1
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
2
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Margos G, Hofmann M, Casjens S, Dupraz M, Heinzinger S, Hartberger C, Hepner S, Schmeusser M, Sing A, Fingerle V, McCoy KD. Genome diversity of Borrelia garinii in marine transmission cycles does not match host associations but reflects the strains evolutionary history. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105502. [PMID: 37716446 DOI: 10.1016/j.meegid.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.
Collapse
Affiliation(s)
- Gabriele Margos
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Markus Hofmann
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sherwood Casjens
- Pathology Department, School of Medicine, University of Utah, 15 North Medical Drive East Ste. #1100, Salt Lake City, UT 84112, USA.
| | - Marlene Dupraz
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France
| | - Susanne Heinzinger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Christine Hartberger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sabrina Hepner
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Mercy Schmeusser
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Andreas Sing
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Karen D McCoy
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France.
| |
Collapse
|
4
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. Microbiol Spectr 2023; 11:e0089523. [PMID: 37737593 PMCID: PMC10580987 DOI: 10.1128/spectrum.00895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes. J Biol Chem 2023; 299:104972. [PMID: 37380082 PMCID: PMC10413161 DOI: 10.1016/j.jbc.2023.104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
6
|
Stevenson B, Brissette CA. Erp and Rev Adhesins of the Lyme Disease Spirochete's Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect Immun 2023; 91:e0025022. [PMID: 36853019 PMCID: PMC10016077 DOI: 10.1128/iai.00250-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
7
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531354. [PMID: 36945547 PMCID: PMC10028826 DOI: 10.1101/2023.03.06.531354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. "Conformational dynamics of C1r inhibitor proteins from Lyme disease and relapsing fever spirochetes". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530473. [PMID: 36909632 PMCID: PMC10002728 DOI: 10.1101/2023.03.01.530473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Charles E. Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Alexandra D. Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Anna M. Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Brandon L. Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
9
|
Rana VS, Kitsou C, Dumler JS, Pal U. Immune evasion strategies of major tick-transmitted bacterial pathogens. Trends Microbiol 2023; 31:62-75. [PMID: 36055896 PMCID: PMC9772108 DOI: 10.1016/j.tim.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022]
Abstract
Tick-transmitted bacterial pathogens thrive in enzootic infection cycles, colonizing disparate vertebrate and arthropod tissues, often establishing persistent infections. Therefore, the evolution of robust immune evasion strategies is central to their successful persistence or transmission between hosts. To survive in nature, these pathogens must counteract a broad range of microbicidal host responses that can be localized, tissue-specific, or systemic, including a mix of these responses at the host-vector interface. Herein, we review microbial immune evasion strategies focusing on Lyme disease spirochetes and rickettsial or tularemia agents as models for extracellular and intracellular tick-borne pathogens, respectively. A better understanding of these adaptive strategies could enrich our knowledge of the infection biology of relevant tick-borne diseases, contributing to the development of future preventions.
Collapse
Affiliation(s)
- Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
10
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Garrigues RJ, Thomas S, Leong JM, Garcia BL. Outer surface lipoproteins from the Lyme disease spirochete exploit the molecular switch mechanism of the complement protease C1s. J Biol Chem 2022; 298:102557. [PMID: 36183830 PMCID: PMC9637899 DOI: 10.1016/j.jbc.2022.102557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
Abstract
Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.
Collapse
|
12
|
Narayanan M, El-Sheekh M, Ma Y, Pugazhendhi A, Natarajan D, Kandasamy G, Raja R, Saravana Kumar RM, Kumarasamy S, Sathiyan G, Geetha R, Paulraj B, Liu G, Kandasamy S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118922. [PMID: 35114308 DOI: 10.1016/j.envpol.2022.118922] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India.
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | | | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Rathinam Raja
- Central Research Laboratory, Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH) - BIHER, Chromepet, Chennai, 600 044, India
| | - R M Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Govindasamy Sathiyan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - R Geetha
- Department of Electrical and Electronics Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sabariswaran Kandasamy
- Department of Biomass and Energy Conversion, Institute of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602 105, India.
