1
|
Li ZB, Xiang M, Yang T, Hu H, Shu M, Huang CQ. The complete mitochondrial genome analysis of Haemaphysalis hystricis Supino, 1897 (Ixodida: Ixodidae) and its phylogenetic implications. Open Life Sci 2025; 20:20220875. [PMID: 40109772 PMCID: PMC11920765 DOI: 10.1515/biol-2022-0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 03/22/2025] Open
Abstract
In order to study the sequence characteristics, gene order, and codon usage of the mitochondrial genome of Haemaphysalis hystricis, and to explore its phylogenetic relationship, a total of 36 H. hystricis isolated from dogs were used as sample in this study. The mitochondrial genome of a H. hystricis was amplified with several pairs of specific primers by PCR, and was sequenced by first generation sequencing. The mitochondrial genome of H. hystricis was 14,719 bp in size, and it contained 37 genes including 13 protein coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and AT-rich region. Each PCG sequence had different lengths, the sequence longest and shortest gene were nad5 (1,652 bp) and atp8 (155 bp), respectively, among the 13 PCGs. All PCGs used ATN as their initiation codon, 10 of 13 PCGs used TAN as their termination codon, and 3 of which had incomplete termination codon (TA/T). Most of the 22 tRNAs with different sizes could form the classical cloverleaf structures expect for tRNA-Ala, tRNA-Ser1, tRNA-Ser2, and tRNA-Glu, and there were base mismatch (U-U and U-G) in all the 22 tRNAs sequences. Two rRNAs, namely rrnL and rrnS, had different lengths, rrnL located between tRNA-Leu1 and tRNA-Val, and rrnS located between tRNA-Val and tRNA-Ile, respectively. Two AT (D-loop) control areas with different lengths were in the mitochondrial genome, the NCRL was located between tRNA-Leu2 and tRNA-Cys, and the NCRS was located between rrnS and tRNA-Ile. The complete mitochondrial genome sequence of H. hystricis was AT preferences, and the gene order is the same as that of other Haemaphysalis family ticks. However, phylogenetic analysis showed that H. hystricis was most closely related to Haemaphysalis longicornis among the selected ticks. The mitochondrial genome not only enriches the genome database, provides more novel genetic markers for identifying tick species, and studying its molecular epidemiology, population genetics, systematics, but also have implications for the diagnosis, prevention, and control of ticks and tick-borne diseases in animals and humans.
Collapse
Affiliation(s)
- Zhong-Bo Li
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
- College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
| | - Min Xiang
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Tian Yang
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Hui Hu
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Ming Shu
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Cui-Qin Huang
- College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
| |
Collapse
|
2
|
Hekimoğlu O, Sağlam İK. High Crimean-Congo hemorrhagic fever incidence linked to greater genetic diversity and differentiation in Hyalomma marginatum populations in Türkiye. Parasit Vectors 2024; 17:477. [PMID: 39587660 PMCID: PMC11590318 DOI: 10.1186/s13071-024-06530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Ticks are crucial vectors of a wide range of pathogens, posing significant threats to human and animal health globally. Understanding the genetic basis of tick biology and host-parasite interactions is essential for developing effective control programs. This study investigates the fine-scale genetic structure of Hyalomma marginatum Koch, 1844, the primary vector of Crimean-Congo hemorrhagic fever (CCHF) in Türkiye. Despite its significant public health importance, information regarding its population structure and genetic diversity is quite limited. METHODS We used restriction site-associated DNA sequencing (RAD-Seq) to obtain genome-wide sequence data from 10 tick populations in Türkiye, collected from regions with low, moderate, and high incidence rates of CCHF. Based on these data, we determined population structure and diversity of populations using principal component analysis (PCA) and admixture analysis. Furthermore, we calculated pairwise FST and utilized discriminant analysis of principal components (DAPC) to understand genetic differentiation between populations. RESULTS PCA and admixture analysis indicated minimal genetic structure between populations, but we detected notable genetic differentiation and high genetic diversity from regions with high CCHF rates. Furthermore, our DAPC identified 31 significant single-nucleotide polymorphisms (SNPs) associated with regions with high CCHF incidence, with 25 SNPs located near genes involved in critical biological functions such as nucleic acid binding, transmembrane transport, and proteolysis. These findings suggest that genetic variations in these regions may confer adaptive advantages in environments with high pathogen loads. CONCLUSIONS This study provides the first comprehensive analysis of H. marginatum genetic diversity in Türkiye, revealing significant differentiation in populations from CCHF-endemic regions. These results underscore the importance of considering fine-scale genetic diversity to fully understand the drivers of genetic variation in ticks and their implications for vectorial capacity.
Collapse
Affiliation(s)
- Olcay Hekimoğlu
- Faculty of Science, Department of Biology, Division of Ecology, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.
| | - İsmail K Sağlam
- Faculty of Science, Department of Molecular Biology and Genetics, Koc University, 34450, Ýstanbul, Türkiye
| |
Collapse
|
3
|
Croci C, Erriquez L, Bisaglia B, Bellinzona G, Olivieri E, Sassera D, Castelli M. Genome sequence of Ehrlichia muris from Ixodes ricinus collected in Italy on a migratory bird provides epidemiological and evolutionary insights. Ticks Tick Borne Dis 2024; 15:102409. [PMID: 39488869 DOI: 10.1016/j.ttbdis.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Ticks are prominent vectors of several zoonotic diseases. Tick-borne pathogens include the members of the genus Ehrlichia, which are obligate intracellular bacteria infecting immune and hematopoietic cells. Ehrlichia muris predominantly affects rodents, but was also reported to be a human pathogen. The known geographical distribution of this bacterium ranges from Asia, to the USA and eastern Europe. In the present work, we report the finding of E. muris in an Ixodes ricinus tick collected from a migratory bird (Turdus iliacus) in Italy, southern Europe. We sequenced the total DNA from this tick sample, and, thanks to a dedicated bioinformatic pipeline, selectively assembled the genome of the bacterium, which represents the first one for E. muris from Europe. Phylogenetic and comparative genomic analyses were then performed. Accounting for tick species distribution, bird migratory routes, and molecular phylogeny of the bacterium, it is likely that this bird transported the tick to Italy from an endemic area of E. muris, such as eastern Europe. In addition, comparative genomic analyses highlighted that E. muris and other Ehrlichia spp. display copy number variations in two families of membrane proteins, likely due to recent gene duplication, deletion and recombination events. These differences are probably a source of variability for surface antigens to evade host immunity, with a potential role in host adaptation and specificity. The present results underline the impact of migratory birds on the spread of tick-borne pathogens towards non-endemic areas, highlighting the need for further epidemiological surveillance at bird ringing stations in Italy, and advocating further investigations on possible local transmission of E. muris in competent mammalian hosts.
Collapse
Affiliation(s)
- Carlo Croci
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Luca Erriquez
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
4
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
5
|
Fedorov D, Hornok S. Checklist of hosts, illustrated geographical range, and ecology of tick species from the genus Ixodes (Acari, Ixodidae) in Russia and other post-Soviet countries. Zookeys 2024; 1201:255-343. [PMID: 38779584 PMCID: PMC11109513 DOI: 10.3897/zookeys.1201.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Hard ticks (Acari: Ixodidae) are the economically and ecologically most important blood-sucking arthropod vectors that can transmit disease agents under temperate climate. In this group, the highest number of species (currently nearing 270) belongs to the genus Ixodes. For this review, more than 400 papers related to this genus in the context of Russia were checked for data on the host records, locations of collection, as well as ecology of assigned tick species. This monograph compensates for the lack of a similarly comprehensive English-language overview of Ixodes species in the region of Russia for nearly half century, and also makes a large set of data easily available for international readers, which is especially important if the original source is difficult to access from outside this country. In addition, the data from a significant number of papers on this topic available only in the Russian language are made accessible through this work.
Collapse
Affiliation(s)
- Denis Fedorov
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Zoological Institute of the Russian Academy of Sciences (ZIN-RAS), St. Petersburg, RussiaZoological Institute of the Russian Academy of Sciences (ZIN-RAS)St. PetersburgRussia
| | - Sándor Hornok
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, HungaryHUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, HungaryUniversity of Veterinary MedicineBudapestHungary
| |
Collapse
|
6
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
7
|
Daněk O, Hrbatová A, Volfová K, Ševčíková S, Lesiczka P, Nováková M, Ghodrati S, Hrazdilova K, Veneziano V, Napoli E, Otranto D, Montarsi F, Mihalca AD, Mechouk N, Adamík P, Modrý D, Zurek L. Italian peninsula as a hybridization zone of Ixodes inopinatus and I. ricinus and the prevalence of tick-borne pathogens in I. inopinatus, I. ricinus, and their hybrids. Parasit Vectors 2024; 17:196. [PMID: 38685096 PMCID: PMC11059663 DOI: 10.1186/s13071-024-06271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.
