1
|
Rahman MA, Zereen F, Rana ML, Hossain MG, Shimada M, Saha S. Foot-and-mouth disease in Asia. Virus Res 2025; 351:199514. [PMID: 39689813 PMCID: PMC11770323 DOI: 10.1016/j.virusres.2024.199514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious transboundary disease prevalent across the Asian continent, affecting both wild and domestic artiodactyls. The disease is caused by a virus belonging to the Aphthovirus genus of the Picornaviridae family which is categorized into seven serotypes: C, O, A, SAT1, SAT2, SAT3, and Asia1. The virus spreads through direct and indirect contact, including semen, meat, fomites, ingestion, and aerosols. FMD has a severe economic impact due to the high morbidity and mortality, especially in young animals. Prevention of the disease relies on vaccination with the prevalent serotype(s) or the slaughter and destruction of affected animals. This review discusses the prevalence of various FMD virus (FMDV) serotypes across Asia, along with the transmission modes, pathogenesis, immune response, and immune suppression by FMDV. Additionally, the review explores FMD diagnosis, prevention, and control strategies, and highlights future opportunities for research aimed at developing strain-specific viral and bacterial combined vaccines.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Farah Zereen
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Liton Rana
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
2
|
Parmaksız S, Gül A, Erkunt Alak S, Karakavuk M, Can H, Gül C, Karakavuk T, López-Macías C, Puralı N, Döşkaya M, Şenel S. Development of multistage recombinant protein vaccine formulations against toxoplasmosis using a new chitosan and porin based adjuvant system. Int J Pharm 2022; 626:122199. [PMID: 36115468 DOI: 10.1016/j.ijpharm.2022.122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Toxoplasmosis is a global health problem affecting both human and animal populations. The lack of effective treatment makes the development of a vaccine against toxoplasmosis one of the main goals in the management of this disease. In our study, vaccine formulations containing the multistage recombinant antigens, rBAG1 + rGRA1 were developed with a combined adjuvant system consisting of chitosan and Salmonella Typhi porins in micro (MicroAS) and nanoparticulate (NanoAS) forms. BALB/c mice were immunized intraperitoneally with vaccine formulations two times at three-week intervals. Three weeks after the second vaccination, mice were challenged with 7-8 live tissue cysts of the virulent T. gondii PRU strain by oral gavage. Higher cellular uptake by macrophages and enhanced cellular (IFN-γ and I-4 in stimulated spleen cells) and humoral (IgG, IgG1, IgG2a) responses were obtained with the adjuvanted formulation, higher with microsystem when compared to that of nanosystem. Microsystem was found to stimulate Th1-polarized immune responses, whereasnon-adjuvanted antigens stimulated Th2-polarized immune response. The highest survival rate and reduction in cysts numbers and T. gondii DNA were obtained with the adjuvanted antigens.Our study showed that adjuvanted multistage recombinant vaccine systems increase theimmune response with strong protection againstT. gondii, more profoundly in microparticulate form.
Collapse
Affiliation(s)
- Selin Parmaksız
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06100, Turkey
| | - Aytül Gül
- Ege University, Faculty of Engineering, Department of Bioengineering, Bornova, Izmir 35040, Turkey; Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey
| | - Sedef Erkunt Alak
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Bornova, Izmir 35040, Turkey
| | - Muhammet Karakavuk
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University, Vocational School, Odemis, Izmir 35750, Turkey
| | - Hüseyin Can
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Bornova, Izmir 35040, Turkey
| | - Ceren Gül
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University Institute of Science, Department of Biotechnology, Bornova, Izmir 35040, Turkey
| | - Tuğba Karakavuk
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University Institute of Science, Department of Biotechnology, Bornova, Izmir 35040, Turkey
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre ''Siglo XXI'', Mexican Institute for Social Security, Mexico City, Mexico
| | - Nuhan Puralı
- Hacettepe University, Faculty of Medicine, Department of Biophysics,06100 Ankara, Turkey
| | - Mert Döşkaya
- Ege University Vaccine Development, Application and Research Center, Izmir 35100, Turkey; Ege University Faculty of Medicine, Department of Parasitology, Bornova, Izmir 35100, Turkey
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06100, Turkey.