| |
Collapse
|
13
|
Utilizing Two Borrelia bavariensis Isolates Naturally Lacking the PFam54 Gene Array To Elucidate the Roles of PFam54-Encoded Proteins. Appl Environ Microbiol 2022; 88:e0155521. [PMID: 34986011 DOI: 10.1128/aem.01555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere, caused by spirochetes belonging to the Borrelia burgdorferi sensu lato species complex, which are transmitted by ixodid ticks. B. burgdorferi sensu lato species produce a family of proteins on the linear plasmid 54 (PFam54), some of which confer the functions of cell adhesion and inactivation of complement, the first line of host defense. However, the impact of PFam54 in promoting B. burgdorferi sensu lato pathogenesis remains unclear because of the hurdles to simultaneously knock out all PFam54 proteins in a spirochete. Here, we describe two Borrelia bavariensis strains, PBN and PNi, isolated from patients naturally lacking PFam54 but maintaining the rest of the genome with greater than 95% identity to the reference B. bavariensis strain, PBi. We found that PBN and PNi less efficiently survive in human serum than PBi. Such defects were restored by introducing two B. bavariensis PFam54 recombinant proteins, BGA66 and BGA71, confirming the role of these proteins in providing complement evasion of B. bavariensis. Further, we found that all three strains remain detectable in various murine tissues 21 days post-subcutaneous infection, supporting the nonessential role of B. bavariensis PFam54 in promoting spirochete persistence. This study identified and utilized isolates deficient in PFam54 to associate the defects with the absence of these proteins, building the foundation to further study the role of each PFam54 protein in contributing to B. burgdorferi sensu lato pathogenesis. IMPORTANCE To establish infections, Lyme borreliae utilize various means to overcome the host's immune system. Proteins encoded by the PFam54 gene array play a role in spirochete survival in vitro and in vivo. Moreover, this gene array has been described in all currently available Lyme borreliae genomes. By investigating the first two Borrelia bavariensis isolates naturally lacking the entire PFam54 gene array, we showed that both patient isolates display an increased susceptibility to human serum, which can be rescued in the presence of two PFam54 recombinant proteins. However, both isolates remain infectious to mice after intradermal inoculation, suggesting the nonessential role of PFam54 during the long-term, but may differ slightly in the colonization of specific tissues. Furthermore, these isolates show high genomic similarity to type strain PBi (>95%) and could be used in future studies investigating the role of each PFam54 protein in Lyme borreliosis pathogenesis.
Collapse
|
14
|
Hart TM, Dupuis AP, Tufts DM, Blom AM, Starkey SR, Rego ROM, Ram S, Kraiczy P, Kramer LD, Diuk-Wasser MA, Kolokotronis SO, Lin YP. Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathog 2021; 17:e1009801. [PMID: 34324600 PMCID: PMC8354441 DOI: 10.1371/journal.ppat.1009801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.
Collapse
Affiliation(s)
- Thomas M. Hart
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Danielle M. Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Simon R. Starkey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Ryan O. M. Rego
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
- Institute for Genomic Health, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, United States of America
| |
Collapse
|
15
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
16
|
Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis 2021; 12:101766. [PMID: 34161868 DOI: 10.1016/j.ttbdis.2021.101766] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.
Collapse
Affiliation(s)
- Katherine A Wolcott
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Strnad M, Rego ROM. The need to unravel the twisted nature of the Borrelia burgdorferi sensu lato complex across Europe. MICROBIOLOGY-SGM 2021; 166:428-435. [PMID: 32125267 DOI: 10.1099/mic.0.000899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lyme borreliosis is a vector-borne infection caused by bacteria under the Borrelia burgdorferi sensu lato complex, both in Europe and North America. Differential gene expression at different times throughout its infectious cycle allows the spirochete to survive very diverse environments within different mammalian hosts as well as the tick vector. To date, the vast majority of data about spirochetal proteins and their functions are from genetic studies carried out on North American strains of a single species, i.e. B. burgdorferi sensu stricto. The whole-genome sequences recently obtained for several European species/strains make it feasible to adapt and use genetic techniques to study inherent differences between them. This review highlights the crucial need to undertake independent studies of genospecies within Europe, given their varying genetic content and pathogenic potential, and differences in clinical manifestation.
Collapse
Affiliation(s)
- Martin Strnad
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Ryan O M Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
18
|
Sato K, Kumagai Y, Sekizuka T, Kuroda M, Hayashi T, Takano A, Gaowa, Taylor KR, Ohnishi M, Kawabata H. Vitronectin binding protein, BOM1093, confers serum resistance on Borrelia miyamotoi. Sci Rep 2021; 11:5462. [PMID: 33750855 PMCID: PMC7943577 DOI: 10.1038/s41598-021-85069-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Borrelia miyamotoi, a member of the tick-borne relapsing fever spirochetes, shows a serum-resistant phenotype in vitro. This ability of B. miyamotoi may contribute to bacterial evasion of the host innate immune system. To investigate the molecular mechanism of serum-resistance, we constructed a membrane protein-encoding gene library of B. miyamotoi using Borrelia garinii strain HT59G, which shows a transformable and serum-susceptible phenotype. By screening the library, we found that bom1093 and bom1515 of B. miyamotoi provided a serum-resistant phenotype to the recipient B. garinii. These B. miyamotoi genes are predicted to encode P35-like antigen genes and are conserved among relapsing fever borreliae. Functional analysis revealed that BOM1093 bound to serum vitronectin and that the C-terminal region of BOM1093 was involved in the vitronectin-binding property. Importantly, the B. garinii transformant was not serum-resistant when the C terminus-truncated BOM1093 was expressed. We also observed that the depletion of vitronectin from human serum enhances the bactericidal activity of BOM1093 expressing B. garinii, and the survival rate of BOM1093 expressing B. garinii in vitronectin-depleted serum is enhanced by the addition of purified vitronectin. Our data suggests that B. miyamotoi utilize BOM1093-mediated binding to vitronectin as a mechanism of serum resistance.
Collapse
Affiliation(s)
- Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Yumi Kumagai
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
- Department of Host Defense and Biochemical Research, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Takano
- Laboratory of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Gaowa
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, College of Hetao, Bayannur, China
| | - Kyle R Taylor
- College of Veterinary Medicine, Washington State University, Pullman, USA
| | - Makoto Ohnishi
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
19
|
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021; 10:pathogens10030281. [PMID: 33801255 PMCID: PMC8001052 DOI: 10.3390/pathogens10030281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.
Collapse
|
20
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
21
|
Abi ME, Ji Z, Jian M, Dai X, Bai R, Ding Z, Luo L, Chen T, Wang F, Wen S, Zhou G, Bao F, Liu A. Molecular Interactions During Borrelia burgdorferi Migration from the Vector to the Mammalian Nervous System. Curr Protein Pept Sci 2021; 21:517-526. [PMID: 31613726 DOI: 10.2174/1389203720666191015145714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022]
Abstract
Lyme disease (LD) is an infectious disease caused by the spirochetes of genus borrelia, which are transmitted by the ticks of the genus ixodes. LD is transmitted by the spirochete B. burgdorferi sensu lato. Once in contact with the host through a tick bite, the pathogen comes into contact with the host defense, and must escape this machinery to establish LD, thus using a large number of mechanisms involving the vector of the pathogen, the pathogen itself and also the host. The initial diagnosis of the disease can be made based on the clinical symptoms of LD and the disease can be treated and cured with antibiotics if the diagnosis is made early in the beginning of the disease. Contrariwise, if LD is left untreated, the pathogen disseminates throughout the tissues and organs of the body, where it establishes different types of disease manifestations. In the nervous system, the inflammation caused by B. burgdorferi is known as Lyme neuroborreliosis (LNB). LNB is one of the principal manifestations of LD. In this review, we systematically describe the different molecular interactions among B. burgdorferi, the vector (tick) and the mammalian host.
Collapse
Affiliation(s)
- Manzama-Esso Abi
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Miaomiao Jian
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Xiting Dai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Ruolan Bai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Zhe Ding
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Lisha Luo
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Taigui Chen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Feng Wang
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| |
Collapse
|
22
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
23
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
24
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
25
|
Talagrand-Reboul E, Westermann B, Raess MA, Schnell G, Cantero P, Barthel C, Ehret-Sabatier L, Jaulhac B, Boulanger N. Proteomic as an Exploratory Approach to Develop Vaccines Against Tick-Borne Diseases Using Lyme Borreliosis as a Test Case. Vaccines (Basel) 2020; 8:vaccines8030463. [PMID: 32825641 PMCID: PMC7564290 DOI: 10.3390/vaccines8030463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne diseases affecting humans and animals are on the rise worldwide. Vaccines constitute an effective control measure, but very few are available. We selected Lyme borreliosis, a bacterial infection transmitted by the hard tick Ixodes, to validate a new concept to identify vaccine candidates. This disease is the most common tick-borne disease in the Northern Hemisphere. Although attempts to develop a vaccine exist, none have been successfully marketed. In tick-borne diseases, the skin constitutes a very specific environment encountered by the pathogen during its co-inoculation with tick saliva. In a mouse model, we developed a proteomic approach to identify vaccine candidates in skin biopsies. We identified 30 bacterial proteins after syringe inoculation or tick inoculation of bacteria. Discovery proteomics using mass spectrometry might be used in various tick-borne diseases to identify pathogen proteins with early skin expression. It should help to better develop sub-unit vaccines based on a cocktail of several antigens, associated with effective adjuvant and delivery systems of antigens. In all vector-borne diseases, the skin deserves further investigation to better define its role in the elaboration of protective immunity against pathogens.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Benoit Westermann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Matthieu A. Raess
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Gilles Schnell
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Cathy Barthel
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (B.W.); (G.S.); (P.C.); (L.E.-S.)
| | - Benoit Jaulhac
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
- French National Reference Center on Lyme Borreliosis, CHRU, 67000 Strasbourg, France
| | - Nathalie Boulanger
- FMTS, UR7290: Groupe Borrelia, Université de Strasbourg, 67000 Strasbourg, France; (E.T.-R.); (M.A.R.); (C.B.); (B.J.)
- French National Reference Center on Lyme Borreliosis, CHRU, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
26
|
Dulipati V, Meri S, Panelius J. Complement evasion strategies of Borrelia burgdorferi sensu lato. FEBS Lett 2020; 594:2645-2656. [PMID: 32748966 DOI: 10.1002/1873-3468.13894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023]
Abstract
Borreliosis (Lyme disease) is a spirochetal disease caused by the species complex of Borrelia burgdorferi transmitted by Ixodes spp. ticks. Recorded to be the most common tick-borne disease in the world, the last two decades have seen an increase in disease incidence and distribution, exceeding 360 000 cases in Europe alone. If untreated, infection may cause skin symptoms, arthritis, and neurological or cardiac complications. Borrelia spirochetes have developed strategies to evade the mammalian host immune system. These include the complement system, which is an important first-line defense mechanism against invading microbes. To evade the complement, spirochetes bind soluble complement regulators factor H (FH), factor H-like protein, and C4bp to their outer surfaces. B. burgdorferi spirochetes can inhibit the classical pathway of complement by the outer surface protein (Osp) BBK32, which blocks the activation of the C1 complex, composed of C1q, C1r, and C1s. The FH-binding proteins of borreliae include Osps OspE, CspA, and CspZ. Following repeated infections, antibodies against these proteins develop and may provide functional immunity against borreliosis. This review discusses critical immune evasion strategies, focusing on complement evasion by borreliae.