Collapse
Affiliation(s)
- Ondřej Daněk
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Alena Hrbatová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
| | - Karolina Volfová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylvie Ševčíková
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Paulina Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Markéta Nováková
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sajjad Ghodrati
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Fabrizio Montarsi
- Instituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Noureddine Mechouk
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Peter Adamík
- Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| | - David Modrý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- CEITEC University of Veterinary Sciences, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Díaz-Sánchez S, Hernández-Triana LM, Labruna MB, Merino O, Mosqueda J, Nava S, Szabó M, Tarragona E, Venzal JM, de la Fuente J, Estrada-Peña A. Low Genetic Diversity of the Only Clade of the Tick Rhipicephalus microplus in the Neotropics. Pathogens 2023; 12:1344. [PMID: 38003808 PMCID: PMC10675012 DOI: 10.3390/pathogens12111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study addresses the variability of the mitochondrial cytochrome oxidase subunit I (COI) and 16S rDNA (16S), and nuclear internal transcriber spacer ITS2 (ITS2) genes in a set of field-collected samples of the cattle tick, Rhipicephalus microplus (Canestrini, 1888), and in geo-referenced sequences obtained from GenBank. Since the tick is currently considered to be a complex of cryptic taxa in several regions of the world, the main aims of the study are (i) to provide evidence of the clades of the tick present in the Neotropics, (ii) to explore if there is an effect of climate traits on the divergence rates of the target genes, and (iii) to check for a relationship between geographical and genetic distance among populations (the closest, the most similar, meaning for slow spread). We included published sequences of Rhipicephalus annulatus (Nearctic, Afrotropical, and Mediterranean) and R. microplus (Afrotropical, Indomalayan) to fully characterize the Neotropical populations (total: 74 16S, 44 COI, and 49 ITS2 sequences included in the analysis). Only the clade A of R. microplus spread in the Nearctic-Neotropics. Both the K and Lambda's statistics, two measures of phylogenetic signal, support low divergence rates of the tested genes in populations of R. microplus in the Neotropics. These tests demonstrate that genetic diversity of the continental populations does not correlate either with the geographic distance among samples or with environmental variables. The low variability of these genes may be due to a combination of factors like (i) the recent introduction of the tick in the Neotropics, (ii) a large, effective, and fast exchange of populations, and (iii) a low effect of climate on the evolution rates of the target genes. These results have implications for the ecological studies and control of cattle tick infestations.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (J.d.l.F.)
| | | | | | - Octavio Merino
- Faculty of Veterinary Medicine, Universidad Autónoma de Tamaulipas, Tamaulipas 87000, Mexico;
| | - Juan Mosqueda
- Laboratory for Research on Immunology and Vaccines, Facultad de Veterinaria, Querétaro 76230, Mexico;
| | - Santiago Nava
- IDICAL (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), E.E.A. Rafaela, Rafaela 2300, Santa Fe, Argentina; (S.N.); (E.T.)
| | - Matias Szabó
- Hospital Veterinário, Universidade Federal de Uberlândia, Uberlândia 38405-314, MG, Brazil;
| | - Evelina Tarragona
- IDICAL (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), E.E.A. Rafaela, Rafaela 2300, Santa Fe, Argentina; (S.N.); (E.T.)
| | - José M. Venzal
- Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay;
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, 50009 Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Rollins RE, Margos G, Brachmann A, Krebs S, Mouchet A, Dingemanse NJ, Laatamna A, Reghaissia N, Fingerle V, Metzler D, Becker NS, Chitimia-Dobler L. German Ixodes inopinatus samples may not actually represent this tick species. Int J Parasitol 2023; 53:751-761. [PMID: 37516335 DOI: 10.1016/j.ijpara.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/31/2023]
Abstract
Ticks are important vectors of human and animal pathogens, but many questions remain unanswered regarding their taxonomy. Molecular sequencing methods have allowed research to start understanding the evolutionary history of even closely related tick species. Ixodes inopinatus is considered a sister species and highly similar to Ixodes ricinus, an important vector of many tick-borne pathogens in Europe, but identification between these species remains ambiguous with disagreement on the geographic extent of I. inopinatus. In 2018-2019, 1583 ticks were collected from breeding great tits (Parus major) in southern Germany, of which 45 were later morphologically identified as I. inopinatus. We aimed to confirm morphological identification using molecular tools. Utilizing two genetic markers (16S rRNA, TROSPA) and whole genome sequencing of specific ticks (n = 8), we were able to determine that German samples, morphologically identified as I. inopinatus, genetically represent I. ricinus regardless of previous morphological identification, and most likely are not I. ricinus/I. inopinatus hybrids. Further, our results showed that the entire mitochondrial genome, let alone singular mitochondrial genes (i.e., 16S), is unable to distinguish between I. ricinus and I. inopinatus. Our results suggest that I. inopinatus is geographically isolated as a species (northern Africa and potentially southern Spain and Portugal) and brings into question whether I. inopinatus exists in central Europe. Our results highlight the probable existence of I. inopinatus and the power of utilizing genomic data in answering questions regarding tick taxonomy.
Collapse
Affiliation(s)
- Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany.
| | - Gabriele Margos
- National Reference Center for Borrelia, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleißheim, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Munich, Germany
| | - Alexia Mouchet
- Behavioural Ecology Group, LMU Munich/Department of Biology, Planegg-Martinsried, Germany; IDEEV UMR Evolution, Génomes, Comportement, Ecologie, IRD, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Niels J Dingemanse
- Behavioural Ecology Group, LMU Munich/Department of Biology, Planegg-Martinsried, Germany
| | - AbdElkarim Laatamna
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117, Djelfa, Algeria
| | - Nassiba Reghaissia
- Laboratory of Sciences and Living Techniques, Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Annaba Road 41000, Souk Ahras, Algeria
| | - Volker Fingerle
- National Reference Center for Borrelia, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleißheim, Germany
| | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Germany
| | | |
Collapse
|
10
|
Omazic A, Han S, Albihn A, Ullman K, Choklikitumnuey P, Perissinotto D, Grandi G. Ixodid tick species found in northern Sweden - Data from a frontier area. Ticks Tick Borne Dis 2023; 14:102244. [PMID: 37611507 DOI: 10.1016/j.ttbdis.2023.102244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Environmental and climatic changes in northern Europe have shaped a geographical area in which new tick species may become established and introduce new tick-borne pathogens. In recent decades, ticks have expanded their latitudinal and altitudinal range limits in northern Sweden. In this study, ticks were collected in 2018 and 2019 in northern Sweden from different hosts, mainly from dogs, cats and humans. The ticks in 2018 (n = 2141, collected from 65 municipalities in 11 provinces) were identified as Ixodes ricinus (n = 2108, 98.5%), Ixodes persulcatus (n = 18, 0.8%), Ixodes trianguliceps (n = 14, 0.7%) and Hyalomma marginatum (n = 1, 0.05%). The ticks collected in 2019 (n = 519, across a smaller area than in 2018, i.e. Sweden's four northernmost provinces) were identified as I. ricinus (n = 242, 46.6%) and I. persulcatus (n = 277, 53.4%). Among those collected in 2019, the majority of I. ricinus (n = 111, 45.9%) were submitted from the province of Västerbotten, while most I. persulcatus (n = 259, 93.5%) were collected in the province of Norrbotten. This study provides updated figures on the geographical distribution of two Ixodes species in northern Sweden. The results confirmed I. ricinus to be the dominant species and that I. persulcatus has enlarged its distributional area compared with previous reports. Updated knowledge of tick distribution is fundamental for the creation of risk maps and will allow relevant advice to be provided to the general public, suggesting measures to prevent tick bites and consequently tick-borne diseases.
Collapse
Affiliation(s)
- Anna Omazic
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden.
| | - Seungeun Han
- Department of Epidemiology and Disease Control, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Ann Albihn
- Department of Epidemiology and Disease Control, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Phimphanit Choklikitumnuey
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Debora Perissinotto
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Giulio Grandi
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Microbiology, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| |
Collapse
|
11
|
Numan M, Alouffi A, Almutairi MM, Tanaka T, Ahmed H, Akbar H, Rashid MI, Tsai KH, Ali A. First Detection of Theileria sinensis-like and Anaplasma capra in Ixodes kashmiricus: With Notes on cox1-Based Phylogenetic Position and New Locality Records. Animals (Basel) 2023; 13:3232. [PMID: 37893956 PMCID: PMC10603726 DOI: 10.3390/ani13203232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ixodes ticks transmit Theileria and Anaplasma species to a wide range of animals. The spreading of ticks and tick-borne pathogens has been attributed to transhumant herds, and research on these uninvestigated issues has been neglected in many countries, including Pakistan. Recently, we used internal transcribed spacer (ITS) and 16S ribosomal DNA partial sequences to genetically characterize Ixodes kashmiricus ticks and their associated Rickettsia spp. However, the data on its cox1 sequence and associated Theileria spp. and Anaplasma spp. are missing. This study aimed to genetically characterize I. kashmiricus based on the cox1 sequence and their associated Theileria spp. and Anaplasma spp. The I. kashmiricus ticks were collected from small ruminants: sheep (Ovis aries) and goats (Capra hircus) of transhumant herds in district Shangla, Dir Upper and Chitral, Khyber Pakhtunkhwa (KP), Pakistan. Out of 129 examined hosts, 94 (72.87%) (56 sheep and 38 goats) were infested by 352 ticks, including adult females (175; 49.7%) followed by nymphs (115; 32.7%) and males (62; 17.6%). For molecular analyses, 121 ticks were subjected to DNA isolation and PCR for the amplification of the cox1 sequence for I. kashmiricus, 18S rDNA for Theileria spp. and 16S rDNA sequences for Anaplasma spp. The obtained cox1 sequence showed 89.29%, 88.78%, and 88.71% identity with Ixodes scapularis, Ixodes gibbosus, and Ixodes apronophorus, respectively. Phylogenetically, the present cox1 sequence clustered with the Ixodes ricinus complex. Additionally, the 18S rDNA sequence showed 98.11% maximum identity with Theileria cf. sinensis and 97.99% identity with Theileria sinensis. Phylogenetically, Theileria spp. clustered with the T. cf. sinensis and T. sinensis. In the case of Anaplasma spp., the 16S rDNA sequence showed 100% identity with Anaplasma capra and phylogenetically clustered with the A. capra. PCR-based DNA detection targeting the amplification of groEL and flaB sequences of Coxiella spp. and Borrelia spp., respectively, was unsuccessful. This is the first phylogenetic report based on cox1 and new locality records of I. kashmiricus, and the associated T. sinensis-like and A. capra. Significant tick surveillance studies are needed in order to determine the epidemiology of Ixodes ticks and their associated pathogens.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak ShahZad, Islamabad 45550, Pakistan
| | - Haroon Akbar
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore 54200, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore 54200, Pakistan
| | - Kun-Hsien Tsai
- Global Health Program, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 106319, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
12
|
Hrazdilova K, Danek O, Hrbatova A, Cervena B, Noskova E, Adamik P, Votypka J, Mihalca AD, Noureddine M, Modry D, Zurek L. Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus. Parasit Vectors 2023; 16:354. [PMID: 37814284 PMCID: PMC10561450 DOI: 10.1186/s13071-023-05971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ). METHODS A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis. RESULTS Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. CONCLUSIONS We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.
Collapse
Affiliation(s)
- Kristyna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Ondrej Danek
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
| | - Alena Hrbatova
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
| | - Barbora Cervena
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Noskova
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Peter Adamik
- Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Votypka
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Mechouk Noureddine
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - David Modry
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Zakham F, Korhonen EM, Puonti PT, Castrén RS, Uusitalo R, Smura T, Kant R, Vapalahti O, Sironen T, Kinnunen PM. Molecular detection of pathogens from ticks collected from dogs and cats at veterinary clinics in Finland. Parasit Vectors 2023; 16:327. [PMID: 37704990 PMCID: PMC10498522 DOI: 10.1186/s13071-023-05864-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Ticks carry microbes, some of which are pathogenic for humans and animals. To assess this One Health challenge, 342 ticks were collected from pet dogs and cats at 10 veterinary clinics in Finland as part of the European project "Protect Our Future Too". METHODS The tick species were identified, and ticks were screened with quantitative PCR (qPCR) for tick-borne pathogens, including Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Ehrlichia canis, Anaplasma spp., Candidatus Neoehrlichia mikurensis, tick-borne encephalitis virus (TBEV), and Babesia spp. For comparison, a subset of tick DNA (20 qPCR-positive samples) was analysed with 16S next-generation sequencing (NGS). RESULTS Most ticks were Ixodes ricinus (289, 84.5%), followed by Ixodes persulcatus (51, 14.9%). One hybrid tick (I. ricinus/I. persulcatus, 0.3%) and one Rhipicephalus sanguineus tick (0.3%) were identified. We found one or more of the analysed pathogens in 17% (59/342) of the ticks. The most prevalent pathogen was B. burgdorferi s.l. (36, 10.5%), followed by Anaplasma phagocytophilum (12, 3.5%), B. miyamotoi (5, 1.5%), Babesia venatorum (4, 1.2%), and TBEV (1, 0.3%). Candidatus Neoehrlichia mikurensis DNA was amplified from three (0.9%) ticks. Ehrlichia canis was not detected. In the 16S NGS, six samples produced enough reads for the analysis. In these six samples, we confirmed all the positive qPCR findings of Borrelia spp. and Ca. N. mikurensis. CONCLUSIONS The high prevalence of pathogenic microorganisms in the ticks of this study emphasizes the importance of awareness of ticks and tick-borne diseases and prevention. Furthermore, the results show that veterinary surveillance can facilitate early detection of tick-borne pathogens and new tick species and draw attention to possible co-infections that should be considered both in symptomatic humans and animals after tick bites.
Collapse
Affiliation(s)
- Fathiah Zakham
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Essi M Korhonen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Petteri T Puonti
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robert S Castrén
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Paula M Kinnunen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Companion Animal Business Unit, Nordic Cluster, MSD Animal Health, Espoo, Finland.
| |
Collapse
|
14
|
Belova OA, Polienko AE, Averianova AD, Karganova GG. Development Features of Ixodes ricinus × I. persulcatus Hybrids under Laboratory Conditions. Microorganisms 2023; 11:2252. [PMID: 37764095 PMCID: PMC10536943 DOI: 10.3390/microorganisms11092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Widely distributed Ixodes ricinus and Ixodes persulcatus ticks transmit many pathogens of both medical and veterinary significance. The ranges of these tick species overlap and form large sympatric areas in the East European Plain and Baltic countries. It has previously been shown that crossing I. ricinus and I. persulcatus is possible, resulting in the appearance of sterile hybrids. In the present study, we analyzed the features of this hybrid's life cycle under laboratory conditions. For this purpose, virgin females of I. ricinus and I. persulcatus ticks were obtained in the laboratory, and hybrid generations of ticks were bred from the reciprocal crossings of these two tick species. According to our data, mating the females of I. ricinus and I. persulcatus with the males of another species leads to a decrease in the engorgement success of the females, a decrease in the number of hatched larvae, and the appearance of a hybrid generation in which both females and males are sterile. Under laboratory conditions at a constant room temperature and under natural daylight, the morphogenetic diapause of the engorged I. persulcatus larvae began in September. For I. persulcatus nymphs, it occurred earlier than for I. ricinus, in October and November, respectively. The hybrids generally repeated the features of the life cycle of the mother species.
Collapse
Affiliation(s)
- Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia (G.G.K.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia (G.G.K.)
| | - Anastasia D. Averianova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia (G.G.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia (G.G.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
15
|
Bardakci F, Al-Subaie SHM, Badraoui R, Adnan M, Siddiqui AJ. Molecular Characterization of Hard Ticks Infesting Camels in the Northern Region of Saudi Arabia Using the Barcoding Gene, Mitochondrial Cytochrome oxidase subunit I. Life (Basel) 2023; 13:1535. [PMID: 37511909 PMCID: PMC10381736 DOI: 10.3390/life13071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The present study aimed to molecularly identify and characterize the hard ticks infesting camels from the northern region (Ha'il province) of Saudi Arabia using the mitochondrial barcoding gene cytochrome oxidase subunit I (COI). The sequences of tick samples from camels in three regions of Ha'il were aligned with those previously reported from different geographic regions, revealing nine haplotypes, of which six were newly described in this study for the first time. These haplotypes were used to determine their phylogenetic relationships using the maximum likelihood method, displaying two distinct clades corresponding to Hyalomma dromedarii and H. impeltatum. Moreover, the haplotypes showing the highest homology with those deposited in NCBI-GenBank from different geographic regions, including Saudi Arabia, were obtained and combined to determine their phylogenetic relationships among them. The results showed that the haplotypes belonging to two clades were grouped with those previously determined as H. dromedarii and H. impeltatum. Moreover, the presence of H. scupense (syn. H. detritum) together with H. impeltatum suggests possible asymmetrical hybridization and mitochondrial introgression between these species. H. scupense infesting different mammal species apart from camels were also clustered in a different clade, indicating the presence of different lineages of this species that show different host specificities.
Collapse
Affiliation(s)
- Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | | | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
16
|
Tukhbatullin A, Ermakov O, Kapustina S, Starikov V, Tambovtseva V, Titov S, Brandler O. Surrounded by Kindred: Spermophilus major Hybridization with Other Spermophilus Species in Space and Time. BIOLOGY 2023; 12:880. [PMID: 37372163 DOI: 10.3390/biology12060880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Among the numerous described cases of hybridization in mammals, the most intriguing are (a) cases of introgressive hybridization deeply affecting the evolutionary history of species, and (b) models involving not a pair of species but a multi-species complex. Therefore, the hybridization history of the russet ground squirrel Spermophilus major, whose range has repeatedly changed due to climatic fluctuations and now borders the ranges of four related species, is of great interest. The main aims of this study were to determine the direction and intensity of gene introgression, the spatial depth of the infiltration of extraneous genes into the S. major range, and to refine the hypothesis of the hybridogenic replacement of mitochondrial genomes in the studied group. Using phylogenetic analysis of the variability of mitochondrial (CR, cytb) and nuclear (SmcY, BGN, PRKCI, c-myc, i6p53) markers, we determined the contribution of neighboring species to the S. major genome. We showed that 36% of S. major individuals had extraneous alleles. All peripheral species that were in contact with S. major contributed towards its genetic variability. We also proposed a hypothesis for the sequence and localization of serial hybridization events. Our assessment of the S. major genome implications of introgression highlights the importance of implementing conservation measures to protect this species.
Collapse
Affiliation(s)
- Andrey Tukhbatullin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Oleg Ermakov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Svetlana Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vladimir Starikov
- Department of Biology and Biotechnology, Institute of Natural and Technical Sciences, Surgut State University, Lenin Avenue 1, Surgut 628412, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Sergey Titov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Oleg Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| |
Collapse
|
17
|
Tarragona EL, Lado P, Beati L, Mangold AJ, Guglielmone AA, Nava S. Do parapatric populations of the ticks Amblyomma tonelliae Nava, Beati & Labruna, 2014 and Amblyomma sculptum Berlese, 1888 (Acari: Ixodidae) hybridize? MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:407-417. [PMID: 36734032 DOI: 10.1111/mve.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 05/18/2023]
Abstract
This work aimed to determine if the tick species, Amblyomma sculptum and Amblyomma tonelliae, hybridize along their contact zones in Argentina. Free-living adults and nymphs of A. sculptum and A. tonelliae were collected in seven sampling locations of northern Argentina. In four of them, the two species occur in parapatry (possible hybrid zone) whereas in the other three sites, only one species is known to occur. A total of 65 A. sculptum and 65 A. tonelliae from both, allopatric and parapatric populations, were analysed. The nuclear (ITS2) and mitochondrial (COI and 12SrDNA) gene sequences of each tick were amplified and analysed to verify whether or not they could reveal the presence of hybrids among the parapatric samples. No morphological and molecular evidence was found to support the hypothesis of ongoing natural hybridization. Intrinsic postzygotic barriers may be the cause of lack of gene flow between the two species in areas of co-ocurrence. The results can be explained by the length of time the two lineages spent in allopatry since the middle of the Miocene and before their respective distribution range expanded again reaching a narrow secondary contact zone.
Collapse
Affiliation(s)
- Evelina Luisa Tarragona
- Instituto de Investigación de la Cadena Láctea (IDICAL, INTA-CONICET) Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Rafaela, Argentina
| | - Paula Lado
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Lorenza Beati
- United States National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University, Statesboro, Georgia, USA
| | - Atilio José Mangold
- Instituto de Investigación de la Cadena Láctea (IDICAL, INTA-CONICET) Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Rafaela, Argentina
| | - Alberto Alejandro Guglielmone
- Instituto de Investigación de la Cadena Láctea (IDICAL, INTA-CONICET) Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Rafaela, Argentina
| | - Santiago Nava
- Instituto de Investigación de la Cadena Láctea (IDICAL, INTA-CONICET) Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Rafaela, Argentina
| |
Collapse
|
18
|
Frederick JC, Thompson AT, Sharma P, Dharmarajan G, Ronai I, Pesapane R, Smith RC, Sundstrom KD, Tsao JI, Tuten HC, Yabsley MJ, Glenn TC. Phylogeography of the blacklegged tick (Ixodes scapularis) throughout the USA identifies candidate loci for differences in vectorial capacity. Mol Ecol 2023; 32:3133-3149. [PMID: 36912202 DOI: 10.1111/mec.16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
The blacklegged tick (Ixodes scapularis (Journal of the Academy of Natural Sciences of Philadelphia, 1821, 2, 59)) is a vector of Borrelia burgdorferi sensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984, 34, 496), the causative bacterial agent of Lyme disease, part of a slow-moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well-known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome-wide markers in I. scapularis, conducted by using 3RAD (triple-enzyme restriction-site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters of I. scapularis. In regions where Lyme disease is increasing in frequency, the I. scapularis populations genetically group with ticks from historically highly Lyme-endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome-scale scaffolds for I. scapularis and are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity of I. scapularis and where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted by I. scapularis.
Collapse
Affiliation(s)
- Julia C Frederick
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, 30602, USA
| | - Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602, USA
- Center for the Ecology of Infectious Diseases, Odom School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - Prisha Sharma
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, 30602, USA
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, 29808, USA
- Division of Sciences, School of Interwoven Arts and Sciences, Krea University, Sri City, Andhra Pradesh, India
| | - Isobel Ronai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Risa Pesapane
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Ryan C Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Kellee D Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Jean I Tsao
- Department of Wildlife and Fisheries, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Holly C Tuten
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois, 61820, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602, USA
- Center for the Ecology of Infectious Diseases, Odom School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
19
|
Wang SS, Liu JY, Wang BY, Wang WJ, Cui XM, Jiang JF, Sun Y, Guo WB, Pan YS, Zhou YH, Lin ZT, Jiang BG, Zhao L, Cao WC. Geographical distribution of Ixodes persulcatus and associated pathogens: Analysis of integrated data from a China field survey and global published data. One Health 2023; 16:100508. [PMID: 36875889 PMCID: PMC9975318 DOI: 10.1016/j.onehlt.2023.100508] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The increasing incidence and range expansion of tick-borne diseases have caused global threats to human and animal health under the background of climate and socioeconomic changes. As an efficient vector in transmission of tick-borne diseases, a growing burden caused by Ixodes persulcatus and associated pathogens could not be underestimated. This study summarized the distribution, hosts, and pathogens of I. persulcatus, and predicted the suitable habitats of this tick species worldwide. An integrated database involving a field survey, reference book, literature review, and related website was constructed. Location records of I. persulcatus and associated pathogens were incorporated into distribution maps using ArcGIS software. Positive rates for I. persulcatus-associated agents were estimated by meta-analysis. The global distribution of the tick species was predicted using Maxent model. I. persulcatus was distributed in 14 countries across the Eurasian continent, involving Russia, China, Japan, and several Baltic Sea states, which ranged between 21°N to 66°N. The tick species fed on 46 species of hosts, and 51 tick-borne agents could be harbored by I. persulcatus. The predictive model showed that I. persulcatus could be predominantly distributed in northern Europe, western Russia, and northern China. Our study fully clarified the potential public health risks posed by I. persulcatus and I. persulcatus-borne pathogens. Surveillance and control measures of tick-borne diseases should be enhanced to promote the health of humans, animals, and ecosystems.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bao-Yu Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
20
|
Kulha N, Ruokolainen K, Vesterinen EJ, Lamppu M, Klemola T, Sormunen JJ. Does environmental adaptation or dispersal history explain the geographical distribution of Ixodes ricinus and Ixodes persulcatus ticks in Finland? Ecol Evol 2022; 12:e9538. [PMID: 36518623 PMCID: PMC9743063 DOI: 10.1002/ece3.9538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
In Finland, the distribution area of the taiga tick, Ixodes persulcatus (Schulze, 1930), is nested within a broader area of distribution of a congeneric species, the sheep tick, Ixodes ricinus (Linnaeus, 1758) (Acari: Ixodidae). We assess whether distinct environmental adaptations or dispersal history provides a more parsimonious explanation for the differences in the distributions of the two common and medically important ixodids in Finland. We used an innovative spatially constrained randomization procedure to analyze whether crowdsourced occurrence data points of the two tick species had statistically different associations with any of the 28 environmental variables. Using points of presence in a region of species co-occurrence, we built Maxent models to examine whether environmental factors or dispersal history could explain the absence of I. persulcatus in a part of the range of I. ricinus in Finland. Five environmental variables-number of inhabitants, road length, elevation above sea level, proportion of barren bedrock and boulders, and proportion of unsorted glacial deposits-were significant at p ≤ .05, indicating greater between-species difference in original than in the randomized data. Of these variables, only the optimum value for unsorted glacial deposits was higher for I. persulcatus than for I. ricinus. Maxent models also predicted high relative habitat suitability (suitability >80%) for I. persulcatus south of its current, sharply bounded distribution range, suggesting that the species has not fulfilled its distribution potential in Finland. The two most common and medically relevant ixodids in Finland may colonize habitats with different environmental conditions. On the contrary, the recent establishment and ongoing dispersion of I. persulcatus in Fennoscandia rather than environmental conditions cause the southernmost distribution limit of the species in Finland.
Collapse
Affiliation(s)
- Niko Kulha
- Biodiversity UnitZoological MuseumUniversity of TurkuTurkuFinland
- Natural Resources Institute Finland (Luke)HelsinkiFinland
| | | | | | - Maija Lamppu
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Biodiversity UnitZoological MuseumUniversity of TurkuTurkuFinland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
21
|
Preliminary study on the seasonal questing of Ixodes ricinus group ticks in Ain Draham forest (north-western Tunisia) with analyses of their phylogenetic diversity. Vet Parasitol Reg Stud Reports 2022; 36:100786. [PMID: 36436908 DOI: 10.1016/j.vprsr.2022.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
The present study aimed to investigate the activity dynamics of Ixodes ricinus group ticks in a forest located in north-western Tunisia (Aïn Draham, Jendouba District) and assess the variation of abiotic factors (temperature, Normalized Difference Vegetation Index and relative humidity) during one year survey from September 2016 to August 2017 using the dragging sampling method. A total of 116 questing ticks was collected from the vegetation consisting of 47 adults (19 females and 28 males, sex ratio M:F = 1.47), 45 nymphs and 24 larvae representing 40.5, 38.8 and 20.7% of the total collected specimens, respectively. Adult I. ricinus were collected during October-May, nymphs during May-August and larvae during July-September. There were statistically significant correlations between adult tick numbers and mean daily relative humidity (Pearson r = 0.77; p = 0.003) and mean daily temperature (r = -0.74; p = 0.006). The comparison of 16S rDNA sequences from 20 adult ticks of approximately 444 bp length showed variability among 11 sequences. There was a low genetic variability (<1%) among the I. ricinus isolates collected from the forest. The amplicons showed >99% identity with I. ricinus and Ixodes inopinatus sequences from different countries and published in GenBank. These results should be complemented by further surveys in other Tunisian regions to better understand the influence of environmental factors on the biology of I. ricinus and the occurrence of sympatric I. inopinatus ticks. Different molecular markers should be used for better understanding of their taxonomic status.
Collapse
|
22
|
Backus LH, Foley JE, Hobbs GB, Bai Y, Beati L. A new species of tick, Ixodes (Ixodes) mojavensis (Acari: Ixodidae), from the Amargosa Valley of California. Ticks Tick Borne Dis 2022; 13:102020. [PMID: 35987116 PMCID: PMC10917073 DOI: 10.1016/j.ttbdis.2022.102020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
Abstract
Ixodes (Ixodes) mojavensis, n. sp. (Acari: Ixodidae), is described from all parasitic stages collected from the endangered vole Microtus californicus scirpensis Bailey, 1900 (Rodentia: Cricetidae), Mus musculus L. 1758 (Rodentia: Muridae), and Reithrodontomys megalotis (Baird; 1857) (Rodentia: Cricetidae) in the Amargosa Valley of California. When first collected in 2014, this tick was tentatively identified as Ixodes minor Neumann, 1902 because the nucleotide similarity between its 16S rDNA sequence and a homologous GenBank sequence from an I. minor from the eastern U.S. was 99.51%. Nevertheless, adults of I. mojavensis differ morphologically from I. minor by hypostomal dentition, absence of a spur on palpal segment I, and punctation patterns; nymphs by the shapes of basis capituli, auriculae, cervical grooves and external files of hypostomal denticles; and larvae by the length of idiosomal setae and hypostomal dentition. DNA sequencing of fragments of 4 different genes, 12S rDNA, 16S rDNA, cytochrome c oxidase subunit I (COI), and intergenic transcribed spacer 2 (ITS2) of I. mojavensis and of closely related species of Ixodes shows that the mitochondrial gene sequences of the new tick species are almost identical to the I. minor homologous genes. Phylogenetically, the two species do not cluster in mutually exclusive monophyletic clades. However, ITS2 sequences of I. mojavensis and I. minor diverge deeply (≥ 5.74% maximum likelihood divergence) and are as different as homologous genes from other recognized species. The discrepancy between the two sets of genes is suggestive of past mitochondrial introgression or incomplete mitochondrial lineage sorting.
Collapse
Affiliation(s)
- Laura H Backus
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Guy B Hobbs
- U.S. National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University, 69 Georgia Avenue, Statesboro, GA 30460, United States
| | - Ying Bai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Bacterial Diseases Branch, Fort Collins, CO 80521, United States
| | - Lorenza Beati
- U.S. National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University, 69 Georgia Avenue, Statesboro, GA 30460, United States.
| |
Collapse
|
23
|
Hekimoğlu O. Phylogenetic placement of Turkish populations of Ixodes ricinus and Ixodes inopinatus. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:179-189. [PMID: 36251170 DOI: 10.1007/s10493-022-00750-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Studies on phylogeography and population structure of Ixodes ricinus have been carried out in Europe for decades, but the number of specimens from the Middle East included in these analyses is relatively small, despite the wide distribution of the species in this area. This study aimed to clarify the phylogenetic positions of I. ricinus from Turkey as well as to investigate the presence of Ixodes inopinatus in Anatolia. For this purpose, one mitochondrial (mt 16S rDNA) and one nuclear gene (defensin) were used to generate molecular data from I. ricinus samples, which were collected from 17 locations across the species' distributional range in Turkey. Bayesian inference was used to investigate phylogenetic relationships. Globally, the mt 16S rDNA lineages correspond to the lineages revealed by defensin; I. ricinus and I. inopinatus sequences clustered separately. However, a discordant genetic pattern was observed between the phylogenetic position of turkish I. ricinus revealed by nuclear versus mitochondrial genes. All Turkish haplotypes of mt 16SrDNA clustered with I. ricinus samples from Europe, which might be the result of extensive gene flow between populations of Europe and the Middle East. On the other hand, a sample from Thrace Region grouped within I. inopinatus clade. Thus, the occurrence of I. inopinatus in Turkey was demonstrated for the first time using molecular data. Moreover, four individuals were found to be heterozygous for the defensin. The potential evolutionary processes that underlie this observed discrepancy between the phylogenetic trees of two genes have been discussed.
Collapse
Affiliation(s)
- Olcay Hekimoğlu
- Division of Ecology, Department of Biology, Faculty of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
24
|
Integrated Jingmenvirus Polymerase Gene in Ixodes ricinus Genome. Viruses 2022; 14:v14091908. [PMID: 36146715 PMCID: PMC9501327 DOI: 10.3390/v14091908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus.
Collapse
|
25
|
Differentiation of Laboratory-Obtained Ixodes ricinus × Ixodes persulcatus Hybrid Ticks: Selection of Suitable Genes. Microorganisms 2022; 10:microorganisms10071306. [PMID: 35889025 PMCID: PMC9323786 DOI: 10.3390/microorganisms10071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ixodes ricinus and Ixodes persulcatus ticks are the main vectors of tick-borne encephalitis virus and some bacterial pathogens. The regions where these tick species live overlap, forming large sympatric areas. It has previously been shown that these tick species have no morphological barrier, and interspecies crossing is possible with the appearance of sterile hybrids. It has also been shown that hybrid larvae and nymphs can be differentiated using discriminant functions based on a set of morphological features. However, such an approach is laborious and rather ineffective with adult ticks, making a molecular approach necessary. In the current work, we tested the ability of different systems to differentiate laboratory-obtained hybrid ticks. Our data suggest that commonly used primer sets that target rRNA are unsuitable for hybrid tick determination, likely due to the rRNA region being linked with the X chromosome in I. ricinus and I. persulcatus ticks. We tested several primer sets targeting different non rRNA genes to assess their ability to determine hybrids. The best primer set, Toll_R, targeting the putative Toll gene, showed little to no bias when used for DNA amplification from hybrid ticks. Thus, Toll gene can be further used for hybrid detection.
Collapse
|
26
|
Kazim AR, Low VL, Tappe D, Houssaini J, Heo CC. Rhipicephalus annulatus, R. australis or R. microplus? Discordance between morphological and genetic data among three cattle tick species. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:119-131. [PMID: 35810417 DOI: 10.1007/s10493-022-00726-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The taxonomy of ticks of the subgenus Boophilus has been extensively debated and is often complicated by the high intraspecific variation of morphological features between species. Notably, the cattle tick Rhipicephalus microplus is a species complex consisting of Rhipicephalus annulatus, Rhipicephalus australis and the three mitochondrial clades (A-C) of R. microplus. To gain insight into the taxonomic status of this species complex, we performed morphological and molecular analyses on these cattle ticks across four states in peninsular Malaysia. We morphologically identified 60 males and 104 females of R. microplus, 298 males and 374 females of R. australis, and one R. annulatus male in our field collection, of which the latter two species have never been recorded in Malaysia. However, all three morphologically identified species were molecularly assigned as R. microplus clade A based on the barcoding cytochrome oxidase subunit I (COI) analysis. The discrepancy between morphological and genetic data highlights an urgent need for further exploration and in-depth research into the taxonomic status of these sympatric tick species.
Collapse
Affiliation(s)
- A R Kazim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Malaysia
| | - V L Low
- Higher Institution of Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - D Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J Houssaini
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Malaysia
| | - C C Heo
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Malaysia.
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Malaysia.
| |
Collapse
|
27
|
Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick Borne Dis 2022; 13:101961. [DOI: 10.1016/j.ttbdis.2022.101961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
|
28
|
King'ori EM, Obanda V, Nyamota R, Remesar S, Chiyo PI, Soriguer R, Morrondo P. Population genetic structure of the elephant tick Amblyomma tholloni from different elephant populations in Kenya. Ticks Tick Borne Dis 2022; 13:101935. [DOI: 10.1016/j.ttbdis.2022.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
|
29
|
Kovalev SY, Mazurina EA. OMSK HEMORRHAGIC FEVER VIRUS IS A TICK-BORNE ENCEPHALITIS VIRUS ADAPTED TO MUSKRAT THROUGH HOST-JUMPING. J Med Virol 2022; 94:2510-2518. [PMID: 35001393 DOI: 10.1002/jmv.27581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/06/2022]
Abstract
Omsk hemorrhagic fever was first described in the early 1940s and is a natural focal infection, spread exclusively in four regions of Western Siberia and associated with muskrat (Ondatra zibethicus). The etiological agent of this disease is the Omsk hemorrhagic fever virus (OHFV) which is closely related to the tick-borne encephalitis virus (TBEV), and its range entirely lies within the TBEV area. OHFV belongs to the mammalian tick-borne flaviviruses and the ecological group of arboviruses. The problem concerning the origin of OHFV remains unresolved to date. This work analyzed all nucleotide sequences of the OHFV genome obtained in the present study and available in GenBank, including the E gene fragment and the amino acid sequences of the surface glycoprotein encoded by it. The conclusions, based on the clusteron approach, suggest that OHFV originated directly from the TBEV of the Far Eastern subtype due to the host-jump phenomenon, that is, through a rapid change from an arthropod host, Ixodes persulcatus, to a rodent, O. zibethicus. The muskrat was introduced to Western Siberia in the second half of the 1930s. The peculiarities of the biology and ecology of the muskrat in the new habitat became the reason for the TBEV cross-species transmission. Calculations show that host-jumping occurred between 1931 and 1947 and accompanied a cascade of adaptive amino acid substitutions in protein E. As a result, the virus changed its transmission to contact, alimentary, and airborne routes. Based on the data obtained, OHFV would be more correctly attributed to zoonotic viruses transmitted by rodents and, accordingly, to the ecological group of roboviruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- S Y Kovalev
- Ural Federal University, Yekaterinburg, Russia
| | | |
Collapse
|
30
|
Duan DY, Chen Z, Fu YT, Liu GH, Cheng TY. Characterization of the complete mitochondrial genomes of two Ixodes ticks, I. nipponensis and Ixodes (Pholeoixodes) sp. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:513-522. [PMID: 33931902 DOI: 10.1111/mve.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
In this study, the authors sequenced and characterized the complete mitochondrial (mt) genomes of two hard ticks of the genus Ixodes, I. nipponensis and Ixodes (Pholeoixodes) sp., which were 14 505 and 14 543 bp in length, respectively. Their mt genomes encoded 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes and two ribosomal RNA genes, and have only one non-coding region. The gene order in their mt genomes was the same as that of other Ixodes spp. mt genomes. The average sequence identity, combined nucleotide diversity, non-synonymous/synonymous substitutions ratio analyses consistently demonstrated that cox1, rrnS, cox2, cox3 and cytb were the most conserved and atp8, nad6 and nad2 were the most variable genes across Ixodes mitogenomes. Phylogeny of the present Ixodes spp., and other selected hard tick species, based on concatenated amino acid sequences of PCGs, confirmed their position within the genus Ixodes and sub-family Ixodinae. The novel mt markers described herein will be useful for further studies of the population genetics, molecular epidemiology and systematics of hard ticks.
Collapse
Affiliation(s)
- D-Y Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Z Chen
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Y-T Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - G-H Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - T-Y Cheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| |
Collapse
|
31
|
Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis 2021; 12:101766. [PMID: 34161868 DOI: 10.1016/j.ttbdis.2021.101766] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.
Collapse
Affiliation(s)
- Katherine A Wolcott
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
32
|
Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G. High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 2020; 21:702. [PMID: 33032522 PMCID: PMC7542741 DOI: 10.1186/s12864-020-07054-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and fragmented making the assembly of whole genomes with next-generation sequencing data a challenge. Results We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer, we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates. Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes ricinus in Europe and I. persulcatus in Asia). Conclusions We present the characterization of genomes of a large sample of B. bavariensis isolates and show that their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.
Collapse
Affiliation(s)
- Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Robert E Rollins
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Kateryna Nosenko
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Alexander Paulus
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Samantha Martin
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,University of Helsinki, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Helsinki, Finland
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Ai Takano
- Department of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
33
|
Schäffer S, Koblmüller S. Unexpected diversity in the host-generalist oribatid mite Paraleius leontonychus (Oribatida, Scheloribatidae) phoretic on Palearctic bark beetles. PeerJ 2020; 8:e9710. [PMID: 32974091 PMCID: PMC7489242 DOI: 10.7717/peerj.9710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bark beetles are feared as pests in forestry but they also support a large number of other taxa that exploit the beetles and their galleries. Among arthropods, mites are the largest taxon associated with bark beetles. Many of these mites are phoretic and often involved in complex interactions with the beetles and other organisms. Within the oribatid mite family Scheloribatidae, only two of the three nominal species of Paraleius have been frequently found in galleries of bark beetles and on the beetles themselves. One of the species, P. leontonychus, has a wide distribution range spanning over three ecozones of the world and is believed to be a host generalist, reported from numerous bark beetle and tree species. In the present study, phylogenetic analyses of one mitochondrial and two nuclear genes identified six well supported, fairly divergent clades within P. leontonychus which we consider to represent distinct species based on molecular species delimitation methods and largely congruent clustering in mitochondrial and nuclear gene trees. These species do not tend to be strictly host specific and might occur syntopically. Moreover, mito-nuclear discordance indicates a case of past hybridization/introgression among distinct Paraleius species, the first case of interspecific hybridization reported in mites other than ticks.
Collapse
|
34
|
Masuzawa T, Sakakibara K, Suzuki K, Sato H, Yasuda S. Detection of Asian-Type Borrelia miyamotoi from Ixodes ricinus Inhabiting Tver Province (Russia): A Sympatric Region for I. ricinus and Ixodes persulcatus. Vector Borne Zoonotic Dis 2020; 20:921-923. [PMID: 32762621 DOI: 10.1089/vbz.2020.2653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Borrelia miyamotoi, a hard tick-borne relapsing fever agent, was sampled in Ixodes ricinus and Ixodes persulcatus ticks from the Tver province in Russia (a sympatric region of both tick species) and examined by TaqMan-PCR targeting the 16S rRNA gene. Borrelia was detected in 4 out of 168 ticks: 2 out of 58 I. ricinus ticks (infection rate 2.9%) and 2 out of 110 I. persulcatus ticks (1.8%). The agent was identified as B. miyamotoi on the basis of the 16S and 23S rDNA intergenic spacer and glycerophosphodiester phosphodiesterase gene sequencing analyses. Interestingly, the genes sequences detected from one I. ricinus tick were identical to those of Asian-type B. miyamotoi from I. persulcatus. This tick was identified as I. ricinus by sequencing analysis of internal transcribed spacer 2 and mitochondrial cytochrome oxidase subunit 1. The results suggest that the I. ricinus ticks were infected with Asian-type B. miyamotoi in a sympatric region for I. ricinus and I. persulcatus.
Collapse
Affiliation(s)
- Toshiyuki Masuzawa
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi, Japan
| | - Keiko Sakakibara
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi, Japan
| | - Kazushi Suzuki
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi, Japan
| | - Hiroki Sato
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi, Japan
| | - Shima Yasuda
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science (CIS), Choshi, Japan
| |
Collapse
|
35
|
Younsi H, Fares W, Cherni S, Dachraoui K, Barhoumi W, Najjar C, Zhioua E. Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) Are Sympatric Ticks in North Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:952-956. [PMID: 31751458 DOI: 10.1093/jme/tjz216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 05/10/2023]
Abstract
In the present study, we report the sympatric occurrence of Ixodes ricinus (Linnaeus, 1758) and Ixodes inopinatus (Estrada-Peña, Nava, and Petney, 2014) in Tunisia. In total, 173 adult Ixodes ticks were collected from four sites (El Jouza, Tamra, Aïn Soltan, and Jbel Zaghouan) between February and April 2017, a period corresponding to the peak of activity of I. ricinus in North Africa. The morphological characters corresponded to both species; thus, we generated a total of 28 16S rRNA sequences and compared them with previously published data in GenBank. The two species were sympatric in Tamra, Aïn Soltan, and El Jouza, whereas collections in Jbel Zaghouan only yielded I. inopinatus. These results indicate that the two taxa are widespread in the humid area of northern Tunisia. The one tick collected in Jbel Zaghouan suggests that the distribution of at least I. inopinatus might extend to the sub-humid area. More studies are needed to fully comprehend the systematic status of the two taxonomic entities using multiple molecular markers and morphological characters; integrating these two identification methods are a necessary step toward a better understanding of the ecology and epidemiology of tick-borne diseases in Tunisia.
Collapse
Affiliation(s)
- Hend Younsi
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Wasfi Fares
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Saifedine Cherni
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Khalil Dachraoui
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Walid Barhoumi
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Chawki Najjar
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
36
|
Hauck D, Springer A, Pachnicke S, Schunack B, Fingerle V, Strube C. Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol Res 2019; 118:3205-3216. [PMID: 31720842 DOI: 10.1007/s00436-019-06506-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
In 2014, a new tick species, Ixodes inopinatus, was described, which is closely related to Ixodes ricinus. So far, I. inopinatus has been found in Tunisia, Morocco, Spain, Portugal, Romania, Austria, and southern Germany. No data is yet available regarding occurrence of I. inopinatus in northern Germany and the potential role of I. inopinatus as a vector for tick-borne pathogens. Therefore, 3845 DNA samples from Ixodes ticks collected for prevalence studies on Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum during the years 2010-2015 in the northern German cities of Hamburg and Hanover were differentiated into I. ricinus or I. inopinatus by sequencing a part of the 16S rRNA gene. In total, 4% (137/3845) of the sequenced ticks were assigned to the species I. inopinatus and 96% (3708/3845) to I. ricinus. The prevalence of Borrelia spp., Rickettsia spp., and A. phagocytophilum DNA in I. inopinatus was 34% (46/137), 46% (63/137), and 3% (4/137), respectively, whereas the prevalence of these bacteria in I. ricinus was 25% (919/3708), 47% (1729/3708), and 4% (135/3708), respectively. Compared with I. ricinus, significantly more I. inopinatus ticks tested positive for Borrelia. To the best of our knowledge, this is the first report of I. inopinatus in northern Germany. Detection of the DNA of Borrelia spp., Rickettsia spp., and A. phagocytophilum in questing I. inopinatus indicates a potential role of this tick species as a vector of these pathogens, which needs to be confirmed by transmission experiments.
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | | | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
37
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Rar V, Yakimenko V, Tikunov A, Vinarskaya N, Tancev A, Babkin I, Epikhina T, Tikunova N. Genetic and morphological characterization of Ixodes apronophorus from Western Siberia, Russia. Ticks Tick Borne Dis 2019; 11:101284. [PMID: 31540803 DOI: 10.1016/j.ttbdis.2019.101284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 07/10/2019] [Accepted: 08/31/2019] [Indexed: 11/19/2022]
Abstract
Genetic variability of I. apronophorus from Western Siberia, Russia was examined using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (cox1) genes and compared to those of Ixodes persulcatus and Ixodes trianguliceps from the same site. The I. apronophorus sequences demonstrated the highest nucleotide and haplotype diversity for both mitochondrial genes, whereas I. persulcatus was more variable in the nuclear ITS2. Phylogenetic analysis of the molecular sequence data showed that I. apronophorus differed from other Ixodes species, including Romanian I. apronophorus. The level of identity between 16S rRNA gene sequences of Siberian and Romanian I. apronophorus was only 91%; these sequences did not form a monophyletic group, indicating that I. apronophorus from Siberia and Romania could be different tick species. The analysis of morphological features of the Siberian I. apronophorus confirmed their consistency with those for the previously described I. apronophorus species. Based on the 16S rRNA and ITS2 sequences, Siberian I. apronophorus clustered together with Ixodes kazakstani and Ixodes scapularis, which are the recognized members of the Ixodes ricinus-I. persulcatus species complex within the subgenus Ixodes, and can be assigned to this complex.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia.
| | | | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Natalia Vinarskaya
- Omsk Research Institute of Natural Foci Infections, Omsk, Russia; Omsk State Pedagogical University, Omsk, Russia
| | - Aleksey Tancev
- Omsk Research Institute of Natural Foci Infections, Omsk, Russia
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
39
|
Rar V, Livanova N, Sabitova Y, Igolkina Y, Tkachev S, Tikunov A, Babkin I, Golovljova I, Panov V, Tikunova N. Ixodes persulcatus/pavlovskyi natural hybrids in Siberia: Occurrence in sympatric areas and infection by a wide range of tick-transmitted agents. Ticks Tick Borne Dis 2019; 10:101254. [PMID: 31327746 DOI: 10.1016/j.ttbdis.2019.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 01/24/2023]
Abstract
Ixodes persulcatus and Ixodes pavlovskyi ticks, two closely related species of the I. ricinus - I. persulcatus group, are widely distributed in the southern part of Western Siberia. Recently, the existence of natural hybrids of I. persulcatus and I. pavlovskyi ticks has been demonstrated. The aim of this study was to evaluate the abundance of I. persulcatus/pavlovskyi hybrids in several locations with different ratios of parental tick species and to investigate the prevalence and genetic variability of a wide range of infectious agents in these hybrids compared to the parental tick species. Natural hybrids of I. persulcatus and I. pavlovskyi ticks were identified in all examined locations in Altai and Novosibirsk, Western Siberia, Russia. The abundance of hybrids varied from 7% to 40% in different locations and was maximal in a location with similar proportions of I. persulcatus and I. pavlovskyi ticks. For the first time, it was shown that hybrids can be infected with the same agents as their parental tick species: tick-borne encephalitis and Kemerovo viruses, Borrelia afzelii, Borrelia bavariensis, Borrelia garinii, Borrelia miyamotoi, Rickettsia helvetica, Rickettsia raoultii, Rickettsia sibirica, "Candidatus Rickettsia tarasevichiae", Anaplasma phagocytophilum, Ehrlichia muris, "Candidatus Neoehrlichia mikurensis", and Babesia microti. The prevalence of most bacterial agents in hybrids was intermediate compared to their parental tick species. Most genetic variants of the identified agents have been previously found in the parental tick species. Wide distribution of I. persulcatus/pavlovskyi natural hybrids implies that I. persulcatus, I. pavlovskyi and their hybrids coexist in all I. persulcatus - I. pavlovskyi sympatric areas.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Natalia Livanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Yuliya Sabitova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Irina Golovljova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Department of Virology, National Institute for Health Development, Tallinn, Estonia
| | - Victor Panov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| |
Collapse
|
40
|
Dantas-Torres F. Species Concepts: What about Ticks? Trends Parasitol 2018; 34:1017-1026. [PMID: 30343986 DOI: 10.1016/j.pt.2018.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022]
Abstract
Since ancient times, philosophers and taxonomists have tried to classify forms of life. This is what taxonomy is about: the science of identifying, naming, classifying, and describing organisms. In this article I address the issue of the species concept in tick taxonomy. While the typological species concept is still the most widely used, the biological and phylogenetic species concepts are growing in popularity among tick taxonomists. The integrative approach is increasingly being used, but the question is how to define a tick species when using this approach, particularly if data are incongruent. The adoption of an integrative species concept is discussed, in light of recent advances in our understanding of the genetics, morphology, and biology of ticks.
Collapse
Affiliation(s)
- Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), 50740-465 Recife, Pernambuco, Brazil.
| |
Collapse
|
41
|
Cheng TY, Chen Z, Li ZB, Liu GH. First Report of Ixodes nipponensis Infection in Goats in China. Vector Borne Zoonotic Dis 2018; 18:575-578. [PMID: 29741996 DOI: 10.1089/vbz.2017.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ticks are obligate blood-sucking ectoparasites that infect a wide range of animals and humans, causing a variety of both human and animal diseases around the world. Ixodes nipponensis is the most commonly reported tick in Korea and Japan, but it is very rare in China. In this study, six I. nipponensis samples were collected from three black goats in Hunan province, China. Ticks identified morphologically as I. nipponensis were then examined by PCR with two different molecular markers: mitochondrial cox1 and the second internal transcribed spacer of ribosomal DNA genes. Sequence comparison and phylogenetic analysis of the cox1 sequences confirmed that all of the examined hard Ixodes ticks represented I. nipponensis. This finding indicates a potential risk of zoonotic I. nipponensis infection in humans and animals in China. To our knowledge, this is the first report documenting the occurrence of I. nipponensis infection in goats in China.
Collapse
Affiliation(s)
- Tian-Yin Cheng
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
- 2 Hunan Co-Innovation Center of Animal Production Safety , Changsha, Hunan Province, People's Republic of China
| | - Zhen Chen
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
| | - Zhong-Bo Li
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
| | - Guo-Hua Liu
- 1 Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University , Changsha, People's Republic of China
- 2 Hunan Co-Innovation Center of Animal Production Safety , Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
42
|
Grigoryeva LA, Stanyukovich MK. Differential diagnosis of Ixodes ricinus and Ixodes persulcatus: nymphs and larvae. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:97-106. [PMID: 29572699 DOI: 10.1007/s10493-018-0244-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
We developed a method for differential diagnosis of nymphs and larvae of sheep (Ixodes ricinus (L.)) and taiga (I. persulcatus Sch.) ticks (Parasitiformes: Ixodidae) which allows to identify live material in the field.
Collapse
Affiliation(s)
- L A Grigoryeva
- Zoological Institute of RAS, Saint Petersburg, Russia, 199034.
| | | |
Collapse
|
43
|
Chitimia-Dobler L, Rieß R, Kahl O, Wölfel S, Dobler G, Nava S, Estrada-Peña A. Ixodes inopinatus − Occurring also outside the Mediterranean region. Ticks Tick Borne Dis 2018; 9:196-200. [DOI: 10.1016/j.ttbdis.2017.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
44
|
Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One 2017; 12:e0189092. [PMID: 29206879 PMCID: PMC5716528 DOI: 10.1371/journal.pone.0189092] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. Method We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. Result The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions.
Collapse
|
45
|
An improved real-time PCR method to identify hybrids between Ixodes persulcatus and Ixodes ricinus ticks. Ticks Tick Borne Dis 2017; 9:37-38. [PMID: 29089248 DOI: 10.1016/j.ttbdis.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
|
46
|
Patterson JW, Duncan AM, McIntyre KC, Lloyd VK. Evidence for genetic hybridization between Ixodes scapularis and Ixodes cookei. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.
Collapse
Affiliation(s)
- James W. Patterson
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Anna M. Duncan
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Kelsey C. McIntyre
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
47
|
Mukhacheva TA, Kovalev SY. Bacteria of the Family 'Candidatus Midichloriaceae' in Sympatric Zones of Ixodes Ticks: Genetic Evidence for Vertical Transmission. MICROBIAL ECOLOGY 2017; 74:185-193. [PMID: 28091705 DOI: 10.1007/s00248-017-0932-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Ixodes ticks transmit infectious agents and also harbor their own parasites and symbionts. The presumptive endosymbiont of Ixodes ricinus, 'Candidatus Midichloria mitochondrii', has a unique ability to invade mitochondria within tick ovarian cells and is transovarially transmitted with 100% efficiency. A closely related bacterium, provisionally named Montezuma (now 'Candidatus Lariskella arthropodarum'), was isolated from the Ixodes persulcatus ticks and human blood in 2004 as well as from Ixodes pavlovskyi in 2015. These microorganisms belong to the family 'Candidatus Midichloriaceae fam. nov.' and were detected not only in tick salivary glands, but also in animal blood. Nevertheless, the relative importance of vertical and horizontal routes for their transmission or maintenance in natural tick populations remains unclear. We analyzed the prevalence of L. arthropodarum and M. mitochondrii in two sympatric zones, where I. persulcatus/I. ricinus and I. persulcatus/I. pavlovskyi cohabit and produce interspecific hybrids. A specificity of the associations of L. arthropodarum with I. persulcatus (100%) and M. mitochondrii with I. ricinus (96.2%) was observed in the sympatric zone in Estonia, possibly showing poor contribution of the horizontal route to the overall prevalence of endosymbionts. L. arthropodarum was observed probably multiplying in I. pavlovskyi and also subjected to transovarial transmission, but much less efficiently compared to I. persulcatus. We revealed two new genetic variants of the rrl-rrf intergenic spacer of L. arthropodarum isolated from I. pavlovskyi ticks that possibly could indicate an ongoing process of adaptation of the microorganism to a new host species.
Collapse
Affiliation(s)
- Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia.
| |
Collapse
|
48
|
Ixodoidea of the Western Palaearctic: A review of available literature for identification of species. Ticks Tick Borne Dis 2017; 8:512-525. [PMID: 28286142 DOI: 10.1016/j.ttbdis.2017.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
We aim to produce a review of the most important literature references necessary for the identification of ticks of the families Ixodidae and Argasidae in Europe and northern Africa (i.e. the Western Palaearctic region). The purpose of this paper is to pinpoint a set of critically selected papers that contain reliable information on morphology, taxonomic keys, and comparative discussions which are critical for the identification of the ticks reported in the target region. When necessary, comments are provided on the systematic position of a species, or on suitable papers already addressing the issue. This review includes a list of 216 references which cover all Ixodoidea species reported as permanent residents of the Western Palaearctic, namely 28 species of the genus Ixodes, two Dermacentor, seven Haemaphysalis, nine Hyalomma, eight Rhipicephalus, five Argas and about seven species of Ornithodoros.
Collapse
|
49
|
Paulauskas A, Galdikaitė-Brazienė E, Radzijevskaja J, Aleksandravičienė A, Galdikas M. Genetic diversity of Ixodes ricinus (Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:244-253. [PMID: 27860008 DOI: 10.1111/jvec.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Ixodes ricinus (Linnaeus 1758) and Ixodes persulcatus (Schulze 1930) ticks are involved in the transmission of a wide variety of pathogens with considerable impact on human and animal health. The co-distribution zone of these two tick species is situated in the Baltic countries, which provides a special setting for the population studies. In the present study, genetic variability of I. ricinus ticks collected in allopatric and sympatric locations in the Baltic countries has been investigated using a sequence analysis of the mitochondrial DNA control region, 16S rRNA and cytb genes. There were 32 haplotypes (Hd: 0.8551) and 27 haplotypes (Hd:0.8213) of control region sequences from ticks in allopatric and sympatric zones detected, respectively. Out of 47 16S rRNA gene haplotypes, 32 haplotypes (Hd: 0.7213) were found in the allopatric zone and 27 (Hd:0.9572) in the sympatric zone. The Cytb gene was very conserved and monomorphic in ticks from the allopatric zone, whereas three unique haplotypes were observed in the sympatric zone. The higher number of unique haplotypes of the control region was detected in the allopatric zone. Median joining network and Fst analysis did not reveal a clear separation between ticks from the two zones.
Collapse
Affiliation(s)
- A Paulauskas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - J Radzijevskaja
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - M Galdikas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| |
Collapse
|
50
|
Bugmyrin SV, Belova OA, Bespyatova LA, Ieshko EP, Karganova GG. Morphological features of Ixodes persulcatus and I. ricinus hybrids: nymphs and adults. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:359-369. [PMID: 26984610 DOI: 10.1007/s10493-016-0036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Our aim was to reveal morphological features of first-generation Ixodes persulcatus and I. ricinus hybrids (nymphs and adults) obtained under laboratory conditions for further study of natural populations of these species in sympatry foci. In 65 nymphs of three groups I. ricinus (23 specimens), I. persulcatus (21 specimens), and hybrids (21 specimens), 16 parameters were evaluated (length/width of the scutum and capitulum, length of the hypostome, palp, tarsus I, coxa I, sternal setae, and various scutal and alloscutal setae) and discrimination analysis was performed allowing differentiation of hybrid nymphs from original species. General effectiveness of classification of I. ricinus, I. persulcatus, and hybrids was >95 %. Discriminant functions are presented allowing classification of I. persulcatus, I. ricinus, and hybrid nymphs. For description of morphology, 27 adult hybrids (13 males and 14 females) were examined under a stereo microscope at 14-28× (without preparation of permanent mounts). The following morphological distinctions of hybrids from original species were described: posterior marginal groove is not clear (as in I. ricinus) and absence of syncoxa on coxa I (as in I persulcatus). In hybrid males, simultaneous absence of syncoxa on coxa I (as in I. persulcatus) and a long internal spur on coxa I (as in I. ricinus) can be used as a diagnostic feature. Based on the detected characteristics, 10 of 157 ticks collected in Karelia in I. ricinus and I. persulcatus sympatry area were classified as hybrids.
Collapse
Affiliation(s)
- Sergey V Bugmyrin
- Institute of Biology of Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk, Russia.
| | - Oxana A Belova
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Liubov A Bespyatova
- Institute of Biology of Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk, Russia
| | - Eugeniy P Ieshko
- Institute of Biology of Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Petrozavodsk, Russia
| | - Galina G Karganova
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| |
Collapse
|