| |
Collapse
|
3
|
Kenubih A. Foot and Mouth Disease Vaccine Development and Challenges in Inducing Long-Lasting Immunity: Trends and Current Perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:205-215. [PMID: 34513635 PMCID: PMC8420785 DOI: 10.2147/vmrr.s319761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Foot and mouth disease (FMD) is an extremely contagious viral disease of livestock caused by foot and mouse disease virus genus: Aphthovirus, which causes a serious economic impact on both individual farmers and the national economy. Many attempts to advance a vaccine for FMD have failed to induce sterile immunity. The classical methods of vaccine production were due to selective accumulation of mutations around antigenic and binding sites. Reversion of the agent by positive selection and quasi-species swarm, use of this method is inapplicable for use in non-endemic areas. Chemical attenuation using binary ethyleneimine (BEI) protected the capsid integrity and produced a pronounced immunity against the challenge strain. Viral antigens which have been chemically synthesized or expressed in viruses, plasmid, or plants were tried in the vaccination of animals. DNA vaccines expressing either structural or nonstructural protein antigens have been tried to immunize animals. Using interleukins as a genetic adjuvant for DNA vaccines have a promising effect. While the challenges of inducing sterile immunity lies on non-structural (NS) proteins of FMDV which are responsible for apoptosis of dendritic cells and have negative effects on lympho-proliferative responses which lead to transient immunosuppression. Furthermore, destruction of host protein trafficking by nonstructural proteins suppressed CD8+ T-cell proliferation. In this review, it tried to address multiple approaches for vaccine development trials and bottle necks of producing sterile immunity.
Collapse
Affiliation(s)
- Ambaye Kenubih
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Para-Clinical Studies, Gondar, Ethiopia
| |
Collapse
|
4
|
Foot-and-mouth disease vaccines: recent updates and future perspectives. Arch Virol 2019; 164:1501-1513. [PMID: 30888563 DOI: 10.1007/s00705-019-04216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Foot-and-mouth disease (FMD) is a major worldwide viral disease in animals, affecting the national and international trade of livestock and animal products and leading to high economic losses and social consequences. Effective control measures of FMD involve prevention through vaccination with inactivated vaccines. These inactivated vaccines, unfortunately, require short-term protection and cold-chain and high-containment facilities. Major advances and pursuit of hot topics in vaccinology and vectorology are ongoing, involving peptide vaccines, DNA vaccines, live vector vaccines, and novel attenuated vaccines. DIVA capability and marker vaccines are very important in differentiating infected animals from vaccinated animals. This review focuses on updating the research progress of these novel vaccines, summarizing their merits and including ideas for improvement.
Collapse
|
5
|
Ruiz V, Baztarrica J, Rybicki EP, Meyers AE, Wigdorovitz A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. ACTA ACUST UNITED AC 2018; 20:e00283. [PMID: 30319941 PMCID: PMC6180338 DOI: 10.1016/j.btre.2018.e00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Foot-and-mouth disease (FMD) remains one of the most feared viral diseases affecting cloven-hoofed animals, and results in severe economic losses. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of recombinant FMDV-like particles (VLPs) as subunit vaccines has gained importance because of their immunogenic properties and safety. We evaluated the production of FMD VLPs, via Agrobacterium-mediated transient expression, and the immunogenicity of these structures in mice. Leaves were infiltrated with pEAQ-HT and pRIC 3.0 vectors encoding the capsid precursor P1-2A and the protease 3C. The recombinant protein yield was 3-4 mg/kg of fresh leaf tissue. Both groups of mice immunized with purified VLPs and mice immunized with the crude leaf extract elicited a specific humoral response with similar antibody titers. Thus, minimally processed plant material containing transiently expressed FMD VLPs could be a scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Yagnik B, Sharma D, Padh H, Desai P. In vivo delivery of pPERDBY to BALB/c mice by LacVax ® DNA-I and comparison of elicited immune response with conventional immunization methods. Gene Ther 2018; 25:485-496. [PMID: 30108273 DOI: 10.1038/s41434-018-0033-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
