectively Prevents Renal Warm Ischemia Reperfusion Injury and Allograft Rejection in Murine Models. Int J Mol Sci 2021; 22:ijms22031216. [PMID: 33530581 PMCID: PMC7865252 DOI: 10.3390/ijms22031216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Many studies have shown both the CD28-D80/86 costimulatory pathway and the PD-1-PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models-rat renal IRI and allogeneic kidney transplant. The Surface Plasmon Resonance assay demonstrated the avidity and binding of HYBRI to its targets. HYBRI treatment in the models exerted a high functional and morphological improvement. HYBRI produced a significant amelioration of renal function on day one and two after bilateral warm ischemia and on days seven and nine after transplant, clearly prolonging the animal survival in a life-sustaining renal allograft model. In both models, a significant reduction in histological damage and CD3 and CD68 infiltrating cells was observed. HYBRI decreased the circulating inflammatory cytokines and enriched the FoxP3 peripheral circulating, apart from reducing renal inflammation. In conclusion, the dual and opposite costimulatory targeting with that novel protein offers a good microenvironment profile to protect the ischemic process in the kidney and to prevent the kidney rejection, increasing the animal's chances of survival. HYBRI largely prevents the progression of inflammation in these rat models.
Collapse
Affiliation(s)
- Jordi Guiteras
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Fundació Bosch i Gimpera, University of Barcelona, 08028 Barcelona, Spain
| | - Laura De Ramon
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Elena Crespo
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Nuria Bolaños
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Silvia Barcelo-Batllori
- Molecular Interactions Unit, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) Scientific-Technical Services, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Laura Martinez-Valenzuela
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Pere Fontova
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Marta Jarque
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Alba Torija
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - David Resina
- Bioingenium S.L., Barcelona Science Park, 08028 Barcelona, Spain;
| | - Josep M Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| |
Collapse
|
6
|
Gong L, Pan Q, Yang N. Autophagy and Inflammation Regulation in Acute Kidney Injury. Front Physiol 2020; 11:576463. [PMID: 33101057 PMCID: PMC7546328 DOI: 10.3389/fphys.2020.576463] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy at an appropriate juncture in the cell cycle exerts protective effects in acute kidney injury (AKI), whereas abnormal autophagy may lead to cell death. Inflammatory response plays a pivotal role in the pathophysiological process of kidney injury and repair during AKI. Several studies have reported an interaction between autophagy and inflammation in the pathogenesis of AKI. This review outlines recent advances in the investigation of the role of autophagy in inflammatory response regulation based on the following aspects. (1) Autophagy inhibits inflammatory responses induced in AKI through the regulation of mTOR and AMPK pathways and the inhibition of inflammasomes activation. (2) Autophagy can also help in the regulation of inflammatory responses through the nuclear factor kappa B pathway, which is beneficial to the recovery of kidney tissues. These studies reviewed here provide better insight into the mechanisms underlying the protective effects of the autophagy-inflammatory pathway. Through this review, we suggest that the autophagy-inflammatory pathway may serve as an alternative target for the treatment of AKI.
Collapse
Affiliation(s)
- Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Nianlan Yang
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Câmara NOS. Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019; 10:1192. [PMID: 31649546 PMCID: PMC6792167 DOI: 10.3389/fphar.2019.01192] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation, a process intimately linked to renal disease, can be defined as a complex network of interactions between renal parenchymal cells and resident immune cells, such as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated molecules, these receptors can set in motion major innate immunity pathways such as nuclear factor ĸB (NF-ĸB) and NLRP3 inflammasome, causing metabolic reprogramming and phenotype changes of immune and parenchymal cells and triggering the secretion of a number of inflammatory mediators that can cause irreversible tissue damage and functional loss. Growing evidence suggests that this response can be deeply impacted by the crosstalk between the kidneys and other organs, such as the gut. Changes in the composition and/or metabolite production of the gut microbiota can influence inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively manipulate the composition and/or functionality of gut microbiota and, consequentially, ameliorate deleterious consequences of renal diseases. In this review, we summarize the most recent evidence that renal inflammation can be ameliorated by interfering with the gut microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition to these innovative approaches, we address the recent discovery of new targets for drugs long in use in clinical practice. Angiotensin II receptor antagonists, NF-ĸB inhibitors, thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and slow down the progression of renal disease by mechanisms independent of those usually attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. So far, these protective effects have been shown in experimental studies only. Clinical studies will establish whether these novel strategies can be incorporated into the arsenal of treatments intended to prevent the progression of human disease.
Collapse
Affiliation(s)
- Vinicius Andrade-Oliveira
- Bernardo's Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil.,Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ingrid Kazue Mizuno Watanabe
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol 2019; 34:951-963. [PMID: 29603016 PMCID: PMC6477994 DOI: 10.1007/s00467-018-3940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Collapse
Affiliation(s)
- Gerhard R Situmorang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Urology Department, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
CD4 + and CD8 + T Cells Exert Regulatory Properties During Experimental Acute Aristolochic Acid Nephropathy. Sci Rep 2018; 8:5334. [PMID: 29593222 PMCID: PMC5871862 DOI: 10.1038/s41598-018-23565-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 11/25/2022] Open
Abstract
Experimental aristolochic acid nephropathy is characterized by transient acute proximal tubule necrosis and inflammatory cell infiltrates followed by interstitial fibrosis and tubular atrophy. The respective role of T-cell subpopulations has never been studied in the acute phase of the mouse model, and was heretofore exclusively investigated by the use of several depletion protocols. As compared to mice injected with aristolochic acids alone, more severe acute kidney injury was observed after CD4+ or CD8+ T-cells depletion. TNF-alpha and MCP-1 mRNA renal expressions were also increased. In contrast, regulatory T-cells depletion did not modify the severity of the aristolochic acids induced acute kidney injury, suggesting an independent mechanism. Aristolochic acids nephropathy was also associated with an increased proportion of myeloid CD11bhighF4/80mid and a decreased proportion of their counterpart CD11blowF4/80high population. After CD4+ T-cell depletion the increase in the CD11bhighF4/80mid population was even higher whereas the decrease in the CD11blowF4/80high population was more marked after CD8+ T cells depletion. Our results suggest that CD4+ and CD8+ T-cells provide protection against AA-induced acute tubular necrosis. Interestingly, T-cell depletion was associated with an imbalance of the CD11bhighF4/80mid and CD11blowF4/80high populations.
Collapse
|
10
|
Alikhan MA, Huynh M, Kitching AR, Ooi JD. Regulatory T cells in renal disease. Clin Transl Immunology 2018; 7:e1004. [PMID: 29484182 PMCID: PMC5822411 DOI: 10.1002/cti2.1004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The kidney is vulnerable to injury, both acute and chronic from a variety of immune and metabolic insults, all of which at least to some degree involve inflammation. Regulatory T cells modulate systemic autoimmune and allogenic responses in glomerulonephritis and transplantation. Intrarenal regulatory T cells (Tregs), including those recruited to the kidney, have suppressive effects on both adaptive and innate immune cells, and probably also intrinsic kidney cells. Evidence from autoimmune glomerulonephritis implicates antigen-specific Tregs in HLA-mediated dominant protection, while in several human renal diseases Tregs are abnormal in number or phenotype. Experimentally, Tregs can protect the kidney from injury in a variety of renal diseases. Mechanisms of Treg recruitment to the kidney include via the chemokine receptors CCR6 and CXCR3 and potentially, at least in innate injury TLR9. The effects of Tregs may be context dependent, with evidence for roles for immunoregulatory roles both for endogenous Tbet-expressing Tregs and STAT-3-expressing Tregs in experimental glomerulonephritis. Most experimental work and some of the ongoing human trials in renal transplantation have focussed on unfractionated thymically derived Tregs (tTregs). However, induced Tregs (iTregs), type 1 regulatory T (Tr1) cells and in particular antigen-specific Tregs also have therapeutic potential not only in renal transplantation, but also in other kidney diseases.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - Megan Huynh
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia.,Department of Nephrology Monash Health Clayton VIC Australia.,Department of Paediatric Nephrology Monash Health Clayton VIC Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| |
Collapse
|
11
|
Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. J Immunol Res 2017; 2017:6305439. [PMID: 28676864 PMCID: PMC5476886 DOI: 10.1155/2017/6305439] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.
Collapse
|
12
|
Ghali JR, Wang YM, Holdsworth SR, Kitching AR. Regulatory T cells in immune-mediated renal disease. Nephrology (Carlton) 2016. [PMID: 26206106 DOI: 10.1111/nep.12574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are CD4+ T cells that can suppress immune responses by effector T cells, B cells and innate immune cells. This review discusses the role that Tregs play in murine models of immune-mediated renal diseases and acute kidney injury and in human autoimmune kidney disease (such as systemic lupus erythematosus, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated vasculitis). Current research suggests that Tregs may be reduced in number and/or have impaired regulatory function in these diseases. Tregs possess several mechanisms by which they can limit renal and systemic inflammatory immune responses. Potential therapeutic applications involving Tregs include in vivo induction of Tregs or inducing Tregs from naïve CD4+ T cells or expanding natural Tregs ex vivo, to use as a cellular therapy. At present, the optimal method of generating a phenotypically stable pool of Tregs with long-lasting suppressive effects is not established, but human studies in renal transplantation are underway exploring the therapeutic potential of Tregs as a cellular therapy, and if successful may have a role as a novel therapy in immune-mediated renal diseases.
Collapse
Affiliation(s)
- Joanna R Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria.,Department of Paediatric Nephrology, Monash Medical Centre, Melbourne, Victoria
| |
Collapse
|
13
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
15
|
Niemann N, Sawitzki B. Treg Therapy in Transplantation: How and When Will We Do It? CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJF, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas ACD, Peron JPS, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MAR, Ferreira CM, Câmara NOS. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol 2015; 26:1877-88. [PMID: 25589612 DOI: 10.1681/asn.2014030288] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Collapse
Affiliation(s)
- Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Mariane T Amano
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | | | - Enio J Bassi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Meire I Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Andrea C D Rodas
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Jean P S Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Cristhiane F Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Marlene A Reis
- Division of Pathology, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian R Ribeiro
- Department of Pharmacy and Biotechnology, Universidade Anhanguera de São Paulo UNIAN-SP, São Paulo, Brazil
| | - Claudete J Valduga
- Department of Pharmacy and Biotechnology, Universidade Anhanguera de São Paulo UNIAN-SP, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil; and
| | - Marco Aurelio Ramirez Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil; and
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil; Nephrology Division, Federal University of São Paulo, São Paulo, Brazil;
| |
Collapse
|
17
|
O'Neill S, Hughes J. Heat-shock protein-70 and regulatory T cell-mediated protection from ischemic injury. Kidney Int 2014; 85:5-7. [PMID: 24380899 DOI: 10.1038/ki.2013.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heat preconditioning induces heat-shock protein-70 upregulation and protects from renal ischemia/reperfusion injury. Kim et al. report that heat-shock protein-70 and regulatory T cells play a key role in protective heat preconditioning. This work reinforces the utility of inducing heat-shock protein-70 expression by pharmacological agents as a novel therapy for the prevention and treatment of ischemic kidney injury.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Recent advances in T cell biology have shed light on the role of T cell subsets in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to harness our understanding of recent advances in T cell biology in tissue injury and repair and provide a mechanistic insight into the role of T cells in the inflammation of AKI. RECENT FINDINGS New specific reagents and genetic animal models have led to advances in our understanding of the role of T cell subsets involved in renal injury. Whereas some T cells promote innate renal inflammation and injury, other T cells promote protection and repair. Recent studies illuminated the pathogenic mechanisms of invariant natural killer T (NKT) cells and T helper1-type responses, and the beneficial functions of regulatory T cells and NKT cells are just beginning to be explored. Pharmacologic and cell-based therapies that influence T cell responses to experimental AKI suggest that this is a promising approach to preserve renal function. SUMMARY The recent insights gained into how T cells modulate renal injury suggest that strategies targeting specific types of T cells, to either inhibit or enhance their activity, may ameliorate renal injury in patients.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | |
Collapse
|
19
|
Abstract
Human AKI is manifested by inflammation, and an early feature in the pathogenesis is the accumulation of immune cells in the kidney. To understand the pathophysiology of AKI, results from animal models have shown a causal relation between the leukocyte activation and infiltration to the kidney after kidney ischemia-reperfusion. Blocking the activation or trafficking of proinflammatory leukocytes into the kidney preserves renal function and histologic integrity. In contrast, the anti-inflammatory lymphocytes called regulatory T cells have an intrinsic renal-protective function and may represent a novel therapeutic approach and/or target for pharmacological manipulation to ameliorate AKI. This review will highlight the recent insight gained into the role and mechanisms of regulatory T cells in AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | | | | |
Collapse
|
20
|
Kinsey GR, Okusa MD. Role of leukocytes in the pathogenesis of acute kidney injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:214. [PMID: 22429752 PMCID: PMC3681359 DOI: 10.1186/cc11228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
21
|
Devey LR, Richards JA, O'Connor RA, Borthwick G, Clay S, Howie AF, Wigmore SJ, Anderton SM, Howie SEM. Ischemic preconditioning in the liver is independent of regulatory T cell activity. PLoS One 2012. [PMID: 23185394 PMCID: PMC3504160 DOI: 10.1371/journal.pone.0049647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ischemic preconditioning (IPC) protects organs from ischemia reperfusion injury (IRI) through unknown mechanisms. Effector T cell populations have been implicated in the pathogenesis of IRI, and T regulatory cells (Treg) have become a putative therapeutic target, with suggested involvement in IPC. We explored the role of Treg in hepatic IRI and IPC in detail. IPC significantly reduced injury following ischemia reperfusion insults. Treg were mobilized rapidly to the circulation and liver after IRI, but IPC did not further increase Treg numbers, nor was it associated with modulation of circulating pro-inflammatory chemokine or cytokine profiles. We used two techniques to deplete Treg from mice prior to IRI. Neither Treg depleted FoxP3.LuciDTR mice, nor wildtyoe mice depleted of Tregs with PC61, were more susceptible to IRI compared with controls. Despite successful enrichment of Treg in the liver, by adoptive transfer of both iTreg and nTreg or by in vivo expansion of Treg with IL-2/anti-IL-2 complexes, no protection against IRI was observed.We have explored the role of Treg in IRI and IPC using a variety of techniques to deplete and enrich them within both the liver and systemically. This work represents an important negative finding that Treg are not implicated in IPC and are unlikely to have translational potential in hepatic IRI.
Collapse
Affiliation(s)
- Luke R Devey
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Youn YS, Lim HH, Lee JH. The clinical characteristics of steroid responsive nephrotic syndrome of children according to the serum immunoglobulin E levels and cytokines. Yonsei Med J 2012; 53:715-22. [PMID: 22665336 PMCID: PMC3381495 DOI: 10.3349/ymj.2012.53.4.715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The nephrotic syndrome (NS) is characterized by the favorable response to glucocorticoid therapy and the development of NS may be associated with dysfunctional immune systems. In order to investigate the serum immunoglobulin E (IgE) levels and cytokines activity in pediatric NS, the total of 32 steroid responsive NS patients and 5 healthy controls were enrolled in this study. MATERIALS AND METHODS All patients were divided into two groups according to the initial serum IgE levels, such as normal and high IgE group, and their clinical characteristics were evaluated. In addition, serum levels of interleukin (IL)-4, IL-5, IL-10 and transforming growth factor (TGF)-β were compared and correlated with serum albumin, proteinuria by means of disease severity, and cytokines. RESULTS In the high IgE group, the higher comorbidity of allergic diseases and relapsing rate, the longer duration of steroid therapy before initial remission, and the higher serum IL-4 and IL-5 levels were found. In all patients, initially higher serum levels of IL-4 and IL-5 declined to normal levels after steroid therapy, whereas the serum IL-10 levels showed no significant difference between nephrotic phase (heavy proteinuria) and remission phase (no proteinuria) of NS. The serum TGF-β levels of the nephrotic phase were significantly lower than those of remission phase or control group, and returned to normal control levels after steroid therapy. CONCLUSION This study indicates that initial IgE level is associated with steroid responsiveness and disease severity, and cytokine activities may also be related to the pathogenesis of pediatric steroid responsive NS.
Collapse
Affiliation(s)
- You Sook Youn
- Department of Pediatrics, Deajeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Korea
| | - Han Hyuk Lim
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jae Ho Lee
- Department of Pediatrics, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
23
|
Chatterjee PK, Yeboah MM, Dowling O, Xue X, Powell SR, Al-Abed Y, Metz CN. Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity. PLoS One 2012; 7:e35361. [PMID: 22586448 PMCID: PMC3346807 DOI: 10.1371/journal.pone.0035361] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine (1 mg/kg) or GTS-21 (4 mg/kg) significantly abrogated renal leukocyte infiltration (by 40%) and attenuated kidney injury. These renoprotective effects were accompanied by reduced systemic and localized kidney inflammation during LPS-induced AKI. Consistent with these observations, nicotinic agonist treatment significantly decreased renal IκBα degradation and NFκB activation during LPS-induced AKI. Treatment of human kidney cells with nicotinic agonists, an NFκB inhibitor (Bay11), or a proteasome inhibitor (MG132) effectively inhibited their inflammatory responses following stimulation with LPS or TNFα. Renal proteasome activity, a major regulator of NFκB-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasome activity was significantly blunted by nicotinic agonist administration in vivo. Taken together, our results identify enhanced renal proteasome activity during LPS-induced AKI and the suppression of both proteasome activity and inflammation by nicotinic agonists to attenuate LPS-induced kidney injury.
Collapse
Affiliation(s)
- Prodyot K. Chatterjee
- The Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Michael M. Yeboah
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Oonagh Dowling
- The Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Xiangying Xue
- The Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Saul R. Powell
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yousef Al-Abed
- The Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Christine N. Metz
- The Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
24
|
Takata M, Nakagomi T, Kashiwamura S, Nakano-Doi A, Saino O, Nakagomi N, Okamura H, Mimura O, Taguchi A, Matsuyama T. Glucocorticoid-induced TNF receptor-triggered T cells are key modulators for survival/death of neural stem/progenitor cells induced by ischemic stroke. Cell Death Differ 2011; 19:756-67. [PMID: 22052192 PMCID: PMC3321616 DOI: 10.1038/cdd.2011.145] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidences show that immune response affects the reparative mechanisms in injured brain. Recently, we have demonstrated that CD4(+)T cells serve as negative modulators in neurogenesis after stroke, but the mechanistic detail remains unclear. Glucocorticoid-induced tumor necrosis factor (TNF) receptor (GITR), a multifaceted regulator of immunity belonging to the TNF receptor superfamily, is expressed on activated CD4(+)T cells. Herein, we show, by using a murine model of cortical infarction, that GITR triggering on CD4(+)T cells increases poststroke inflammation and decreases the number of neural stem/progenitor cells induced by ischemia (iNSPCs). CD4(+)GITR(+)T cells were preferentially accumulated at the postischemic cortex, and mice treated with GITR-stimulating antibody augmented poststroke inflammatory responses with enhanced apoptosis of iNSPCs. In contrast, blocking the GITR-GITR ligand (GITRL) interaction by GITR-Fc fusion protein abrogated inflammation and suppressed apoptosis of iNSPCs. Moreover, GITR-stimulated T cells caused apoptosis of the iNSPCs, and administration of GITR-stimulated T cells to poststroke severe combined immunodeficient mice significantly reduced iNSPC number compared with that of non-stimulated T cells. These observations indicate that among the CD4(+)T cells, GITR(+)CD4(+)T cells are major deteriorating modulators of poststroke neurogenesis. This suggests that blockade of the GITR-GITRL interaction may be a novel immune-based therapy in stroke.
Collapse
Affiliation(s)
- M Takata
- Laboratory of Neurogenesis and CNS Repair, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The main function of chemokines is to guide inflammatory cells in their migration to sites of inflammation. During the last 2 decades, an expanding number of chemokines and their receptors have driven broad inquiry into how inflammatory cells are recruited in a variety of diseases. Although this review focuses on chemokines and their receptors in renal injury, proinflammatory IL-17, TGFβ, and TWEAK signaling pathways also play a critical role in their expression. Recent studies in transgenic mice as well as blockade of chemokine signaling by neutralizing ligands or receptor antagonists now allow direct interrogation of chemokine action. The emerging role of regulatory T cells and Th17 cells during renal injury also forges tight relationships between chemokines and T cell infiltration in the development of kidney disease. As chemokine receptor blockade inches toward clinical use, the field remains an attractive area with potential for unexpected opportunity in the future.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
26
|
Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, Chen LM, Li MX, Li XM, Li XW. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol 2011; 139:314-20. [PMID: 21450528 DOI: 10.1016/j.clim.2011.02.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022]
Abstract
To determine whether Th17/Treg balance was abnormal in adult patients with minimal change nephrotic syndrome (MCNS), we studied 25 patients with new-onset MCNS and 20 normal persons. The results showed that MCNS patients exhibited a significant increase in Th17 number, Th17-related cytokines (IL-17 and IL-23), and transcription factor (RORγt) levels, as well as an obvious decrease in Treg number, Treg-related cytokines (TGF-β1 and IL-10), and transcription factor (Foxp3) levels. The Th17/Treg ratios increased along with increased proteinuria and decreased albumin levels in patients with MCNS. IL-17 protein expression was also detected in the renal biopsy tissue of MCNS patients, particularly in patients with acute renal failure. Further, Th17/Treg balance returned to normal after effective corticosteroids therapy in 16 MCNS patients. These results indicated that Th17/Treg imbalance existed in MCNS patients, suggesting a potential role of Th17/Treg imbalance in the pathogenesis of MCNS.
Collapse
Affiliation(s)
- Li-Li Liu
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ooi JD, Snelgrove SL, Engel DR, Hochheiser K, Ludwig-Portugall I, Nozaki Y, O'Sullivan KM, Hickey MJ, Holdsworth SR, Kurts C, Kitching AR. Endogenous foxp3(+) T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney Int 2011; 79:977-86. [PMID: 21248715 DOI: 10.1038/ki.2010.541] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foxp3(+) T-regulatory cells (Tregs) may suppress pathogenic inflammation; however, although transferred Tregs lessen glomerulonephritis in mice, the role of endogenous foxp3(+) cells is not known. To study this, we characterized endogenous foxp3(+) cells in accelerated anti-glomerular basement membrane (GBM) nephritis by using foxp3(GFP) reporter mice to track their responses in early and established disease. Further, diphtheria toxin was used to ablate foxp3(+) Tregs in foxp3(DTR) mice after establishing an immune response. In this model, mice were immunized with sheep globulin in adjuvant, and sheep anti-mouse GBM globulin was injected after 4 days to initiate progressive histological and functional injury. Intrarenal leukocytic infiltrates were increased by day 3 but intrarenal foxp3(+) Tregs, present in interstitial and periglomerular areas, were only increased at day 7. Ablation of foxp3(+) Tregs after injection of anti-GBM globulin increased renal injury and systemic T-cell responses, including increased interferon-γ and interleukin-17A (IL-17A) production, but no change in antibody titers. Compared with foxp3(+) Tregs isolated from naive mice, those from immunized mice produced more IL-10 and more effectively regulated CD4(+)foxp3(-) responder T cells. Thus, endogenous foxp3(+) Tregs infiltrate the kidney in glomerulonephritis, and deleting foxp3(+) cells after the induction of immune responses upregulated T-cell reactions and enhanced disease. Hence, endogenous foxp3(+) cells have increased suppressive capacity after immune stimuli.
Collapse
Affiliation(s)
- Joshua D Ooi
- Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hofmann U, Hu K, Walter F, Burkard N, Ertl G, Bauersachs J, Ritter O, Frantz S, Bonz A. Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia-reperfusion. Br J Pharmacol 2010; 160:1243-51. [PMID: 20590616 DOI: 10.1111/j.1476-5381.2010.00767.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Our recent experiments demonstrated that the Sphingosine-1-phosphate (S1P) receptor agonist FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride) improves recovery of function after myocardial ischaemia-reperfusion ex vivo. Therefore, we tested the hypothesis that pharmacological post-conditioning with FTY720 reduces infarct size after myocardial ischaemia-reperfusion in vivo. EXPERIMENTAL APPROACH Myocardial ischaemia was induced in Wistar rats by ligation of the left coronary artery for 45 min. FTY720 (0.5 mg kg(-1)) was applied i.p. either once, before reperfusion, or twice, 24 h before myocardial ischaemia and before reperfusion. After 24 h reperfusion, we determined infarct size by triphenyltetrazolium chloride staining and granulocyte infiltration by immunohistochemistry. Tumour necrosis factor-alpha (TNF)-alpha concentration was determined by elisa. S1P receptor expression was studied by Western blot. Calcium transients were evaluated in Indo-1-loaded cardiomyocytes. KEY RESULTS In both groups, FTY720 significantly reduced lymphocyte count in peripheral blood. FTY720 treatment attenuated granulocyte infiltration and TNF-alpha protein expression in reperfused myocardium. However, both treatment regimens were not able to reduce infarct size. FTY720 increased mortality due to induction of fatal ventricular tachyarrhythmias when administered once before reperfusion, but protected against reperfusion arrhythmias when given 24 h prior to ischaemia. Pretreatment selectively down-regulated S1P(1) receptor expression within the myocardium. S1P receptor agonists did not induce calcium deregulation in cardiomyocytes. CONCLUSIONS AND IMPLICATIONS FTY720 applied during reperfusion did not reduce infarct size but increased mortality during myocardial ischaemia-reperfusion due to induction of arrhythmias. Pretreatment with FTY720 before ischaemia abrogated the deleterious pro-arrhythmic effects without reducing infarct size.
Collapse
Affiliation(s)
- U Hofmann
- Department of Internal Medicine I, University Hospital Wuerzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Soloski MJ, Crow MT, Rabb H. Mycophenolate mofetil modifies kidney tubular injury and Foxp3+ regulatory T cell trafficking during recovery from experimental ischemia-reperfusion. Transpl Immunol 2010; 23:45-52. [PMID: 20412855 DOI: 10.1016/j.trim.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/02/2010] [Accepted: 04/05/2010] [Indexed: 01/25/2023]
Abstract
Lymphocytes participate in the early pathogenesis of ischemia-reperfusion injury (IRI) in kidney; however, their role during repair is largely unknown. Recent data have shown that Foxp3(+) regulatory T cells (Tregs) traffic into kidney during healing from IRI and directly participate in repair. Since lymphocyte-targeting therapy is currently administered to prevent rejection during recovery from IRI in renal transplants, we hypothesized that mycophenolate mofetil (MMF) would alter Treg trafficking and kidney repair. C57BL/6J and T cell deficient mice underwent unilateral clamping of renal pedicle for 45 min, followed by reperfusion, and were sacrificed at day 10. Mice were treated with saline (C) or MMF (100mg/kg) i.p. daily starting at day 2 until sacrifice (n=5-12/group). MMF worsened kidney tubular damage compared to C at 10 days (cortex and outer medulla: p<0.05) in wild-type mice; tubular apoptotic index was increased in cortex in MMF group as well (p=0.01). MMF reduced the total number of kidney-infiltrating mononuclear cells (p<0.001 versus C) and the percentages of TCRbeta(+)CD4(+) and TCRbeta(+)CD8(+) T cells (p<0.01), but not natural killer (NK), NKT or B lymphocytes. MMF specifically reduced kidney Foxp3(+) Tregs (0.82+/-0.11% versus 1.75+/-0.17%, p<0.05). Tubular proliferative index and tissue levels of basic FGF were increased in MMF group (p<0.05), IL-10 and IL-6 were decreased (p<0.05). To evaluate if MMF effect occurred through non-lymphocytic cells, T cell deficient mice were treated with MMF. Tubular injury in T cell deficient mice was not affected by MMF treatment, though MMF-treated animals had increased VEGF and decreased PDGF-BB protein tissue levels compared to controls (p<0.05). Thus, MMF modifies the structural, epithelial proliferative and inflammatory response during healing, likely through effects on T cells and possibly Tregs. Kidney repair after IRI can be altered by agents that target lymphocytes.
Collapse
Affiliation(s)
- Maria Teresa Gandolfo
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|