1
|
Xiu W, Wang X, Na Z, Yu S, Li C, Wang J, Shi X, Zhu H, Ma Y. Degradation of sweet corn cob polysaccharides by ultrasound-assisted H 2O 2/Vc treatment: Structural characterization and hypoglycemic effects in vitro and in vivo. Food Res Int 2025; 211:116354. [PMID: 40356093 DOI: 10.1016/j.foodres.2025.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/14/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
To investigate the inhibitory potential of plant-degraded polysaccharides on glycosidases and elucidate the mechanism by which they alleviate type 2 diabetes mellitus (T2DM), a degraded sweet corn cob polysaccharide (UHDSCP) was prepared using ultrasound-assisted hydrogen peroxide-ascorbic acid oxidation (H2O2/Vc). UHDSCP was subsequently characterized using various analytical techniques, including UV spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Our findings indicated that UHDSCP has a molecular weight of 14.82 kDa and is composed primarily of mannose, glucose, galactose, and fucose at a molar ratio of 1.705:93.301:1.077:2.501. Additionally, UHDSCP exhibited α- and β-glycosidic bonds. Our findings revealed that UHDSCP can inhibit the activity of α-amylase and α-glucosidase and reduce oxidative stress in vitro. UHDSCP also exerted a hypoglycemic effect in T2DM mice, as determined by a decrease in the activities of disaccharidases in the small intestine, including maltase, sucrase, and lactase. Additionally, UHDSCP could modulate lipid metabolism in T2DM mice and alleviate oxidative stress in hepatic and pancreatic tissues. Moreover, UHDSCP ameliorated T2DM-induced inflammatory responses in the intestine and liver by restoring the integrity of the intestinal barrier. Considering these results, this study can serve as a reference for the inclusion of UHDSCP in the diet to exert hypoglycemic effects and alleviate T2DM through multiple pathways.
Collapse
Affiliation(s)
- Weiye Xiu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Xin Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China.
| | - Zhiguo Na
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Shiyou Yu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Chenchen Li
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Jingyang Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Xinhong Shi
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Haobin Zhu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Yongqiang Ma
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
2
|
Chen M, Sun Y, Zhao L, Sun T, Lang Y. Research advance in the preparation techniques, structural characteristics, bioactivities and potential applications of Cassia obtusifolia polysaccharides: A systematic review. Int J Biol Macromol 2025; 311:143732. [PMID: 40316083 DOI: 10.1016/j.ijbiomac.2025.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Cassia obtusifolia polysaccharides (COPs) have attracted considerable attention for their antioxidant, immunomodulatory, anti-fatigue and eye-disease-treating activities, showing promise in medicine and functional foods. However, current research on COPs is hindered by inefficient extraction, unclear structure-activity relationships and ambiguous biological mechanisms. This review comprehensively summarizes the recent advances in extraction techniques, highlighting that combined extraction methods, such as microwave- or enzyme- assisted extraction can effectively enhance yields while preserve the structure of COPs. Mannose and galactose dominate monosaccharide composition of COPs, with mannose (43.0 %-80.3 %) crucial for the structure of COPs. The molecular weight of COPs (24.3 kDa-70.4 kDa) is affected by extraction methods and impacts bioactivities. Separation methods like deproteinization and chromatography are essential to obtain the pure COPs. Furthermore, COPs have diverse biological activities related to their structural features, and a detailed quality evaluation system for COPs is presented. COPs also have potential applications in drug delivery, nutraceuticals and food packaging. In conclusion, optimizing extraction, clarifying structure-function relationships and conducting comprehensive research are vital to fully utilize COPs' therapeutic potential. The review's novelty lies in its comprehensive compilation, the in-depth analysis of combined extraction, the systematic study of structure-activity relationships, and the detailed discussion on quality evaluation and applications.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Lizhu Zhao
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, , PR China.
| | - Yanhe Lang
- East University of Heilongjiang, School of Food Engineering, 150066, PR China.