The non-invasive food grade Lactococcus lactis (L. lactis) represents a safe and attractive alternative to invasive pathogens for the delivery of plasmid DNA at mucosal sites. We have earlier shown the DNA delivery potential of r-L. lactis harboring DNA vaccine reporter plasmid; pPERDBY in vitro. In the present work, we examined in vivo delivery potential of food grade non-invasive r-L. lactis::pPERDBY (LacVax® DNA-I) in BALB/c mice. Moreover, using EGFP as a model antigen, we also characterized and compared the immune response elicited by LacVax® DNA-I with other conventional vaccination approaches using protein and naked DNA immunization. The presence of antigen-specific serum IgG and fecal secretory IgA (sIgA) antibodies demonstrated in vivo DNA delivery and immune elicitation potential of the developed LacVax® DNA-I. As compared with intramuscular injection, oral delivery of pPERDBY via L. lactis resulted in a significantly rapid increase in IgG and higher sIgA titers, indicating the immunogenic and immunostimulatory properties of the LacVax® DNA-I. The needle-free immunization with LacVax® DNA-I led to increased production of IL-4, an indicator of Th2 screwed response. To the best of our knowledge, this report for the first time outlines comparison of orally administered LacVax® DNA-I with other conventional vaccination approaches.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Drashya Sharma
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India. .,School of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Boshra HY, Charro D, Lorenzo G, Sánchez I, Lazaro B, Brun A, Abrescia NGA. DNA vaccination regimes against Schmallenberg virus infection in IFNAR -/- mice suggest two targets for immunization. Antiviral Res 2017; 141:107-115. [PMID: 28235558 DOI: 10.1016/j.antiviral.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.e. ubiquitinated) nucleoproteins (N) can confer immunity against virulent viral challenge, constructs encoding for fragments of SBV glycoproteins GN and GC, as well as ubiquitinated and non-ubiquitinated N were cloned in mammalian expression vectors, and vaccinated intramuscularly in IFNAR-/- mice. Upon viral challenge with virulent SBV, disease progression was monitored. Both the ubiquitinated and non-ubiquitinated nucleoprotein candidates elicited high titers of antibodies against SBV, but only the non-ubiquitinated candidate induced statistically significant protection of the vaccinated mice from viral challenge. Another construct encoding for a putative ectodomain of glycoprotein GC (segment aa. 678-947) also reduced the SBV-viremia in mice after SBV challenge. When compared to other experimental groups, both the nucleoprotein and GC-ectodomain vaccinated groups displayed significantly reduced viremia, as well as exhibiting no clinical signs of SBV infection. These results show that both the nucleoprotein and the putative GC-ectodomain can serve as protective immunological targets against SBV infection, highlighting that viral glycoproteins, as well as nucleoproteins are potent targets in vaccination strategies against bunyaviruses.
Collapse
Affiliation(s)
- Hani Y Boshra
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Diego Charro
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
8
|
Lopera-Madrid J, Osorio JE, He Y, Xiang Z, Adams LG, Laughlin RC, Mwangi W, Subramanya S, Neilan J, Brake D, Burrage TG, Brown WC, Clavijo A, Bounpheng MA. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunopathol 2017; 185:20-33. [PMID: 28241999 PMCID: PMC7112906 DOI: 10.1016/j.vetimm.2017.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology was applied to identify and rank ASFV immunogenic candidates . Selected ASFV immunogenic candidate proteins were expressed in HEK-293 mammalian cells and MVA constructs . Immunizations with antigens purified from HEK-293 cells and MVA constructs in swine were safe . Immunizations with selected antigens induced ASFV-specific antibodies and T-cell responses in swine.