Collapse
Affiliation(s)
- Vinaya Dulipati
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to vertebrate hosts by Ixodes spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, B. burgdorferi induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the Ixodes scapularis genome and characterization of tick immune defence pathways, such as the JAK–STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for B. burgdorferi persistence in the tick. In this Review, we summarize interactions between B. burgdorferi and I. scapularis during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host. Borrelia burgdorferi has a complex life cycle with several different hosts, causing Lyme disease when it infects humans. In this Review, Fikrig and colleagues discuss how B. burgdorferi infects and interacts with its tick vector to ensure onward transmission.
Collapse
|
28
|
Skare JT, Garcia BL. Complement Evasion by Lyme Disease Spirochetes. Trends Microbiol 2020; 28:889-899. [PMID: 32482556 DOI: 10.1016/j.tim.2020.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/12/2023]
Abstract
The complement system is an ancient arm of the innate immune system that plays important roles in pathogen recognition and elimination. Upon activation by microbes, complement opsonizes bacterial surfaces, recruits professional phagocytes, and causes bacteriolysis. Borreliella species are spirochetal bacteria that are transmitted to vertebrate hosts via infected Ixodes ticks and are the etiologic agents of Lyme disease. Pathogens that traffic in blood and other body fluids, like Borreliella, have evolved means to evade complement. Lyme disease spirochetes interfere with complement by producing a small arsenal of outer-surface lipoproteins that bind host complement components and manipulate their native activities. Here we review the current landscape of complement evasion by Lyme disease spirochetes and provide an update on recent discoveries.
Collapse
Affiliation(s)
- Jon T Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
29
|
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol 2020; 36:634-645. [PMID: 32456964 DOI: 10.1016/j.pt.2020.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/31/2023]
Abstract
Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To survive in vertebrate hosts, Lyme borreliae require the ability to escape from host defense mechanisms, in particular complement. To facilitate the evasion of complement, Lyme borreliae produce diverse proteins at different stages of infection, allowing them to persistently survive without being recognized by hosts and potentially resulting in host-specific infection. This review discusses the current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host associations driven by complement evasion.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, NY, USA.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany.
| |
Collapse
|
30
|
The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease. Infect Immun 2020; 88:IAI.00956-19. [PMID: 32122944 DOI: 10.1128/iai.00956-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.
Collapse
|
31
|
Lin YP, Frye AM, Nowak TA, Kraiczy P. New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle. Front Cell Infect Microbiol 2020; 10:1. [PMID: 32083019 PMCID: PMC7002432 DOI: 10.3389/fcimb.2020.00001] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Lyme disease (LD), which is caused by genospecies of the Borrelia burgdorferi sensu lato complex, is the most common vector-borne disease in the Northern hemisphere. Spirochetes are transmitted by Ixodes ticks and maintained in diverse vertebrate animal hosts. Following tick bite, spirochetes initially establish a localized infection in the skin. However, they may also disseminate hematogenously to several distal sites, including heart, joints, or the CNS. Because they need to survive in diverse microenvironments, from tick vector to mammalian hosts, spirochetes have developed multiple strategies to combat the numerous host defense mechanisms. One of these strategies includes the production of a number of complement-regulator acquiring surface proteins (CRASPs) which encompass CspA, CspZ, and OspE paralogs to blunt the complement pathway. These proteins are capable of preventing complement activation on the spirochete surface by binding to complement regulator Factor H. The genes encoding these CRASPs differ in their expression patterns during the tick-to-host infection cycle, implying that these proteins may exhibit different functions during infection. This review summarizes the recent published reports which investigated the roles that each of these molecules plays in conferring tick-borne transmission and dissemination in vertebrate hosts. These findings offer novel mechanistic insights into LD pathobiology and may facilitate the identification of new targets for preventive strategies against Lyme borreliosis.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Amber M. Frye
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Tristan A. Nowak
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Front Immunol 2019; 10:2722. [PMID: 31849943 PMCID: PMC6902028 DOI: 10.3389/fimmu.2019.02722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Borrelia (B.) mayonii sp. nov. has recently been reported as a novel human pathogenic spirochete causing Lyme disease (LD) in North America. Previous data reveal a higher spirochaetemia in the blood compared to patients infected by LD spirochetes belonging to the B. burgdorferi sensu lato complex, suggesting that this novel genospecies must exploit strategies to overcome innate immunity, in particular complement. To elucidate the molecular mechanisms of immune evasion, we utilized various methodologies to phenotypically characterize B. mayonii and to identify determinants involved in the interaction with complement. Employing serum bactericidal assays, we demonstrated that B. mayonii resists complement-mediated killing. To further elucidate the role of the key regulators of the alternative pathway (AP), factor H (FH), and FH-like protein 1 (FHL-1) in immune evasion of B. mayonii, serum adsorption experiments were conducted. The data revealed that viable spirochetes recruit both regulators from human serum and FH retained its factor I-mediated C3b-inactivating activity when bound to the bacterial cells. In addition, two prominent FH-binding proteins of approximately 30 and 18 kDa were detected in B. mayonii strain MN14-1420. Bioinformatics identified a gene, exhibiting 60% identity at the DNA level to the cspA encoding gene of B. burgdorferi. Following PCR amplification, the gene product was produced as a His-tagged protein. The CspA-orthologous protein of B. mayonii interacted with FH and FHL-1, and both bound regulators promoted inactivation of C3b in the presence of factor I. Additionally, the CspA ortholog counteracted complement activation by inhibiting the alternative and terminal but not the classical and Lectin pathways, respectively. Increasing concentrations of CspA of B. mayonii also strongly affected C9 polymerization, terminating the formation of the membrane attack complex. To assess the role of CspA of B. mayonii in facilitating serum resistance, a gain-of-function strain was generated, harboring a shuttle vector allowing expression of the CspA encoding gene under its native promotor. Spirochetes producing the native protein on the cell surface overcame complement-mediated killing, indicating that CspA facilitates serum resistance of B. mayonii. In conclusion, here we describe the molecular mechanism utilized by B. mayonii to resists complement-mediated killing by capturing human immune regulators.
Collapse
Affiliation(s)
- Lea Walter
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Karin Fritz-Wolf
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
33
|
Regulation of regulators: Role of the complement factor H-related proteins. Semin Immunol 2019; 45:101341. [PMID: 31757608 DOI: 10.1016/j.smim.2019.101341] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/15/2023]
Abstract
The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.
Collapse
|
34
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Tars K. Crystal structure of Borrelia burgdorferi outer surface protein BBA69 in comparison to the paralogous protein CspA. Ticks Tick Borne Dis 2019; 10:1135-1141. [DOI: 10.1016/j.ttbdis.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
35
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
36
|
Hepner S, Fingerle V, Heylen D, Marosevic D, Ghaffari K, Okeyo M, Sing A, Margos G. First investigations on serum resistance and sensitivity of Borrelia turcica. Ticks Tick Borne Dis 2019; 10:1157-1161. [PMID: 31239207 DOI: 10.1016/j.ttbdis.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Borrelia turcica is a reptile-associated Borrelia species that is vectored by the hard tick Hyalomma aegyptium. Tortoises of the genus Testudo represent the principal host of adult H. aegyptium, while immature stages are less host-specific and can be found on various vertebrates and even on humans. Borrelia turcica isolates were already successfully obtained from exotic tortoises suggesting that they are putative hosts. To the best of our knowledge, no further investigations on additional host association of B. turcica were conducted. Since many but not all adult Hyalomma ticks collected from tortoises are infected, questions arise about the direction of transmission between tick and tortoises for this Borrelia species. In addition, there is no information on the potential pathogenicity of B. turcica for humans. For other Borrelia species it has been shown that resistance or sensitivity to complement-active serum can be indicative of host species association(s). In this study, we explored for the first time the in vitro survival of B. turcica isolates from Turkey (IST7) and Greece (171601G) in the presence of 50% complement-active serum of different species (tortoise, turtle, human and bird). Both isolates showed resistance to tortoise serum, partial resistance to turtle serum but did not survive human and bird serum. These data suggest that indeed tortoises are reservoir host species for B. turcica while birds or humans are not. By implication these data suggest that B. turcica is not human pathogenic. Whether or not other reptile species, such as lizards, are also potential hosts, requires further investigation. However, as the life cycle of Borrelia is closely linked to that of their hosts and vectors, in vitro studies can only give clues about the actual in vivo behavior.
Collapse
Affiliation(s)
- Sabrina Hepner
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany.
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Dieter Heylen
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Durdica Marosevic
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Katayoon Ghaffari
- Clinic of Birds, Small Mammals, Reptiles and Ornamental Fish of the Ludwig-Maximilians University Munich, Faculty of Veterinary Medicine, Sonnenstr. 18, Oberschleissheim, 58764, Germany
| | - Mercy Okeyo
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Andreas Sing
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| |
Collapse
|
37
|
Gueye S, Seck SM, Kane Y, Tosi PO, Dahri S, Kounde C, Algouzmari I, Gouin A, Ged É, Allal A, Rostaing L. [Lyme nephritis in humans: Physio-pathological bases and spectrum of kidney lesions]. Nephrol Ther 2019; 15:127-135. [PMID: 30713068 DOI: 10.1016/j.nephro.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/26/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023]
Abstract
Known in less than half a century, borreliosis, or Lyme disease, is a zoonosis caused by the tick bite. It is the most common vector disease in Europe and the United States. Borrelia burgdorferi sensu lato, the bacterium in question, is fitted with a "cunning device" that allows it to trick the immune system and implant the infection chronically. It causes multi-system tissue damage mediated by the inflammatory response of the host. Renal involvement is rarely reported and is better known in dogs as Lyme nephritis. The first case of kidney impairment in the human being was described in 1999, and since then eight other cases have been reported. The involvement is preferentially glomerular; the histological forms vary between immune complex nephropathy and podocytopathy. The pathophysiological mechanisms appear to be triple: immune complex deposits, podocytic hyper-expression of the B7-1 membrane protein, and renal infiltration of inflammatory cells. On the basis of the accumulated knowledge of the disease in just over 40 years, this review aims at establishing the physio-pathological hypotheses of renal involvement in order to better define the histological lesions.
Collapse
Affiliation(s)
- Serigne Gueye
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France.
| | | | - Yaya Kane
- Université Assane Sek, Ziguinchor, Sénégal
| | - Pierre-Olivier Tosi
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Souad Dahri
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Clément Kounde
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Ilham Algouzmari
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Anna Gouin
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Étienne Ged
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Asma Allal
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France
| | - Lionel Rostaing
- Service de néphrologie-dialyse, centre hospitalier de Cahors, 335, rue du président-Wilson, 46000 Cahors, France; Département de néphrologie et transplantation d'organes, CHU Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France; Inserm U563, IFR-BMT, CHU Purpan, 105, avenue de Cassalardit, 31300 Toulouse, France; Université Paul Sabatier, route de Narbonne, 31330 Toulouse, France
| |
Collapse
|
38
|
Federizon J, Lin YP, Lovell JF. Antigen Engineering Approaches for Lyme Disease Vaccines. Bioconjug Chem 2019; 30:1259-1272. [PMID: 30987418 DOI: 10.1021/acs.bioconjchem.9b00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing rates of Lyme disease necessitate preventive measures such as immunization to mitigate the risk of contracting the disease. At present, there is no human Lyme disease vaccine available on the market. Since the withdrawal of the first and only licensed Lyme disease vaccine based on lipidated recombinant OspA, vaccine and antigen research has aimed to overcome its risks and shortcomings. Replacement of the putative cross-reactive T-cell epitope in OspA via mutation or chimerism addresses the potential risk of autoimmunity. Multivalent approaches in Lyme disease vaccines have been pursued to address sequence heterogeneity of Lyme borreliae antigens and to induce a repertoire of functional antibodies necessary for efficient heterologous protection. This Review summarizes recent antigen engineering strategies that have paved the way for the development of next generation vaccines against Lyme disease, some of which have reached clinical testing. Bioconjugation methods that incorporate antigens to self-assembling nanoparticles for immune response potentiation are also discussed.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health , Albany , New York 12208 , United States.,Department of Biomedical Sciences , State University of New York at Albany , Albany , New York 12222 , United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
39
|
Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathog 2019; 15:e1007659. [PMID: 30897158 PMCID: PMC6445466 DOI: 10.1371/journal.ppat.1007659] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/02/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto, termed BBK32-C, binds and inhibits the initiating serine protease of the human classical complement pathway, C1r. In this study we investigated the function of BBK32 orthologues of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B. afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding to purified C1r protease and C1 complex, and potent inhibition of the classical complement pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resemble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but different in BGD19. The resulting chimeric protein was designated BXK32-C and this BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the three residues targeted in the BXK32-C chimera are surface-exposed, further supporting their potential relevance in C1r binding and inhibition. Additional binding assays showed that BBK32-C only recognized C1r fragments containing the serine protease domain. The structure-function studies reported here improve our understanding of how BBK32 recognizes and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-associated spirochetes of the B. burgdorferi sensu lato complex.
Collapse
|
40
|
Tufts DM, Hart TM, Chen GF, Kolokotronis SO, Diuk-Wasser MA, Lin YP. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol Microbiol 2019; 111:868-882. [PMID: 30666741 DOI: 10.1111/mmi.14209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small- and medium-sized mammals, birds, reptiles, and humans. Strain-to-strain variation in host-specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain-to-strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain-to-strain variation in host competence and discuss the evidence that supports the role of spirochete-produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.
Collapse
Affiliation(s)
- Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Thomas M Hart
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Grace F Chen
- Department of Biology, Misericordia University, Dallas, PA, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
41
|
Mühleip JJ, Lin YP, Kraiczy P. Further Insights Into the Interaction of Human and Animal Complement Regulator Factor H With Viable Lyme Disease Spirochetes. Front Vet Sci 2019; 5:346. [PMID: 30766876 PMCID: PMC6365980 DOI: 10.3389/fvets.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato (s.l.) complex differ in their ability to establish infection and to survive in diverse vertebrate hosts. Association with and adaption to various hosts most likely correlates with the spirochetes' ability to acquire complement regulator factor H (FH) to overcome the host's innate immune response. Here we assessed binding of serum FH from human and various animals including bovine, cat, chicken, dog, horse, mouse, rabbit, and rat to viable B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. spielmanii, B. valaisiana, and B. lusitaniae. Spirochetes ectopically producing CspA orthologs of B. burgdorferi s.s., B. afzelii, and B. spielmanii, CspZ, ErpC, and ErpP, respectively, were also investigated. Our comparative analysis using viable bacterial cells revealed a striking heterogeneity among Lyme disease spirochetes regarding their FH-binding patterns that almost mirrors the serum susceptibility of the respective borrelial genospecies. Moreover, native CspA from B. burgdorferi s.s., B. afzelii, and B. spielmanii as well as CspZ were identified as key ligands of FH from human, horse, and rat origin while ErpP appears to bind dog and mouse FH and to a lesser extent human FH. By contrast, ErpC did not bind FH from human as well as from animal origin. These findings indicate a strong restriction of distinct borrelial proteins toward binding of polymorphic FH of various vertebrate hosts.