| |
Collapse
|
3
|
Górska-Jakubowska S, Wu Y, Turło J, Xu B. Critical Review on the Anti-Tumor Activity of Bioactive Compounds from Edible and Medicinal Mushrooms over the Last Five Years. Nutrients 2025; 17:1887. [PMID: 40507156 PMCID: PMC12157108 DOI: 10.3390/nu17111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/27/2025] [Accepted: 05/29/2025] [Indexed: 06/16/2025] Open
Abstract
In recent years, the incidence rate of cancer has been on the rise all over the world, and the age of cancer patients has shown a younger trend, which seriously endangers patients' health. Edible/medicinal mushrooms have not only become a new source of nutritional supplements but have also emerged as a promising adjunct to conventional medicine, either by directly or indirectly killing tumor cells and enhancing immunity, or through their use in conjunction with modern cancer therapies to enhance their efficacy or reduce their side-effects, improving patients' quality of life. Although the anti-cancer potential of edible and medicinal mushrooms has been widely studied in the past, this review focuses on the most recent literature from the last five years, providing an up-to-date and comprehensive summary of the current findings. In this review, we aim to analyze the anti-cancer effects of edible/medicinal mushrooms, including Schizophyllum commune, Trametes versicolor, Grifola frondosa, Ganoderma lucidum, Lentinula edodes, Laetiporus sulphureus, Boletus edulis, and Phellinus igniarius, as well as their potential anti-cancer mechanisms, providing strong theoretical support for the further development of edible/medicinal mushroom anti-cancer products.
Collapse
Affiliation(s)
- Sandra Górska-Jakubowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (S.G.-J.); (J.T.)
| | - Yingzi Wu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (S.G.-J.); (J.T.)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China;
| |
Collapse
|
4
|
Li W, Wang N, Xu T, Du Q, Yang R, Ai M, Han X, Wang W. Ultrasound-Assisted Polysaccharide Extraction from Grape Skin and Assessment of In Vitro Hypoglycemic Activity of Polysaccharides. Foods 2025; 14:1801. [PMID: 40428580 PMCID: PMC12111032 DOI: 10.3390/foods14101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/04/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Grapes are commonly processed into shelf-stable products such as raisins, wine, juice, and syrup-canned syrup goods. During processing, byproducts like skins and seeds are generated, which contain bioactive compounds including polysaccharides and polyphenols that exhibit diverse biological activities. The objective of this work was to thoroughly evaluate the impact of ultrasound technology on both the extraction efficiency and in vitro hypoglycemic activity of the polysaccharides derived from grape skin. The isolation and purification of the polysaccharides were carried out using chromatographic column techniques, and the monosaccharide components were determined through HPLC. The hypoglycemic activity of the polysaccharides from grape skin in vitro was analyzed in vitro considering their inhibitory effects on α-amylase and α-glucosidase. The polysaccharides from grape skins were extracted via an ultrasound-assisted methodology (under the following conditions: 50 °C, 50 min, 20 mL/g ratio, and 210 W), resulting in an 11.82% extraction yield of GSPs. Monosaccharide constituent analysis revealed that GSP-1-1 consisted of galacturonic acid, arabinose, rhamnose, galactose, glucose, glucuronic acid, mannose, and xylose in a molar ratio of 40.26:26.99:13.58:12.2:2.24:1.97:1.63:1.42. In vitro evaluations indicated that both GSP and GSP-1-1 exhibited notable suppression of α-amylase and α-glucosidase activities, two key enzymes in carbohydrate digestion. This dual inhibitory action positions these compounds as potential therapeutic agents for blood glucose management strategies. This work provides a new direction for addressing the byproducts of the grape canning industry and also offers a theoretical basis for the development of functional grape products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.L.)
| |
Collapse
|
5
|
Deng G, Li P, Liang H, Chen T, Zhou L, Yang H, Jiang X, Ding C, Feng S. Extraction of polysaccharides from Camellia oleifera leaves by dual enzymes combined with deep eutectic solvents screened by ANN and COSMO-RS. Int J Biol Macromol 2025; 305:141131. [PMID: 39961566 DOI: 10.1016/j.ijbiomac.2025.141131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Camellia oleifera leaves were byproduct of the C. oleifera industry which was rich in polysaccharides. Deep eutectic solvent-dual enzyme system (DES-dEAE) was established to achieve the simultaneous hydrolysis reaction of dual enzymes and DES extraction. Currently, there was a lack of research methods that simultaneously deal with the relationship between DES and enzymes and the effect of DES on the polysaccharide extraction rate. In the study, artificial neural network (ANN) and conductor-like screening model for real solvents (COSMO-RS) were used to screen the most suitable DES by predicting the pH and activity coefficient of DESs. Choline chloride and sorbitol constituted the best DES and were used to optimize the process conditions of DES-dEAE by response surface method (RSM). The polysaccharide yield was verified to be 21.46 mg/g with the optimal process conditions: liquid-solid ratio of 33:1, enzyme ratio of 3:1, extraction time of 15 min and water content of 40 %. The C. oleifera polysaccharides obtained by water, DES, and DES-dEAE extractions were observed by scanning electron microscopy and cell wall damage effect of DES-dEAE was confirmed microscopically. The study optimized the complex polysaccharide extraction system using bioinformatics methods, contributing new ideas to the development of simulated extraction.
Collapse
Affiliation(s)
- Guanfeng Deng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Pingjin Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Heng Liang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hongyu Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoyu Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
6
|
Xiao S, Rao L, Yan C, Nie L, Wang L, Zhao Y, Zhang S, Zhan W, Qin D, Zhuang M. Aptamer Functionalized Liposomes Co-Loaded with Exenatide-4 and Coenzyme Q10 Ameliorate Type 2 Diabetes Mellitus by Improving Pancreatic β Cell Function. Int J Nanomedicine 2025; 20:3363-3378. [PMID: 40125440 PMCID: PMC11928442 DOI: 10.2147/ijn.s510240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Oxidative stress has been shown to disrupt β-cell function and promote the development of type 2 diabetes mellitus (T2DM). Exenatide-4 (Ext-4) is a widely used anti-glycemic drug but cannot restore pancreatic β-cells' structure and function. Coenzyme Q10 (CoQ10) has great antioxidant activities but shows suboptimal therapeutic effects because of its poor solubility and poor bioavailability. To further enhance the therapeutic efficacy of the drugs, a pancreas-targeting liposomal co-delivery system encapsulating Ext-4 and CoQ10 ((E+Q)-Lip-Apt) was designed, using the aptamers as the targeting ligands. Methods (E+Q)-Lip-Apt was prepared by thin film dispersion method and its optimal formulation was obtained through single-factor experiments and orthogonal experiments. The pancreatic β-cell protecting effect of (E+Q)-Lip-Apt was investigated both in vitro and in vivo. Results (E+Q)-Lip-Apt exhibited uniform size, good dispersion, and high encapsulation efficiency (EE) for both Ext-4 and CoQ10. The in vitro results showed that (E+Q)-Lip-Apt manifested superior capacity in scavenging ROS, enhancing mitochondrial membrane potential, and reducing malondialdehyde (MDA) content compared to Ext-4 in MIN6 cells. In vivo investigations demonstrated that (E+Q)-Lip-Apt significantly improved glucose tolerance, insulin sensitivity, hepatic lipid metabolism, oxidative stress, and enhanced antioxidant enzyme activity in diabetic mice. Moreover, Hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) results indicated that (E+Q)-Lip-Apt could improve liver and pancreatic lesions, restoring the structure and function of β-cells in diabetic mice. Conclusion (E+Q)-Lip-Apt could improve oxidative stress, thereby restoring pancreatic β-cell function, and alleviating diabetes.
Collapse
Affiliation(s)
- Shangying Xiao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Lei Rao
- Medical College, Shaoguan University, Shaoguan, People’s Republic of China
| | - Canying Yan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Ling Nie
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Leiqi Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yingyin Zhao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Shihao Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - WeiMao Zhan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Dongyun Qin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Manjiao Zhuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, People’s Republic of China
| |
Collapse
|
7
|
Wang T, Zhu B, Zhao J, Li S. Research progress in methods of acquisition, structure elucidation, and quality control of Chinese herbal polysaccharides. Chin J Nat Med 2025; 23:143-157. [PMID: 39986691 DOI: 10.1016/s1875-5364(25)60819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 02/24/2025]
Abstract
The therapeutic efficacy of traditional Chinese medicine has been widely acknowledged due to its extensive history of clinical effectiveness. However, the precise active components underlying each prescription remain incompletely understood. Polysaccharides, as a major constituent of water decoctions-the most common preparation method for Chinese medicinals-may provide a crucial avenue for deepening our understanding of the efficacy principles of Chinese medicine and establishing a framework for its modern development. The structural complexity and diversity of Chinese herbal polysaccharides present significant challenges in their separation and analysis compared to small molecules. This paper aims to explore the potential of Chinese herbal polysaccharides efficiently by briefly summarizing recent advancements in polysaccharide chemical research, focusing on methods of acquisition, structure elucidation, and quality control.