A reverse vaccinology system, Vaxign, was used to identify and select a subset of five African Swine Fever (ASF) antigens that were successfully purified from human embryonic kidney 293 (HEK) cells and produced in Modified vaccinia virus Ankara (MVA) viral vectors. Three HEK-purified antigens [B646L (p72), E183L (p54), and O61R (p12)], and three MVA-vectored antigens [B646L, EP153R, and EP402R (CD2v)] were evaluated using a prime-boost immunization regimen swine safety and immunogenicity study. Antibody responses were detected in pigs following prime-boost immunization four weeks apart with the HEK-293-purified p72, p54, and p12 antigens. Notably, sera from the vaccinees were positive by immunofluorescence on ASFV (Georgia 2007/1)-infected primary macrophages. Although MVA-vectored p72, CD2v, and EP153R failed to induce antibody responses, interferon-gamma (IFN-γ+) spot forming cell responses against all three antigens were detected one week post-boost. The highest IFN-γ+ spot forming cell responses were detected against p72 in pigs primed with MVA-p72 and boosted with the recombinant p72. Antigen-specific (p12, p72, CD2v, and EP153R) T-cell proliferative responses were also detected post-boost. Collectively, these results are the first demonstration that ASFV subunit antigens purified from mammalian cells or expressed in MVA vectors are safe and can induce ASFV-specific antibody and T-cell responses following a prime-boost immunization regimen in swine.
Collapse
Affiliation(s)
- Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, United States.
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, United States.
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Richard C Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Sandesh Subramanya
- Bioo Scientific Corporation, 7050 Burleson Rd., Austin, TX, 78744, United States.
| | - John Neilan
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - David Brake
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - Thomas G Burrage
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - William Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Alfonso Clavijo
- Institute for Infectious Animal Disease, 2501 Earl Rudder Hwy, Suite 701, College Station, TX, 77845, United States.
| | - Mangkey A Bounpheng
- Texas A&M Veterinary Medical Diagnostic Laboratory,1 Sippel Rd., College Station, TX, 77843, United States.
| |
Collapse
|
9
|
Xie Y, Gao P, Li Z. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7849203. [PMID: 27478836 PMCID: PMC4958421 DOI: 10.1155/2016/7849203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine.
Collapse
Affiliation(s)
- Yinli Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
10
|
Kaur G, STS C, Nimker C, Singh M, Saraswat D, Saxena S, Bansal A. Co-expression of S. Typhi GroEL and IL-22 gene augments immune responses against Salmonella infection. Immunol Cell Biol 2013; 91:642-51. [PMID: 24145856 DOI: 10.1038/icb.2013.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
Abstract
Recombinant DNA vaccines represent a novel method for generating in situ expression of vaccine antigens. Intramuscular injections of naked DNA are able to elicit potent humoral and cellular immune responses but still numerous factors limit the immunogenicity of DNA vaccines. Co-expression of cytokines with antigen encoding genes in DNA vectors can improve the immune responses and modify Th1/Th2 balance. In this study, the immunomodulatory effect of Interleukin 22 (IL-22) as an adjuvant was studied by DNA vaccination with S. Typhi Heat shock protein 60 (HSP60/GroEL) in mice. Further, DNA construct of IL-22 gene fused with GroEL was developed and immunization studies were carried out in mice. DNA vaccination with GroEL alone stimulated humoral and cell-mediated immune responses. Co-immunization (IL-22+GroEL) further resulted in increase in T-cell proliferative responses, antibody titres (IgG, IgG1, IgG2a) and secretion of IFNγ (Th1), IL-1β and Th2 (IL-4, IL-6) cytokines. Co-expression (IL-22-GroEL DNA) also promoted antibody titres and cytokine levels were significantly higher as compared to co-immunized group. A reduction in bacterial load in spleen, liver and intestine was seen in all the immunized groups as compared to control, with least organ burden in fusion DNA construct group (co-expression). Improved protective efficacy (90%) against lethal challenge by Salmonella was observed with IL-22-GroEL co-expressing DNA vector as compared with plasmid encoding GroEL only (50-60%) or co-immunization group (75-80%). This study thus shows that co-expression of IL-22 and GroEL genes enhances the immune responses and protective efficacy, circumventing the need of any adjuvant.
Collapse
MESH Headings
- Animals
- Antibody Formation/immunology
- Bacterial Load/immunology
- Cell Proliferation
- Chaperonin 60/genetics
- Cytokines/metabolism
- DNA, Recombinant/genetics
- DNA, Recombinant/therapeutic use
- Female
- Gene Expression
- Genetic Vectors/metabolism
- Immunity/genetics
- Immunoglobulin G/immunology
- