1
|
Dreghiciu IC, Imre M, Hoffman D, Oprescu I, Iorgoni V, Giubega S, Morariu S, Ilie MS. Identifying and Mapping Ticks on Wild Boars from Romania. Animals (Basel) 2025; 15:1092. [PMID: 40281926 PMCID: PMC12024377 DOI: 10.3390/ani15081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Globally, due to climate change, urbanization, and the intensification of interactions between humans and animals, tick populations have increased, and areas where these arthropod vectors can develop and transmit diseases have expanded. Ixodidae ticks infect a wide variety of species and serve as major vectors for zoonotic pathogens of veterinary importance. This study aimed to identify and map ticks collected from boar tails in six Romanian counties. A total of 141 ticks were identified and differentiated on the basis of their morphological characteristics via stereomicroscopy and electron microscopy. Among the 141 ticks examined, five species, Ixodes ricinus, Haemaphysalis concinna, Haemaphysalis erinacei, Dermacentor reticulatus, and Dermacentor marginatus, were identified. The identification and mapping of ticks present on wild boars is beneficial for both veterinary and human medicine due to the pathogens they can transmit. The results of our study indicate that parasitism with different tick species in wildlife-in this case, wild boar-is present in the Romanian counties under study. This is one of the most recent tick identification and mapping studies. Tick parasitism represents a threat to the health of wild/domestic animals, and frequent monitoring is necessary.
Collapse
Affiliation(s)
- Ioan Cristian Dreghiciu
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Mirela Imre
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Diana Hoffman
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Ion Oprescu
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Vlad Iorgoni
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania;
| | - Simona Giubega
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Sorin Morariu
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| | - Marius Stelian Ilie
- Department of Parasitology and Parasitic Disease, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (I.C.D.); (M.I.); (D.H.); (I.O.); (S.G.); (S.M.)
| |
Collapse
|
2
|
Feng T, Tong H, Zhang F, Zhang Q, Zhang H, Zhou X, Ruan H, Wu Q, Dai J. Transcriptome study reveals tick immune genes restrict Babesia microti infection. INSECT SCIENCE 2025; 32:457-470. [PMID: 38837613 DOI: 10.1111/1744-7917.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick-Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Feihu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Heng Zhang
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hang Ruan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Vourvidis D, Tzouganatou G, Perdikaris S, Kofidou E, Martinez-Gonzalez B, Emmanouil M, Papadogiannakis E, Komnenou A, Angelakis E. Ticks and Tick-Borne Pathogens in Wild Animals and Birds from Two Rehabilitation Facilities in Greece. Pathogens 2024; 14:9. [PMID: 39860970 PMCID: PMC11768179 DOI: 10.3390/pathogens14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Ticks are temporary ectoparasites that serve as vectors for a wide range of pathogens affecting both wildlife and humans. In Greece, research on the prevalence of tick-borne pathogens in wildlife is limited. This study investigates the presence of pathogens, including Anaplasma spp., Babesia spp., Bartonella spp., Rickettsia spp., as well as tick-borne encephalitis (TBE), and Crimean-Congo hemorrhagic fever (CCHF) viruses, in ticks collected from 28 wild animals across 10 different animal species. Ticks were manually harvested and identified using molecular methods, with sequencing confirming the presence of Hyalomma aegyptium, H. marginatum, H. anatolicum, Ixodes frontalis, and I. ventalloi. Among the pathogens detected, R. aeschlimannii was the most prevalent, particularly in H. aegyptium ticks from tortoises. Additionally, R. africae was identified in H. aegyptium from tortoises, marking the first report of this pathogen in this tick species in Greece. Hemolivia mauritanica, an apicomplexan parasite commonly found in Testudo tortoises, was also detected. No evidence of Babesia spp., Anaplasma spp., Bartonella spp., or viral nucleic acid was found. Phylogenetic analysis revealed close genetic relationships between the detected Rickettsia species and those previously reported in neighboring regions. These findings underscore the role of wildlife in the epidemiology of tick-borne pathogens in Greece and highlight the need for comprehensive surveillance to prevent future outbreaks.
Collapse
Affiliation(s)
- Dimitrios Vourvidis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
- Directorate of Veterinary Laboratory Center, Ministry of Rural Development and Food, 11521 Athens, Greece
| | - Georgia Tzouganatou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
| | - Sokratis Perdikaris
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
- Directorate of Animal Health, General Directorate of Veterinary Services, Ministry of Rural Development and Food, 11521 Athens, Greece
| | - Evangelia Kofidou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (A.K.)
| | - Beatriz Martinez-Gonzalez
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
| | - Mary Emmanouil
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
| | - Emmanouil Papadogiannakis
- Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Anastasia Komnenou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (A.K.)
| | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.V.); (G.T.); (S.P.); (B.M.-G.); (M.E.)
| |
Collapse
|
4
|
Guardone L, Nogarol C, Accorsi A, Vitale N, Listorti V, Scala S, Brusadore S, Miceli IN, Wolfsgruber L, Guercio A, Di Bella S, Grippi F, Razzuoli E, Mandola ML. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals (Basel) 2024; 14:2377. [PMID: 39199911 PMCID: PMC11350676 DOI: 10.3390/ani14162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne diseases (TBDs) are a considerable public health problem worldwide. The occurrence of Anaplasma spp., Borrelia burgdorferi s.l., Coxiella burnetii, Rickettsia spp., and tick-borne encephalitis virus (TBEv) was investigated via PCR and sequencing in 683 ticks collected from 105 roe deer, 61 wild boars, 49 fallow deer, and 2 chamois, in the Liguria region, northwest Italy, between 2019 and 2022. The ticks were morphologically identified. Four different tick species were found: Ixodes ricinus (66.8% of the collected ticks), Dermacentor marginatus (15.8%), Rhipicephalus sanguineus s.s. (15.7%), and Haemaphysalis punctata (0.9%). Six ticks (0.9%) were only identified as Rhipicephalus spp. Of the 222 pools analyzed, 27.9% were positive. Most pools (n = 58, 26.1% of pools analyzed) were positive for Rickettsia spp., and several species were found: Rickettsia slovaca was the dominant species (15.3%), followed by R. monacensis (8.1%), while R. helvetica (1.8%), R. massiliae (0.5%), and R. raoultii (0.5%) were found only sporadically. Anaplasma phagocytophilum was identified in three pools and B. burgdorferi s.l. in one pool. All samples were negative for C. burnetii and TBEv. Significant associations were found between I. ricinus and roe deer, D. marginatus and wild boar, and between R. monacensis and I. ricinus. The prevalence of Rickettsia spp. differed significantly between tick and host species. This updated picture of tick species and TBPs in wild ungulates in Liguria, where the population of these animals is increasing, shows a widespread presence of potentially zoonotic Rickettsia spp. Continuous monitoring and public information on preventive measures are needed.
Collapse
Affiliation(s)
- Lisa Guardone
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Chiara Nogarol
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Annalisa Accorsi
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Nicoletta Vitale
- S.S. Epidemiologia—Sanità Animale, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy;
| | - Valeria Listorti
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Sonia Scala
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Sonia Brusadore
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Ilaria Nina Miceli
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Lara Wolfsgruber
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Annalisa Guercio
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Santina Di Bella
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Francesca Grippi
- S.C. Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| |
Collapse
|
5
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 PMCID: PMC11579317 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
6
|
Fernandes TDO, Duarte MA, Furtado AP, Scalon MC, Paludo GR. New insights on the phylogeography of Hepatozoon canis in Brazil. Parasitol Res 2024; 123:123. [PMID: 38315237 DOI: 10.1007/s00436-024-08147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
This study aimed to molecularly characterize the Hepatozoon spp. infecting domestic and wild dogs in Brazil. A total of 22 whole blood samples tested positive for Hepatozoon spp., and five samples were sequenced for the 18S rDNA gene from H. canis after PCR amplification with four primer sets. Phylogenetic analysis using Bayesian inference showed that the three H. canis isolates from domestic dogs were not monophyletic; however, they were more closely related to each other than to other H. canis sequences. The isolate from the hoary fox (Lycalopex vetulus) was phylogenetically more distant. Two haplotype networks were constructed, identifying 10 haplotypes of H. canis in Brazil, with H10 constituting the largest group. It contains nine isolates, including three from domestic dogs. The H5 haplotype grouped the sequence of L. vetulus with two additional sequences from hosts Tapirus terrestris and L. vetulus, representing the sole haplotype with wild hosts. Bayesian analysis suggested the possible existence of two genetic groups of H. canis in Brazil, indicating gene flow of this agent within the country. These findings contribute valuable insights for a more comprehensive understanding of the molecular diversity of Hepatozoon spp. in Brazil and may help in the development of effective control measures.
Collapse
Affiliation(s)
- Thais de Oliveira Fernandes
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | - Matheus Almeida Duarte
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | | | - Marcela Correa Scalon
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil.
| |
Collapse
|
7
|
Lesiczka PM, Myśliwy I, Buńkowska-Gawlik K, Modrý D, Hrazdilová K, Hildebrand J, Perec-Matysiak A. Circulation of Anaplasma phagocytophilum among invasive and native carnivore species living in sympatry in Poland. Parasit Vectors 2023; 16:368. [PMID: 37853498 PMCID: PMC10583402 DOI: 10.1186/s13071-023-05996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is characterized by a worldwide distribution and distinguished from other Anaplasmataceae by the broadest range of mammalian hosts and high genetic diversity. The role carnivores play in the life cycle of A. phagocytophilum in Europe is uncertain. Currently, only the red fox is considered a suitable reservoir host. In this study, we focused on native and invasive medium-sized carnivore species that live in sympatry and represent the most abundant species of wild carnivores in Poland. METHODS A total of 275 individual spleen samples from six carnivore species (Vulpes vulpes, Meles meles, Procyon lotor, Nyctereutes procyonoides and Martes spp.) were screened combining nested PCR and sequencing for A. phagocytophilum targeting a partial groEL gene with subsequent phylogenetic analysis inferred by the maximum likelihood method. RESULTS The DNA of A. phagocytophilum was detected in 16 of 275 individuals (5.8%). Eight unique genetic variants of A. phagocytophilum were obtained. All detected haplotypes clustered in the clade representing European ecotype I. Three variants belonged to the subclade with European human cases together with strains from dogs, foxes, cats, and wild boars. CONCLUSIONS While carnivores might have a restricted role in the dissemination of A. phagocytophilum due to their relatively low to moderate infection rates, they hold significance as hosts for ticks. Consequently, they could contribute to the transmission of tick-borne infections to humans indirectly, primarily through tick infection. This underscores the potential risk of urbanization for the A. phagocytophilum life cycle, further emphasizing the need for comprehensive understanding of its ecological dynamics.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Izabella Myśliwy
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | | | - David Modrý
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristýna Hrazdilová
- Faculty of Medicine in Pilsen, Biomedical Center, Pilsen, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Joanna Hildebrand
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Agnieszka Perec-Matysiak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
8
|
Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, Mendes CP, Onuma M, Peres CA, Luskin MS. The rise of hyperabundant native generalists threatens both humans and nature. Biol Rev Camb Philos Soc 2023; 98:1829-1844. [PMID: 37311559 DOI: 10.1111/brv.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
Collapse
Affiliation(s)
- Jonathan H Moore
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, China
| | - Zachary Amir
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, Bangkok, 10900, Thailand
| | - Abdul Hamid Ahmad
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Malaysia
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 4, Wageningen, 6708 PB, Netherlands
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Calebe P Mendes
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onagava, Tsukuba-City, 305-8506, Japan
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Instituto Juruá, R. Ajuricaba, 359 - Aleixo, Manaus, 69083-020, Brazil
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, St Lucia, Queensland, 4072, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
9
|
Abrantes AC, Santos-Silva S, Mesquita J, Vieira-Pinto M. Hepatitis E Virus in the Wild Boar Population: What Is the Real Zoonotic Risk in Portugal? Trop Med Infect Dis 2023; 8:433. [PMID: 37755894 PMCID: PMC10535446 DOI: 10.3390/tropicalmed8090433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Hepatitis E virus (HEV) is an important zoonosis in wild boar. Reported zoonotic cases are mainly associated with the consumption of raw/undercooked meat and/or liver. This study aims to determine the occurrence of HEV in the Portuguese wild boar population. During the hunting season 2021/2022, 123-matched samples (liver, faeces, and blood) were collected from hunted wild boars throughout Portugal. An RT-PCR assay tested liver and faeces samples to detect HEV-RNA. From blood samples, an ELISA test was performed. Only one liver sample was positive for HEV (0,8%) and one other from faeces. A total of 34 sera were seropositive (26.7%). At the same time, in a survey of 106 hunters, 21 consumed/ate the liver of wild boars (19.8%). Only three recognised the possibility of consuming it undercooked. Contrary to previous studies in Portugal, the prevalence of HEV in liver and faeces is low, but the seropositivity is higher. But, when analyzing in detail, it could be observed that an HEV hotspot exists in the southeast of central Portugal and that it is a zoonotic risk for hunters of this region. The data of this study reinforce the importance of including HEV in surveillance programs for wildlife diseases to expand the potential zoonotic information.
Collapse
Affiliation(s)
- Ana Carolina Abrantes
- Animal and Veterinary Research Centre (CECAV), Trás-os-Montes e Alto Douro University (UTAD), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Madalena Vieira-Pinto
- Animal and Veterinary Research Centre (CECAV), Trás-os-Montes e Alto Douro University (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, Trás-os-Montes e Alto Douro University (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Portugal
| |
Collapse
|
10
|
Sgroi G, D’Alessio N, Auriemma C, Salant H, Gallo A, Riccardi MG, Alfano F, Rea S, Scarcelli S, Ottaviano M, De Martinis C, Fusco G, Lucibelli MG, Veneziano V. First molecular detection of Babesia vulpes and Babesia capreoli in wild boars from southern Italy. Front Vet Sci 2023; 10:1201476. [PMID: 37609054 PMCID: PMC10442169 DOI: 10.3389/fvets.2023.1201476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Following the increase of wild boar (Sus scrofa) populations in Europe, a potential risk of emerging infections by vector-borne pathogens may occur. Despite this, the circulation of piroplasmid species in these ungulates is still a neglected topic, particularly in the Mediterranean basin. Therefore, this study aimed to investigate the presence of Babesia/Theileria spp. in wild boars from southern Italy to assess the epidemiological role of these ungulates in the circulation of piroplasmids. Methods By using a citizen science approach among hunters and veterinarians, wild boar spleen samples were collected in the Campania region (southern Italy) between 2016 and 2022. A combined semi-nested PCR/sequencing analysis targeting the V4 hyper-variable region of 18S rRNA was run to detect Babesia/Theileria spp. DNA. Results Out of 243 boars, 15 (i.e., 6.2, 95% CI: 3.4-9.9) tested positive to Babesia/Theileria spp., Babesia vulpes (n = 13, 5.3, 95% CI: 3.1-8.9) the most prevalent, followed by Babesia capreoli (n = 2, 0.8, 95% CI: 0.2-2.9). Three different B. vulpes sequence types were identified (i.e., ST1, ST2, ST3), with the most representative as ST1 (60%), and a single B. capreoli sequence type. No statistically significant difference (p > 0.05) were found between the presence of the pathogens and boar age, sex, province and sample collection year. Discussion Data demonstrate for the first time the occurrence of B. vulpes and B. capreoli in wild boars, which may play a role in the biological cycle of piroplasmids. We emphasize the importance of monitoring these ungulates to prevent potential foci of infection. The engagement of hunters in epidemiological scientifically based surveys can constitute a technically sound control strategy of piroplasmids in a One Health perspective.
Collapse
Affiliation(s)
- Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Nicola D’Alessio
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
- Osservatorio Faunistico Venatorio—Campania Region, Naples, Italy
| | - Clementina Auriemma
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Harold Salant
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Amalia Gallo
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Marita Georgia Riccardi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Flora Alfano
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Simona Rea
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Stefano Scarcelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Martina Ottaviano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Claudio De Martinis
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Giovanna Fusco
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Maria Gabriella Lucibelli
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Vincenzo Veneziano
- Osservatorio Faunistico Venatorio—Campania Region, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Martí-Marco A, Moratal S, Torres-Blas I, Cardells J, Lizana V, Dea-Ayuela MA. Molecular Detection and Epidemiology of Potentially Zoonotic Cryptosporidium spp. and Giardia duodenalis in Wild Boar ( Sus scrofa) from Eastern Spain. Animals (Basel) 2023; 13:2501. [PMID: 37570308 PMCID: PMC10416950 DOI: 10.3390/ani13152501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The protozoans Giardia duodenalis and Cryptosporidium spp. are common causes of gastrointestinal disease in humans and animals. While both are commonly documented in domestic animals, few studies have analysed their presence in wildlife. To assess the prevalence of both parasites in wild boar (Sus scrofa) in the Valencian Community (eastern Spain), 498 wild boar faecal samples were collected from 2018 to 2022. Cryptosporidium spp. was detected by performing a nested PCR targeting a 578 bp sequence of the small subunit ribosomal RNA gene (SSU rRNA), followed by sequencing and phylogenetic analysis. For G. duodenalis, a qPCR amplifying a fragment of 62 bp from the SSU rRNA was employed. Positive samples were genotyped for glutamate dehydrogenase and β-giardin genes. Different epidemiological factors were considered potential modulating variables in the transmission of both parasites. G. duodenalis prevalence was 1.20%, while Cryptosporidium spp. prevalence reached 21.7%. Coinfection was observed in 0.2%. Genotyping of G. duodenalis isolates only detected genotype E. Two species of Cryptosporidium spp. were identified: Cryptosporidium scrofarum and Cryptosporidium suis. The results of this study demonstrate that the exposure to Cryptosporidium spp. in wild boars is high, particularly among young individuals belonging to the Typical Mediterranean climate. Moreover, the probability of infection is dependent on both the season and the density of wild boars. On the other side, exposure to G. duodenalis seems scarce and is influenced, in turn, by the climate. Both Cryptosporidium species detected in the present study have been reported in humans. Due to wild boar increasing in number and their colonisation of urban and peri-urban areas, this could represent an inherent health risk for the human population.
Collapse
Affiliation(s)
- Alba Martí-Marco
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
| | - Irene Torres-Blas
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Victor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Ramón y Cajal, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
12
|
Daněk O, Lesiczka PM, Hammerbauerova I, Volfova K, Juránková J, Frgelecová L, Modrý D, Hrazdilova K. Role of invasive carnivores (Procyon lotor and Nyctereutes procyonoides) in epidemiology of vector-borne pathogens: molecular survey from the Czech Republic. Parasit Vectors 2023; 16:219. [PMID: 37408071 DOI: 10.1186/s13071-023-05834-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Vector-borne pathogens (VBPs) are a major threat to humans, livestock and companion animals worldwide. The combined effect of climatic, socioeconomic and host composition changes favours the spread of the vectors, together with the expansion of invasive carnivores contributing to the spread of the pathogens. In Europe, the most widespread invasive species of carnivores are raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides). This study focused on the detection of four major groups of VBPs namely Babesia, Hepatozoon, Anaplasma phagocytophilum and Bartonella in invasive and native carnivores in the Czech Republic, with the emphasis on the role of invasive carnivores in the eco-epidemiology of said VBPs. METHODS Spleen samples of 84 carnivores of eight species (Canis aureus, Canis lupus, Lynx lynx, P. lotor, Martes foina, Lutra lutra, Mustela erminea and N. procyonoides) were screened by combined nested PCR and sequencing for the above-mentioned VBPs targeting 18S rRNA and cytB in hemoprotozoa, groEL in A. phagocytophilum, and using multilocus genotyping in Bartonella spp. The species determination is supported by phylogenetic analysis inferred by the maximum likelihood method. RESULTS Out of 84 samples, 44% tested positive for at least one pathogen. Five different species of VBPs were detected in P. lotor, namely Bartonella canis, Hepatozoon canis, Hepatozoon martis, A. phagocytophilum and Bartonella sp. related to Bartonella washoensis. All C. lupus tested positive for H. canis and one for B. canis. Three VBPs (Hepatozoon silvestris, A. phagocytophilum and Bartonella taylorii) were detected in L. lynx for the first time. Babesia vulpes and yet undescribed species of Babesia, not previously detected in Europe, were found in N. procyonoides. CONCLUSIONS Wild carnivores in the Czech Republic are hosts of several VBPs with potential veterinary and public health risks. Among the studied carnivore species, the invasive raccoon is the most competent host. Raccoons are the only species in our study where all the major groups of studied pathogens were detected. None of the detected pathogen species were previously detected in these carnivores in North America, suggesting that raccoons adapted to local VBPs rather than introduced new ones. Babesia vulpes and one new, probably imported species of Babesia, were found in raccoon dogs.
Collapse
Affiliation(s)
- Ondřej Daněk
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Paulina Maria Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Iva Hammerbauerova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karolina Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Juránková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - David Modrý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.
| |
Collapse
|
13
|
Matei IA, Kalmár Z, Balea A, Mihaiu M, Sándor AD, Cocian A, Crăciun S, Bouari C, Briciu VT, Fiț N. The Role of Wild Boars in the Circulation of Tick-Borne Pathogens: The First Evidence of Rickettsia monacensis Presence. Animals (Basel) 2023; 13:1743. [PMID: 37402208 DOI: 10.3390/ani13111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Most wild mammals can serve as hosts both for tick-borne pathogens (TBPs) and for the ticks themselves. Among these, wild boars, due to their large body size, habitat and life span, show high exposure to ticks and TBPs. These species are now one of the widest-ranging mammals in the world, as well as the most widespread suid. Despite the fact that certain local populations have been decimated by African swine fever (ASF), wild boars are still considered overabundant in most parts of the world, including Europe. Altogether, their long-life expectancy, large home ranges including migration, feeding and social behaviors, wide distribution, overabundance and increased chances of interactions with livestock or humans make them suitable sentinel species for general health threats, such as antimicrobial-resistant microorganisms, pollution and ASF geographical distribution, as well as for the distribution and abundance of hard ticks and also for certain TBPs, such as Anaplasma phagocytophilum. The aim of this study was to evaluate the presence of rickettsial agents in wild boars from two counties in Romania. Among 203 blood samples of wild boars (Sus scrofa ssp. attila) collected during 3 (2019-2022) hunting seasons (September-February), 15 were found positive for tick-borne pathogen DNA. Six wild boars were positive for A. phagocytophilum DNA presence and nine for Rickettsia spp. The identified rickettsial species were R. monacensis (six) and R. helvetica (three). No animal was positive either for Borrelia spp., Ehrlichia spp. or Babesia spp. To the best of our knowledge, this is the first report of R. monacensis in European wild boars, thus adding the third species from the SFG Rickettsia, in the epidemiology of which this wild species may have a role as a reservoir host.
Collapse
Affiliation(s)
- Ioana Adriana Matei
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zsuzsa Kalmár
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Infectious Diseases, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- ELKH-ÁTE Climate Change, New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, 1078 Budapest, Hungary
| | - Anamaria Balea
- Sanitary Veterinary and Food Safety Directorate Cluj, 400609 Cluj-Napoca, Romania
| | - Marian Mihaiu
- Sanitary Veterinary and Food Safety Directorate Cluj, 400609 Cluj-Napoca, Romania
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Attila D Sándor
- ELKH-ÁTE Climate Change, New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, 1078 Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Adrian Cocian
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Smaranda Crăciun
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmina Bouari
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Violeta Tincuța Briciu
- Department of Infectious Diseases, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicodim Fiț
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Lesiczka PM, Rudenko N, Golovchenko M, Juránková J, Daněk O, Modrý D, Hrazdilová K. Red fox (Vulpes vulpes) play an important role in the propagation of tick-borne pathogens. Ticks Tick Borne Dis 2023; 14:102076. [PMID: 36345066 DOI: 10.1016/j.ttbdis.2022.102076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The red fox (Vulpes vulpes) is the most widespread free-living carnivore in the world. Over the years, foxes have been recognized as hosts for a number of tick-borne pathogens. However, their role as reservoirs for zoonotic tick-borne diseases is poorly understood. The aim of our study was to investigate tick-borne pathogens in the red fox population in the Czech Republic. Out of 117 red foxes, 110 (94.02%) individuals tested positive for the presence of at least one pathogen by the combined PCR and sequencing approach. Hepatozoon canis was the most frequently detected pathogen (n = 95; 81.2%), followed by Babesia vulpes (n = 75; 64.1%). Babesia canis was not detected in our study. Four (3.42%) red foxes were positive for Candidatus Neoehrlichia sp., 3 (2.56%) for Anaplasma phagocytophilum, and one red fox (0.85%) tested positive for the presence of Ehrlichia sp. DNA. Overall, DNA of spirochetes from the Borrelia burgdorferi s.l. complex was detected in 8.6% of the foxes and B. miyamotoi in 5.12% of the samples. As a carnivore found in all ecosystems of Central Europe, foxes obviously contribute to transmission of tick-borne pathogens such as A. phagocytophilum, B. burgdorferi s.l., and B. myiamotoi. In addition, foxes apparently harbour a community of pathogens, associated with this host in local ecological context, dominated by H. canis and B. vulpes (possibly also Candidatus Neoehrlichia sp.). These species have the potential to spread to the domestic dog population and should be included in the differential diagnosis of febrile diseases with hematologic abnormalities in dogs.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic; CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, Brno, Czech Republic
| | - Natalia Rudenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| | - Jana Juránková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého třída 1946/1, Brno, Czech Republic
| | - Ondřej Daněk
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého třída 1946/1, Brno, Czech Republic
| | - David Modrý
- Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Kristýna Hrazdilová
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Alej Svobody 1655/76, Plzeň, Czech Republic; Department of Chemistry and Biochemistry, Mendel University, Zemědělská 1665/1, Brno, Czech Republic.
| |
Collapse
|
15
|
Regional seropositivity for Borrelia burgdorferi and associated risk factors: findings from the Rhineland Study, Germany. Parasit Vectors 2022; 15:241. [PMID: 35786209 PMCID: PMC9252056 DOI: 10.1186/s13071-022-05354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lyme borreliosis is the most prevalent vector-borne disease in Europe, and numbers might increase due to climate change. However, borreliosis is not notifiable in North Rhine-Westphalia (NRW), Germany. Hence, little is known about the current human seroprevalence in NRW. However, the proportion of Borrelia burgdorferi sensu lato-infected ticks has increased in a NRW nature reserve. The literature suggests increasing age and male sex as risk factors for seropositivity, whereas the influence of socioeconomic status is controversial. Thus, we aimed to determine regional seropositivity for Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) and its risk factors in the Rhineland Study population in Bonn, NRW, and to compare it with previous surveys to evaluate potential effects of climate change. Methods We assessed seropositivity in 2865 Rhineland Study participants by determining immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies for B. burgdorferi s.l. using a two-step algorithm combining enzyme-linked immunosorbent assay tests and line immunoblots. We calculated the odds of being classified as IgG or IgM positive as a function of age, sex, and educational level using binomial logistic regression models. We applied varying seropositivity classifications and weights considering age, sex and education to compensate for differences between the sample and regional population characteristics. Results IgG antibodies for B. burgdorferi s.l. were present in 2.4% and IgM antibodies in 0.6% of the participants (weighted: 2.2% [IgG], 0.6% [IgM]). The likelihood of IgG seropositivity increased by 3.0% (95% confidence interval [CI] 1.5–5.2%) per 1 year increase in age. Men had 1.65 times the odds for IgG seropositivity as women (95% CI 1.01–2.73), and highly educated participants had 1.83 times the odds (95% CI 1.10–3.14) as participants with an intermediate level of education. We found no statistically significant link between age, sex, or education and IgM seropositivity. Our weighted and age-standardized IgG seroprevalence was comparable to the preceding serosurvey German Health Interview and Examination Survey for Adults (DEGS) for NRW. Conclusions We confirmed that increasing age and male sex are associated with increased odds for IgG seropositivity and provide evidence for increased seropositivity in the highly educated group. B. burgdorferi s.l. seropositivity remained constant over the past decade in this regional German population. Graphical abstract ![]()
Collapse
|
16
|
Santana MDS, Hoppe EGL, Carraro PE, Calchi AC, de Oliveira LB, Bressianini do Amaral R, Mongruel ACB, Machado DMR, Burger KP, Barros-Batestti DM, Machado RZ, André MR. Molecular detection of vector-borne agents in wild boars (Sus scrofa) and associated ticks from Brazil, with evidence of putative new genotypes of Ehrlichia, Anaplasma and hemoplasmas. Transbound Emerg Dis 2022; 69:e2808-e2831. [PMID: 35717607 DOI: 10.1111/tbed.14632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
The present study aimed to investigate, by molecular techniques, the occurrence of Anaplasmataceae, Bartonellaceae, Rickettsiaceae, Mycoplasmataceae, Coxiellaceae e Babesiidae/Theileriidae agents in blood samples of free-living wild boars (Sus scrofa) and associated ticks in southeastern Brazil. For this purpose, 67 blood samples and 265 ticks (264 Amblyomma sculptum and one A. ovale) were analyzed. In the screening for Anaplasmataceae agents by a PCR assay based on the 16S rRNA gene, 5.97% blood samples and 50.54% ticks were positive. In the PCR assay for Ehrlichia spp. based on the dsb gene, 9.24% of ticks were positive. Despite the low occurrence, a possible new 16S rRNA genotype of Anaplasma sp. was detected in a wild boar's blood sample. According to phylogenetic analyses based on the groEL, gltA, sodB genes and ITS (23S-5S rRNA) intergenic region, it was found that A. sculptum and A. ovale ticks collected from wild boars carry Ehrlichia genotypes phylogenetically associated with E. ewingii, E. ruminantium, and new Ehrlichia genotypes previously detected in horses, peccaries, and ticks collected from jaguars. In the screening for hemoplasmas by a qPCR based on the 16S rRNA gene, 88.06% of blood samples and 8.69% of ticks were positive. Mycoplasma suis, M. parvum and a possible new hemoplasma genotype were detected in wild boars in southeastern Brazil. In the screening for Bartonella spp. using a nuoG-based qPCR assay, 3.8% of tick samples were positive. Phylogenetic inferences positioned four nuoG and one r gltA Bartonella sequences into the same clade as Bartonella machadoae. No blood or tick samples from wild boars showed to be positive in the qPCR for Coxiella burnetii based on the IS1111 gene. On the other hand, only 1.6% of ticks was positive in the nested PCR assay for piroplasmids based on the 18S rRNA gene. A 18S rRNA sequence detected in a pool of A. sculptum nymphs was phylogenetically close to Cytauxzoon felis sequences previously detected in cats from the United States. Rickettsia sp. closely related to R. bellii was detected in a pool of A. sculptum nymphs. This is the first report of hemoplasmas, B. machadoae and Cytauxzoon spp. in A. sculptum. Wild boars and associated ticks do not seem to participate in the epidemiological cycle of C. burnetii in the region studied. This invasive mammal species may act as a potential disperser of ticks infected with Ehrlichia spp., Bartonella spp., hemotropic mycoplasmas, and Cytauxzoon, and may bring important epidemiological implications in the transmission of bartonelosis, ehrlichiosis, hemoplasmosis, and cytauxzoonosis to humans and animals, more specifically to horses, rodents, pigs, and cats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matheus de Souza Santana
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Estevam Guilherme Lux Hoppe
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Paulo Eduardo Carraro
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Ana Cláudia Calchi
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Laryssa Borges de Oliveira
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Renan Bressianini do Amaral
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Anna Claudia Baumel Mongruel
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Dália Monique Ribeiro Machado
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Karina Paes Burger
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Darci Moraes Barros-Batestti
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Rosangela Zacarias Machado
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Department of Pathology, Reproduction, and One Health - Faculty of Agricultural and Veterinary Sciences/University State Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
17
|
Abstract
The recent and ever-growing problem of boar (Sus scrofa forms including wild boar, hybrid and feral pig) expansion is a very complex issue in wildlife management. The damages caused to biodiversity and the economies are addressed in different ways by the various countries, but research is needed to shed light on the causal factors of this emergency before defining a useful collaborative management policy. In this review, we screened more than 280 references published between 1975–2022, identifying and dealing with five hot factors (climate change, human induced habitat modifications, predator regulation on the prey, hybridization with domestic forms, and transfaunation) that could account for the boar expansion and its niche invasion. We also discuss some issues arising from this boar emergency, such as epizootic and zoonotic diseases or the depression of biodiversity. Finally, we provide new insights for the research and the development of management policies.
Collapse
|
18
|
Hornok S, Szekeres S, Horváth G, Takács N, Bekő K, Kontschán J, Gyuranecz M, Tóth B, Sándor AD, Juhász A, Beck R, Farkas R. Diversity of tick species and associated pathogens on peri-urban wild boars – first report of the zoonotic Babesia cf. crassa from Hungary. Ticks Tick Borne Dis 2022; 13:101936. [DOI: 10.1016/j.ttbdis.2022.101936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
19
|
Ali A, Shehla S, Zahid H, Ullah F, Zeb I, Ahmed H, da Silva Vaz I, Tanaka T. Molecular Survey and Spatial Distribution of Rickettsia spp. in Ticks Infesting Free-Ranging Wild Animals in Pakistan (2017-2021). Pathogens 2022; 11:162. [PMID: 35215108 PMCID: PMC8878123 DOI: 10.3390/pathogens11020162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Rickettsia spp. associated with ticks infesting wild animals have been mostly neglected in several countries, including Pakistan. To address this knowledge gap, ticks were collected during 2017 to 2021 from wild animals including cats (Felis chaus), Indian hedgehogs (Paraechinus micropus), and wild boars (Sus scrofa). The collected ticks were morpho-molecularly identified and screened for the detection of Rickettsia spp. Morphologically identified ticks were categorized into four species of the genus Rhipicephalus: Rhipicephalus haemaphysaloides, Rh. turanicus, Rh. sanguineus sensu lato (s.l), and Rh. microplus. Among 53 wild animals examined, 31 were infested by 531 ticks, an overall prevalence of 58.4%. Adult female ticks were predominant (242 out of 513 ticks collected, corresponding to 46%) in comparison with males (172, 32%), nymphs (80, 15%) and larvae (37, 7%). The most prevalent tick species was Rh. turanicus (266, 50%), followed by Rh. microplus (123, 23%), Rh. sanguineus (106, 20%), and Rh. haemaphysaloides (36, 7%). Among the screened wild animals, wild boars were the most highly infested, with 268 ticks being collected from these animals (50.4%), followed by cats (145, 27.3%) and hedgehogs (118, 22.3%). Tick species Rh. haemaphysaloides, Rh. turanicus, and Rh. sanguineus were found on wild boars, Rh. haemaphysaloides, and Rh. microplus on cats, and Rh. turanicus on hedgehogs. In a phylogenetic analysis, mitochondrial cytochrome C oxidase 1 (cox1) sequences obtained from a subsample (120) of the collected ticks clustered with sequences from Bangladesh, China, India, Iran, Myanmar, and Pakistan, while 16S ribosomal DNA (16S rDNA) sequences clustered with sequences reported from Afghanistan, Egypt, India, Pakistan, Romania, Serbia, and Taiwan. Among Rickettsia infected ticks (10/120, 8.3%), Rh. turanicus (7/10, 70%), and Rh. haemaphysaloides (3/10, 30%) were found infesting wild boars in the districts Mardan and Charsadda. The obtained rickettsial gltA gene sequences showed 99% and ompA gene sequences showed 100% identity with Rickettsia massiliae, and the phylogenetic tree shows ompA clustered with the same species reported from France, Greece, Spain, and USA. This study emphasizes the need for effective surveillance and control programs in the region to prevent health risks due to tick-borne pathogens, and that healthy infested wild animals may play a role in the spread of these parasites.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (H.Z.); (F.U.); (I.Z.)
| | - Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (H.Z.); (F.U.); (I.Z.)
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (H.Z.); (F.U.); (I.Z.)
| | - Farman Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (H.Z.); (F.U.); (I.Z.)
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (S.S.); (H.Z.); (F.U.); (I.Z.)
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan;
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
20
|
Boyer PH, Barthel C, Mohseni-Zadeh M, Talagrand-Reboul E, Frickert M, Jaulhac B, Boulanger N. Impact of Different Anthropogenic Environments on Ticks and Tick-Associated Pathogens in Alsace, a French Region Highly Endemic for Tick-Borne Diseases. Microorganisms 2022; 10:microorganisms10020245. [PMID: 35208700 PMCID: PMC8877010 DOI: 10.3390/microorganisms10020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Ticks and tick-borne diseases have spread over the last decades. In parallel, the incidence in humans, accidental hosts for most of these zoonotic diseases, has increased. This epidemiological intensification can be associated with anthropogenic alterations of forest ecosystems and animal biodiversity, but also with socioeconomic changes. Their proliferation is largely due to human-induced effects on the factors that favor the circulation of these infectious agents. We selected different types of anthropogenic environments in Alsace, a region endemic for tick-borne diseases in France, to better understand the impact of human interventions on tick populations and tick-borne disease incidence. Ticks were collected in one golf course, three urban parks, one mid-mountain forest, and one alluvial forest that is currently part of a protected natural area. Ixodes ricinus was found primarily in humid vegetation, which is favorable for tick survival, such as grounds populated with trees and covered with leaf litter. We also observed that reforestation and high animal biodiversity in a protected area such as the alluvial forest led to a greater number of ticks, including both Ixodes ricinus and Dermacentor reticulatus, as well as to a higher prevalence of pathogens such as Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Borrelia miyamotoi, and Rickettsia raoulti.
Collapse
Affiliation(s)
- Pierre H. Boyer
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Cathy Barthel
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Mahsa Mohseni-Zadeh
- Hôpitaux Civils de Colmar, Service de Maladies Infectieuses, 39 Avenue de la Liberté, 68000 Colmar, France;
| | - Emilie Talagrand-Reboul
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Mathieu Frickert
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Benoit Jaulhac
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
- French National Reference Center for Borrelia, Centre Hospitalier Régional Universitaire, 67000 Strasbourg, France
| | - Nathalie Boulanger
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
- French National Reference Center for Borrelia, Centre Hospitalier Régional Universitaire, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3-69-55-14-49
| |
Collapse
|
21
|
Molecular Detection of Zoonotic and Non-Zoonotic Pathogens from Wild Boars and Their Ticks in the Corsican Wetlands. Pathogens 2021; 10:pathogens10121643. [PMID: 34959598 PMCID: PMC8707423 DOI: 10.3390/pathogens10121643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Corsica is the main French island in the Mediterranean Sea and has high levels of human and animal population movement. Among the local animal species, the wild boar is highly prevalent in the Corsican landscape and in the island’s traditions. Wild boars are the most commonly hunted animals on this island, and can be responsible for the transmission and circulation of pathogens and their vectors. In this study, wild boar samples and ticks were collected in 17 municipalities near wetlands on the Corsican coast. A total of 158 hunted wild boars were sampled (523 samples). Of these samples, 113 were ticks: 96.4% were Dermacentor marginatus, and the remainder were Hyalomma marginatum, Hyalomma scupense and Rhipicephalus sanguineus s.l. Of the wild boar samples, only three blood samples were found to be positive for Babesia spp. Of the tick samples, 90 were found to be positive for tick-borne pathogens (rickettsial species). These results confirm the importance of the wild boar as a host for ticks carrying diseases such as rickettsiosis near wetlands and recreational sites. Our findings also show that the wild boar is a potential carrier of babesiosis in Corsica, a pathogen detected for the first time in wild boars on the island.
Collapse
|
22
|
Lesiczka PM, Modry D, Sprong H, Fonville M, Pikula J, Piacek V, Heger T, Hrazdilova K. Detection of Anaplasma phagocytophilum in European brown hares (Lepus europaeus) using three different methods. Zoonoses Public Health 2021; 68:917-925. [PMID: 34379883 DOI: 10.1111/zph.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
European brown hare (Lepus europaeus Pallas 1778) is a broadly distributed lagomorph species in Europe, recognized as a host for Ixodes ricinus and reservoir of a wide range of pathogens with zoonotic potential. Even though Lepus europaeus represents an important game animal in Central Europe, the data available on Anaplasma phagocytophilum in this lagomorph are scarce. In this study, three populations of brown hare from distinct localities in the Czech Republic were analysed for the presence of Anaplasma phagocytophilum DNA. We used standard qPCR, targeting the msp2 gene and adapted the same assay also for digital droplet PCR. Out of 91 samples, these two methods identified 9 and 12 as positive, respectively. For taxonomic analysis, we amplified the groEL gene from five of six samples that were found positive by both methods. In phylogenetic analyses, this haplotype belongs to ecotype 1, and to the subclade with isolates from cervids and I. ricinus. Our findings underline the importance of correct result interpretation and positivity cut-off set-up for different detection methods of A. phagocytophilum. This bacterium is characterized by a high intraspecific variability and highly sensitive detection itself, is not enough. Detailed molecular typing is necessary to define the zoonotic potential of different strains and their natural reservoirs.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - David Modry
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jiri Pikula
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Tomas Heger
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Kristyna Hrazdilova
- CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| |
Collapse
|
23
|
Ecotyping of Anaplasma phagocytophilum from Wild Ungulates and Ticks Shows Circulation of Zoonotic Strains in Northeastern Italy. Animals (Basel) 2021; 11:ani11020310. [PMID: 33530571 PMCID: PMC7911980 DOI: 10.3390/ani11020310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tick-borne infectious diseases represent a rising threat both for human and animal health, since they are emerging worldwide. Among the bacterial infections, Anaplasma phagocytophilum has been largely neglected in Europe. Despite its diffusion in ticks and animals, the ecoepidemiology of its genetic variants is not well understood. The latest studies identify four ecotypes of Anaplasma phagocytophilum in Europe, and only ecotype I has shown zoonotic potential. The aim of the present study was to investigate the genetic variants of Anaplasma phagocytophilum in wild ungulates, the leading reservoir species, and in feeding ticks, the main vector of infection. The analyzed samples were collected in northeastern Italy, the same area where the first Italian human cases of anaplasmosis in the country were reported. Using biomolecular tools and phylogenetic analysis, ecotypes I and II were detected in both ticks (Ixodes ricinus species) and wild ungulates. Specifically, ecotype II was mainly detected in roe deer and related ticks; and ecotype I, the potentially zoonotic variant, was detected in Ixodes ricinus ticks and also in roe deer, red deer, chamois, mouflon, and wild boar. These findings reveal not only the wide diffusion of Anaplasma phagocytophilum, but also the presence of zoonotic variants. Abstract Anaplasma phagocytophilum (A. phagocytophilum) is a tick-borne pathogen causing disease in both humans and animals. Human granulocytic anaplasmosis (HGA) is an emerging disease, but despite the remarkable prevalence in European ticks and wild animals, human infection appears underdiagnosed. Several genetic variants are circulating in Europe, including the zoonotic ecotype I. This study investigated A. phagocytophilum occurrence in wild ungulates and their ectoparasites in an area where HGA has been reported. Blood samples from wild ungulates and ectoparasites were screened by biomolecular methods targeting the mps2 gene. The groEL gene was amplified and sequenced to perform genetic characterization and phylogenetic analysis. A total of 188 blood samples were collected from different wild ungulates species showing an overall prevalence of 63.8% (88.7% in wild ruminants and 3.6% in wild boars). The prevalence of A. phagocytophilum DNA in ticks (manly Ixodes ricinus), and keds collected from wild ruminants was high, reflecting the high infection rates obtained in their hosts. Among ticks collected from wild boars (Hyalomma marginatum and Dermacentor marginatus) no DNA was detected. Phylogenetic analysis demonstrated the presence of ecotype I and II. To date, this is the first Italian report of ecotype I in alpine chamois, mouflon, and wild boar species. These findings suggest their role in HGA epidemiology, and the high prevalence detected in this study highlights that this human tick-borne disease deserves further attention.
Collapse
|
24
|
Petruccelli A, Ferrara G, Iovane G, Schettini R, Ciarcia R, Caputo V, Pompameo M, Pagnini U, Montagnaro S. Seroprevalence of Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi sensu lato, and Dirofilaria immitis in Stray Dogs, from 2016 to 2019, in Southern Italy. Animals (Basel) 2020; 11:ani11010009. [PMID: 33374634 PMCID: PMC7822448 DOI: 10.3390/ani11010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Canine vector-borne diseases (CVBD) are an important and emerging health concern for humans and animals worldwide. The purpose of the presented study was to assess, from 2016 to 2019, the seroprevalence of CVBD agents and clarify the epidemiology of tick-borne disease in stray dogs living in the Campania Region, Southern Italy. For this purpose, blood samples were collected from January 2016 to December 2019 from 1023 dogs in authorized kennels located in the five municipalities of the Campania Region. SNAP® 4DX® from IDEXX® Laboratories was used for detection of Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi sensu lato (s.l.), and Dirofilaria immitis antibodies. The overall seroprevalence of CVBD in stray dogs was 19.6% (95% Confidence Intervals (CI): 17.2-22.8%; 201/1023). The most common pathogen was Ehrlichia spp., with a percentage of positivity of 16.03%, followed by Anaplasma spp. with 7.8%. B. burgdorferi s.l. and D. immitis were detected in only 0.2% of dogs; co-infection was detected in 4.5% of stray dogs tested. No link was detected between the gender, age, location, and CVBD seropositivity, except for Ehrlichia spp. for which location (Avellino Province; p = 0.007) and gender (male, p = 0.002) were risk factors for seropositivity. Our results demonstrated that animals are exposed to at least one of the four etiological agents (Ehrlichia spp., Anaplasma spp. Borrelia burgdorferi s.l., and Dirofilaria immitis) transmitted by vectors. Finally, this study highlighted the utility of serological monitoring in stray dogs, housed in kennels, given the threat posed by CVBD to animals and the zoonotic implications of these etiological agents and their vectors on human health.
Collapse
Affiliation(s)
- Angela Petruccelli
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
| | - Rita Schettini
- Veterinary Service, ASL Salerno, Piazza Santini Carlo 1, 84047 Capaccio Scalo, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
| | - Vincenzo Caputo
- Veterinary Public Health Coordination Area, Veterinary Hospital Presidium, ASL 1, Via Marco Rocco di Torrepadula, 80145 Napoli, Italy;
| | - Marina Pompameo
- U.O.C. Animal Health, Veterinary Hospital Presidium, ASL 1, Via Marco Rocco di Torrepadula, 80145 Napoli, Italy;
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; (A.P.); (G.F.); (G.I.); (R.C.); (U.P.)
- Correspondence: ; Tel.: +39-081-2536178
| |
Collapse
|