Collapse
Affiliation(s)
- Tingting Wang
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Baojie Zhu
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Macao Centre for Testing of Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
8
|
Dong X, Xia C, Fan H, Zhang X, Sun T, Wang Z, Liu T. Changes in Volatile Compounds and Sensory Properties of Chicken with Armillaria mellea During the Pressure-Cooking Process. Foods 2025; 14:83. [PMID: 39796373 PMCID: PMC11719872 DOI: 10.3390/foods14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Chicken with Armillaria mellea prepared via pressure cooking is a traditional Chinese delicacy with great potential for food development. Optimizing its cooking time is crucial. In this study, chicken and Armillaria mellea were pressure-cooked for different amounts of time (20 min, 25 min, 30 min, 35 min, and 40 min). In total, 101 and 81 volatile compounds were identified by GC-MS and GC-IMS, respectively. The results showed that the content of volatile compounds was the highest at 40 min. Nonanal, decanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, and 1-octen-3-ol were identified as the most critical aroma compounds at this time, which brought unique fat, oil, and mushroom aroma to chicken with Armillaria mellea during the pressure-cooking process. The optimal time was determined to be 35 min through sensory properties. In summary, the optimal cooking time for chicken with Armillaria mellea prepared via pressure cooking is 35-40 min. Our research results not only preliminarily determined the optimal conditions for industrial processing of the prepared dish of with Armillaria mellea prepared via pressure cooking, laying a foundation for the later industrial production of prepared dishes and international sales, but also stimulated innovative composite food development and promoted people's exploration of the mechanism of heat treatment on composite food flavor and taste.
Collapse
Affiliation(s)
- Xiaolan Dong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Agriculture Ministry and Rural Affairs Ministry, Changchun 130118, China
| | - Chuntao Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Agriculture Ministry and Rural Affairs Ministry, Changchun 130118, China
| | - Hongxiu Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xu Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China;
| | - Tong Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Agriculture Ministry and Rural Affairs Ministry, Changchun 130118, China
| | - Zhiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Agriculture Ministry and Rural Affairs Ministry, Changchun 130118, China
| | - Tingting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (X.D.); (C.X.); (H.F.); (T.S.); (Z.W.)
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Agriculture Ministry and Rural Affairs Ministry, Changchun 130118, China
| |
Collapse
|
9
|
García-Gurrola A, Martínez AL, Wall-Medrano A, Olivas-Aguirre FJ, Ochoa-Ruiz E, Escobar-Puentes AA. Phytochemistry, Anti-cancer, and Anti-diabetic Properties of Plant-Based Foods from Mexican Agrobiodiversity: A Review. Foods 2024; 13:4176. [PMID: 39767118 PMCID: PMC11675762 DOI: 10.3390/foods13244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry. This review presents an examination of essential phytochemicals found in plants and foods within Mexican agrobiodiversity that have shown promising anti-cancer and anti-diabetic properties, including their roles as antioxidants, insulin sensitizers, and enzyme inhibitors. Notable compounds identified include flavonoids (such as quercetin and catechins), phenolic acids (chlorogenic, gallic, and caffeic acids), methylxanthines (like theobromine), xanthones (such as mangiferin), capsaicinoids (capsaicin), organosulfur compounds (like alliin), and various lipids (avocatins). Although these phytochemicals have shown promise in laboratory and animal studies, there is a significant scarcity of clinical trial data involving humans, underscoring an important area for future research.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Ana Laura Martínez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Francisco J. Olivas-Aguirre
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Estefania Ochoa-Ruiz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Alberto A. Escobar-Puentes
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| |
Collapse
|
10
|
Gao W, Wang Y, Lu F, Liu F. Ultrasound-Assisted Enzymatic Extraction of Polysaccharides from Tricholoma matsutake: Optimization, Structural Characterization, and Inhibition of α-Synuclein Aggregation. Foods 2024; 13:4150. [PMID: 39767092 PMCID: PMC11675543 DOI: 10.3390/foods13244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study optimized ultrasound-assisted enzymatic (UAE) extraction of TMP (Tricholoma matsutake polysaccharide) through response surface methodology. The optimal conditions included complex enzyme comprising 1.15% cellulase, 0.60% pectinase, and 0.95% dispase, with ultrasound for 24 min at 84.5 °C and enzyme hydrolysis at pH 5.0. This process yielded 19.74 ± 0.51% TMP, exceeding traditional hot water extraction by over four times. Fourier transform infrared spectroscopy (FT-IR) confirmed that UAE did not alter the structure of TMP. In vitro experiments indicated that TMP-UAE demonstrated enhanced antioxidant properties. Further purification through DEAE-52 and Sephadex G-100 chromatography resulted in a homogenous polysaccharide fraction (TMP). Characterization indicated that TMP has an average molecular weight of 2.79 × 104 Da, composed of fucose, galactose, glucose and mannose in a 2.00:9.44:86.29:2.28 molar ratio. FT-IR indicated the presence of C-O-C glycosidic bonds and pyranyl-type sugar rings. Scanning electron microscopy displayed loose lamellar structures with small pores. Finally, TMP exhibited therapeutic potential against C. elegans in Parkinson's disease, including reducing α-synuclein aggregation, protecting dopaminergic neurons, and prolonging lifespan. This study provides an efficient extraction method for TMP and an insight into its neuroprotective effect in PD C.elegans.
Collapse
Affiliation(s)
| | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (W.G.); (Y.W.); (F.L.)
| |
Collapse
|
11
|
Hu W, Yu A, Wang Z, Meng Y, Kuang H, Wang M. Genus Paeonia polysaccharides: A review on their extractions, purifications, structural characteristics, biological activities, structure-activity relationships and applications. Int J Biol Macromol 2024; 282:137089. [PMID: 39486721 DOI: 10.1016/j.ijbiomac.2024.137089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The Paeonia genus, the most distinctive representative of the Paeoniaceae family, holds significant edible and medicinal value. Its plants are rich in chemical constituents, including polysaccharides, phenols, terpenes, and flavonoids. Among these, Paeonia polysaccharide (PPS) is a key bioactive component, exhibiting diverse biological activities such as anti-cancer, anti-depressant, anti-oxidant, anti-inflammatory, anti-bacterial, immunomodulatory activities and therapeutical effect of diabetic kidney disease. Additionally, PPS possess favorable physicochemical properties including low toxicity and high biocompatibility. Recent studies increasingly demonstrate that PPS can enhance the sensory quality of food products during processing, and confer specific functional benefits through targeted biological activities indicating substantial potential for application in the food industry. The biological activity, emulsifying capacity, and film-forming properties of PPS also render them promising additives in cosmetic formulations, suggesting opportunities for further development. Despite their potential, challenges remain, particularly in optimizing extraction and purification techniques to improve PPS yield and preserve bioactivity. Therefore, a comprehensive review of the latest research advancements and future prospects is essential to deepen the understanding and facilitate the development of PPS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
12
|
Md Yusoff MH, Shafie MH. A review of in vitro antioxidant and antidiabetic polysaccharides: Extraction methods, physicochemical and structure-activity relationships. Int J Biol Macromol 2024; 282:137143. [PMID: 39500430 DOI: 10.1016/j.ijbiomac.2024.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Nowadays, various plant polysaccharides have been successfully extracted which exhibited strong biological activities and might be useful for diabetes management. However, the effect of extraction methods, physicochemical and the structural-activity relationships of polysaccharides to exhibit antioxidants and antidiabetics were inadequate to explain their mechanism in action. The uses of advance extraction methods might be preferred to obtain higher antioxidants and antidiabetic activities of polysaccharides compared to conventional methods, but the determination of optimal extraction conditions might be crucial to preserve their structure and biological functions. Other than that, the physicochemical and structural properties of polysaccharides were closely related to their biological activities such as antioxidant and antidiabetic activities. Therefore, this review addressed the research gap of the influence of extraction methods, physicochemical and structural relationships of polysaccharides to biological activities, pointing out the challenges and limitations as well as future prospects to the current findings.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
13
|
Nie S, Zhang S, Wang Y, Zhu M, Chen X, Wang X, Huang P. Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review. Int J Biol Macromol 2024; 281:136280. [PMID: 39368588 DOI: 10.1016/j.ijbiomac.2024.136280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Ginkgo biloba, a deciduous tree from the Ginkgoaceae family, is widely cultivated globally. In China, it predominantly grows in the eastern and southern regions. The leaves can be harvested multiple times throughout the growing season, presenting a significant resource potential. Ginkgo biloba leaves are considered as a living fossil with both medicinal and edible properties in traditional Chinese medicine. Polysaccharides, the primary bioactive compounds in these leaves, exhibit numerous biological activities, including antioxidant, antitumor, anti-inflammatory, immunoregulatory activity, antidepressant effects, hepatoprotective, hypoglycemic activity and hair-growth promoting effect. This review highlights the advancements in the extraction separation purification, structural elucidation, and functional analysis of polysaccharides derived from Ginkgo biloba leaves over the past decade, aiming to provide valuable insights for future development and commercialization of Ginkgo biloba leave polysaccharides.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
14
|
Khalil ASE, Lukasiewicz M. The Optimization of the Hot Water Extraction of the Polysaccharide-Rich Fraction from Agaricus bisporus. Molecules 2024; 29:4783. [PMID: 39407711 PMCID: PMC11478120 DOI: 10.3390/molecules29194783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The optimization of extraction parameters, including the process time, temperature, and liquid-to-solid ratio, was conducted in order to obtain the polysaccharide-rich fraction from the lyophilized Agaricus bisporus fruiting body. The efficiency of extraction for polysaccharides and antioxidant activity was determined by analyzing the extracts for total carbohydrate content, the reducing sugars content, and the antioxidant activity employing DPPH, ABTS, and hydroxyl radical scavenging assays. The results showed that all parameters, except for the extraction time, impacted differently on the extraction efficiency of polysaccharides and antioxidant activity. The highest total carbohydrate content was observed at the longest process time, highest temperature, and a liquid-to-solid ratio of 118 mL/g. To minimize the reducing sugar level, a lower temperature is required, while the highest antioxidant activity requires a moderate temperature and the lowest liquid-to-solid ratio. The optimization of antioxidant activity by means of the DPPH and H2O2 method failed, which shows that the specific mechanism of polysaccharides as antioxidants needs further investigation. The aqueous extraction method demonstrated to be an efficient and simple approach to recover the potentially bioactive polysaccharide fractions from Agaricus bisporus that are also active as antioxidants.
Collapse
Affiliation(s)
- Aya Samy Ewesys Khalil
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Marcin Lukasiewicz
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
15
|
Wang X, Zhang J, Zhang K, Guo Z, Xu G, Huang L, Wang L, Li J. Ultrasound-Assisted Enzyme Extraction, Physicochemical Properties and Antioxidant Activity of Polysaccharides from Cordyceps militaris Solid Medium. Molecules 2024; 29:4560. [PMID: 39407490 PMCID: PMC11477692 DOI: 10.3390/molecules29194560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris solid medium polysaccharides (CMMPs) were extracted using an ultrasound-assisted enzyme method, and the process conditions were optimized via response surface methodology (RSM). The CMMPs were separated into four components named CMMP-1, CMMP-2, CMMP-3 and CMMP-4 using ethanol fractional precipitation, and their monosaccharide composition and structural properties were analyzed by molecular weight analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Congo red test, ultraviolet-visible spectroscopy (UV-vis), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). RSM could predict the yield of the CMMP (R2 = 0.9928), and the polysaccharide yield was 15.43% under the selected conditions of 3.1% cellulase enzyme addition, a liquid-solid ratio of 42:1, an extraction temperature of 61 °C, and an extraction time of 60 min. Glucose and galactose were the main constituents of the four fractional precipitated polysaccharides. Furthermore, four components exhibited antioxidant activity, and CMMP-1 demonstrated stronger antioxidant activity in vitro. This study demonstrates the possibility of developing a natural antioxidant food from Cordyceps militaris solid medium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.W.)
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.W.)
| |
Collapse
|
16
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
17
|
Zhang Y, Li L, Ma X, Liu R, Shi R, Zhao D, Li X. Extraction, purification, structural features, modifications, bioactivities, structure-activity relationships, and applications of polysaccharides from garlic: A review. Int J Biol Macromol 2024; 265:131165. [PMID: 38547941 DOI: 10.1016/j.ijbiomac.2024.131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
Garlic is a common vegetable and spice in people's daily diets, in which garlic polysaccharide (GP) is one of the most important active components with a variety of benefits, such as antioxidant, immune-enhancing, anti-inflammatory, liver-protective and bowel-regulating properties. >20 types of GPs, mainly crude polysaccharides, have been identified. However, the exact chemical composition of GPs or the mechanism underlying their pharmacological activity is still not fully understood. The extraction and purification methods of GPs are compared in this review while providing detailed information on their structural features, identification methods, major biological activities, mechanisms of actions, structural modifications, structure-activity relationships as well as potential applications. Finally, the limitations of GP research and future issues that need to be addressed are discussed in this review. GPs are widely recognized as substances with great potential in the pharmaceutical and food industries. Therefore, this review aims to provide a comprehensive summary of the latest research progresses in the field of GPs, together with scientific insights and a theoretical support for the development of GPs in research and industrialization.
Collapse
Affiliation(s)
- Yongwei Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Lanlan Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China
| | - Xuehong Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Hu Suan Research Institute (Co., LTD), Urumqi 830020, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Hu Suan Research Institute (Co., LTD), Urumqi 830020, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China.
| |
Collapse
|
18
|
Wang C, Li Q, Qiu D, Guo Y, Ding X, Jiang K. An efficient and environmentally-friendly extraction, characterization and activity prediction of polysaccharides from Rhizoma et Radix Notopterygii. Int J Biol Macromol 2024; 265:130907. [PMID: 38492707 DOI: 10.1016/j.ijbiomac.2024.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Traditional hot water reflux extraction, ultrasonic-water extraction (UW), ultrasonic-natural deep eutectic solvent (NADES) extraction (U-NADES), ultrasonic-water and enzyme extraction (U-W-E) and ultrasonic-NADES and enzyme extraction (U-NADES-E) are employed for the extraction of Rhizoma et Radix Notopterygii polysaccharides (RNP), in which, the U-NADES-E has being proved as the most effective method. Response Surface Methodology (RSM) was utilized to optimize the conditions for U-NADES-E method. Using the optimal extraction conditions, the yield of RNP can be enhanced by nearly two-fold in comparison to the traditional extraction method, achieving a yield of 7.38 %, with a mere 30-min treatment and low ultrasonic power at 240 W. The RNP's composition included Rhamnose, Arabinose, Galactose, Glucose and Galacturonic Acid by high-performance anion-exchange chromatography. The polysaccharides from two different species of Rhizoma et Radix Notopterygii have also been characterized and identified. Network pharmacology and molecular docking predict that RNP may exert its effects in vivo through binding to PPARA, ACE and REN proteins, thereby potentially impacting diabetes outcomes. This study proposes a new, efficient, energy-saving and environmentally-friendly method for the extraction of RNP.
Collapse
Affiliation(s)
- Chenyue Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Daiyu Qiu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yehong Guo
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqin Ding
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Kan Jiang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
19
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
20
|
Tang Y, Miao Y, Tan M, Ma Q, Liu C, Yang M, Su Y, Li Q. Ultrasound assisted wall-breaking extraction and primary structures, bioactivities, rheological properties of novel Exidia yadongensis polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 101:106643. [PMID: 37922721 PMCID: PMC10641719 DOI: 10.1016/j.ultsonch.2023.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
New natural multifunctional polysaccharide and its innovatory extraction technology may be urgently needed for food industries. Our aims were to establish new extraction method and investigate the primary structures, bioactivities and rheological properties of novel E. yadongensis polysaccharide (EYP). Ultrasound assisted mechanical wall-breaking extraction (MAUE) was successfully established for the EYP extraction from a new E. yadongensis. Based on the MAUE with RSM, the polysaccharide yield of 17.92 ± 0.56 % with the optimal parameters of five extraction factors were obtained, and current MAUE was characterized by its high yield, low extraction temperature and short ultrasound time. After the isolation and purification, the EYP as a protein-bound polysaccharide was obtained. FT-IR and NMR analysis showed that the main backbone of the EYP comprised of (1 → 4)-β-D-glucopyranosyl and (1 → 6)-ɑ-D-mannopyranosyl groups; EYP exhibited significant antioxidant, antibacterial, antitumor, antidiabetic activities, and good viscoelastic properties in low pH solutions (P < 0.05). The EYP may be used as a natural functional and cohesive agent in food industries.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Min Tan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China
| | - Qinqin Ma
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Chengyi Liu
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Mei Yang
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
21
|
Wang W, Liu X, Wang L, Song G, Jiang W, Mu L, Li J. Ficus carica polysaccharide extraction via ultrasound-assisted technique: Structure characterization, antioxidant, hypoglycemic and immunomodulatory activities. ULTRASONICS SONOCHEMISTRY 2023; 101:106680. [PMID: 37956509 PMCID: PMC10661605 DOI: 10.1016/j.ultsonch.2023.106680] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