Collapse
Affiliation(s)
- Jovana Jasmin Mühleip
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, United States.,Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
42
|
Marcinkiewicz AL, Dupuis AP, Zamba-Campero M, Nowak N, Kraiczy P, Ram S, Kramer LD, Lin YP. Blood treatment of Lyme borreliae demonstrates the mechanism of CspZ-mediated complement evasion to promote systemic infection in vertebrate hosts. Cell Microbiol 2019; 21:e12998. [PMID: 30571845 DOI: 10.1111/cmi.12998] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement-mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ-deficient mutant and a strain that expressed an FH-nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3-deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.
Collapse
Affiliation(s)
- Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alan P Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Maxime Zamba-Campero
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura D Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
43
|
Banović P, Mijatović D, Lalošević D. New pathophysiological aspects of migratory erythema development in Lyme borreliosis. PRAXIS MEDICA 2019. [DOI: 10.5937/pramed1904037b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
44
|
Stanek G, Strle F. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol Rev 2018; 42:233-258. [PMID: 29893904 DOI: 10.1093/femsre/fux047] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022] Open
Abstract
Lyme borreliosis is caused by certain genospecies of the Borrelia burgdorferi sensu lato complex, which are transmitted by hard ticks of the genus Ixodes. The most common clinical manifestation is erythema migrans, an expanding skin redness that usually develops at the site of a tick bite and eventually resolves even without antibiotic treatment. The infecting pathogens can spread to other tissues and organs, resulting in manifestations that can involve the nervous system, joints, heart and skin. Fatal outcome is extremely rare and is due to severe heart involvement; fetal involvement is not reliably ascertained. Laboratory support-mainly by serology-is essential for diagnosis, except in the case of typical erythema migrans. Treatment is usually with antibiotics for 2 to 4 weeks; most patients recover uneventfully. There is no convincing evidence for antibiotic treatment longer than 4 weeks and there is no reliable evidence for survival of borreliae in adequately treated patients. European Lyme borreliosis is a frequent disease with increasing incidence. However, numerous scientifically questionable ideas on its clinical presentation, diagnosis and treatment may confuse physicians and lay people. Since diagnosis of Lyme borreliosis should be based on appropriate clinical signs, solid knowledge of clinical manifestations is essential.
Collapse
Affiliation(s)
- Gerold Stanek
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia
| |
Collapse
|
45
|
Bergström S, Normark J. Microbiological features distinguishing Lyme disease and relapsing fever spirochetes. Wien Klin Wochenschr 2018; 130:484-490. [PMID: 30074091 PMCID: PMC6096528 DOI: 10.1007/s00508-018-1368-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
The recent proposal of splitting the genus Borrelia into two genera in the newly formed family of Borreliaceae, i. e. Borrelia and Borreliella has motivated us to reflect upon how these organisms has been characterized and differentiated. This article therefore aims to take a closer look on the biology and virulence attributes of the two suggested genera, i. e. those causing Lyme borreliosis and relapsing fever borreliosis. Both genera have much in common with similar infection biological features. They are both characterized as bacterial zoonoses, transmitted by hematophagous arthropods with almost identical microbiological appearance. Nevertheless, a closer look at the genotypic and phenotypic characteristics clearly reveals several differences that might motivate the suggested split. On the other hand, a change of this well-established classification within the genus Borrelia might impose an economical burden as well as a great confusion in society, including medical and scientific societies as well as the general population.
Collapse
Affiliation(s)
- Sven Bergström
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, 901 87, Umeå, Sweden. .,Umeå Center for Microbial Research, Umeå University, Umeå, Sweden. .,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
46
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Kraiczy P, Tars K. Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis. Sci Rep 2018; 8:11286. [PMID: 30050126 PMCID: PMC6062577 DOI: 10.1038/s41598-018-29651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/14/2018] [Indexed: 11/09/2022] Open
Abstract
Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia. .,Riga Stradins University, Department of Human Physiology and Biochemistry, Dzirciema 16, LV-1007, Riga, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, D-60596, Frankfurt am Main, Germany
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia.,University of Latvia, Faculty of Biology, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
47
|
Borrelia Host Adaptation Protein (BadP) Is Required for the Colonization of a Mammalian Host by the Agent of Lyme Disease. Infect Immun 2018; 86:IAI.00057-18. [PMID: 29685985 DOI: 10.1128/iai.00057-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease (LD), uses host-derived signals to modulate gene expression during the vector and mammalian phases of infection. Microarray analysis of mutants lacking the B orrelia host adaptation regulator (BadR) revealed the downregulation of genes encoding enzymes whose role in the pathophysiology of B. burgdorferi is unknown. Immunoblot analysis of the badR mutants confirmed reduced levels of these enzymes, and one of these enzymes, encoded by bb0086, shares homology to prokaryotic magnesium chelatase and Lon-type proteases. The BB0086 levels in B. burgdorferi were higher under conditions mimicking those in fed ticks. Mutants lacking bb0086 had no apparent in vitro growth defect but were incapable of colonizing immunocompetent C3H/HeN or immunodeficient SCID mice. Immunoblot analysis revealed reduced levels of proteins critical for the adaptation of B. burgdorferi to the mammalian host, such as OspC, DbpA, and BBK32. Both RpoS and BosR, key regulators of gene expression in B. burgdorferi, were downregulated in the bb0086 mutants. Therefore, we designated BB0086 the B orrelia host adaptation protein (BadP). Unlike badP mutants, the control strains established infection in C3H/HeN mice at 4 days postinfection, indicating an early colonization defect in mutants due to reduced levels of the lipoproteins/regulators critical for initial stages of infection. However, badP mutants survived within dialysis membrane chambers (DMCs) implanted within the rat peritoneal cavity but, unlike the control strains, did not display complete switching of OspA to OspC, suggesting incomplete adaptation to the mammalian phase of infection. These findings have opened a novel regulatory mechanism which impacts the virulence potential of B burgdorferi.