In this research, the ultrasound-assisted extraction (UAE) conditions of the water-soluble polysaccharide (FCPS) from Ficus carica fruits were optimized using the response surface methodology. The optimal FCPS yield was 7.97 % achieved by conducting ultrasound-assisted extraction four times at a solid-liquid ratio of 1:20 (g/mL) and an ultrasound temperature of 70 °C. Then, the structure, antioxidant properties, hypoglycemic effects, and immunomodulatory activities of FCPS were evaluated. FCPS was characterized as irregular, rough-surfaced, flaky materials consisting of pyran-type polysaccharides with α- and β-glycosidic linkages, and composed of multiple monosaccharides and only one homogeneous concentrated polysaccharide component (FCPS1) with a molecular weight of 4.224 × 104 Da. The results suggested FCPS exhibited remarkable antioxidant activity in vitro, as evidenced by improved cell viability and reduced the reactive oxygen species (ROS) levels. Meanwhile, FCPS effectively improved liver-related insulin resistance by promoting glucose consumption in hepatocytes and activated the immune response through activation of murine bone marrow-derived dendritic cells (DCs) and upregulation of interleukin 6 (IL6) and interleukin 12 (IL-12) expression. The findings demonstrate the efficacy of the UAE technique in isolating FCPS with biological functionality and FCPS could potentially serve as a beneficial organic antioxidant source and functional food, carrying important implications for future studies.
Collapse
Affiliation(s)
- Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lixue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Guirong Song
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lihong Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
22
|
Liu Z, Liao H, Wei C, Qi Y, Zou Z. Application of an aqueous enzymatic-ultrasound cavitation method for the separation of Sapium sebiferum seed kernel oil. ULTRASONICS SONOCHEMISTRY 2023; 101:106704. [PMID: 37988956 PMCID: PMC10696251 DOI: 10.1016/j.ultsonch.2023.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023]
Abstract
An aqueous enzymatic-ultrasound cavitation extraction (AEUCE) method was developed to separate Sapium sebiferum seed kernel oil. In this process, neutral proteinase was screened as the propriate enzyme. The Plackett-Burman and Box-Behnken designs were employed to optimize AEUCE. We determined the optimal extraction conditions, producing an oil yield of 84.22 ± 3.17 %. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the S. sebiferum seed kernel oil was abundant in unsaturated fatty acids (>92 %) and that the compositions of the fatty acid profiles extracted by AEUCE were similar to those obtained from Soxhlet extraction, but their contents were slightly different. The physicochemical properties analysis showed that the oil extracted by AEUCE was comparable to that obtained from Soxhlet extraction. The results showed that the developed AEUCE is an efficient technique that can separate high-quality plant oils. The S. sebiferum seed kernel oil obtained from this extraction method is a promising substitute for vegetable oils used in biodiesel production.
Collapse
Affiliation(s)
- Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Haibin Liao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Cheng Wei
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanlong Qi
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Road, Changchun 130022, China
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
23
|
Huang K, Xu B. Critical review of the phytochemical profiles and health-promoting effects of the edible mushroom Armillaria mellea. Food Funct 2023; 14:9518-9533. [PMID: 37850245 DOI: 10.1039/d3fo02334f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Research on the nutritional and medicinal properties of wild edible mushrooms has witnessed a significant surge in recent years. Among these mushrooms, Armillaria mellea (AM) stands out due to its abundant biologically active components. The presence of biological compounds in AM, including carbohydrates, sterols, fatty acids, sesquiterpenes, non-hallucinogenic indole compounds and adenosine derivatives, has been demonstrated in previous studies. Notably, specific bioactive substances isolated from AM, such as armillarikin, have exhibited promising anticancer effects. In vitro studies have elucidated the mechanisms behind these effects, further emphasizing the potential of AM in cancer treatment. Consequently, the objective of this study is to provide a comprehensive overview of the phytochemical profiles of AM while thoroughly investigating its therapeutic benefits. Moreover, this research has uncovered novel and effective treatments, including the utilization of ultrasonic disruption extraction in food processing. These findings highlight the potential of AM as a functional food with possible medical applications. By exploring AM's phytochemical composition and therapeutic effects, this study aims to contribute to a deeper understanding of its potential as a valuable natural resource.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Zhuhai Guangdong-Hong Kong Food Safety Testing Co., Ltd, Zhuhai 519087, China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|