Collapse
|
48
|
Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, Ram S, Kraiczy P, Lin YP. Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog 2018; 14:e1007106. [PMID: 29813137 PMCID: PMC5993331 DOI: 10.1371/journal.ppat.1007106] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Borrelia burgdorferi sensu lato (Bbsl), the causative agent of Lyme disease, establishes an initial infection in the host's skin following a tick bite, and then disseminates to distant organs, leading to multisystem manifestations. Tick-to-vertebrate host transmission requires that Bbsl survives during blood feeding. Complement is an important innate host defense in blood and interstitial fluid. Bbsl produces a polymorphic surface protein, CspA, that binds to a complement regulator, Factor H (FH) to block complement activation in vitro. However, the role that CspA plays in the Bbsl enzootic cycle remains unclear. In this study, we demonstrated that different CspA variants promote spirochete binding to FH to inactivate complement and promote serum resistance in a host-specific manner. Utilizing a tick-to-mouse transmission model, we observed that a cspA-knockout B. burgdorferi is eliminated from nymphal ticks in the first 24 hours of feeding and is unable to be transmitted to naïve mice. Conversely, ectopically producing CspA derived from B. burgdorferi or B. afzelii, but not B. garinii in a cspA-knockout strain restored spirochete survival in fed nymphs and tick-to-mouse transmission. Furthermore, a CspA point mutant, CspA-L246D that was defective in FH-binding, failed to survive in fed nymphs and at the inoculation site or bloodstream in mice. We also allowed those spirochete-infected nymphs to feed on C3-/- mice that lacked functional complement. The cspA-knockout B. burgdorferi or this mutant strain complemented with cspA variants or cspA-L246D was found at similar levels as wild type B. burgdorferi in the fed nymphs and mouse tissues. These novel findings suggest that the FH-binding activity of CspA protects spirochetes from complement-mediated killing in fed nymphal ticks, which ultimately allows Bbsl transmission to mammalian hosts.
Collapse
Affiliation(s)
- Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
| | - Ngoc Thien Thu Nguyen
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Departments of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Science, State University of New York at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Plasticity in early immune evasion strategies of a bacterial pathogen. Proc Natl Acad Sci U S A 2018; 115:E3788-E3797. [PMID: 29610317 DOI: 10.1073/pnas.1718595115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Borrelia burgdorferi is one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy of B. burgdorferi, orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.
Collapse
|
50
|
Outer Membrane Proteins BB0405 and BB0406 Are Immunogenic, but Only BB0405 Is Required for Borrelia burgdorferi Infection. Infect Immun 2017; 85:IAI.00803-16. [PMID: 27920211 DOI: 10.1128/iai.00803-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
We recently identified the Borrelia burgdorferi outer membrane protein (OMP) BB0406 and found that the gene encoding this OMP was cotranscribed with the gene encoding the OMP BB0405. Interestingly, BB0405 and BB0406 share 59% similarity and are grouped into the same B. burgdorferi paralogous gene family. Given their overall similarity, it is plausible that both OMPs have similar or overlapping functions in this pathogenic spirochete. BB0405 was recently shown to be required for mammalian infection despite the observations that BB0405 is poorly immunogenic and not recognized during mouse or human infection. BB0405 orthologs have also been shown to bind the complement regulator protein factor H. Therefore, to better elucidate the role of BB0405 and its paralog BB0406 during infection and in serum resistance, we examined both proteins in animal infection, factor H binding, and serum sensitivity assays. Our combined results suggest that BB0405- and BB0406-specific antibodies are borreliacidal and that both OMPs are immunogenic during nonhuman primate infection. Additionally, while BB0405 was found to be required for establishing mouse infection, BB0406 was not found to be essential for infectivity. In contrast to data from previous reports, however, neither OMP was found to bind human factor H or to be required for enhancing serum resistance of B. burgdorferi in vitro.
Collapse
|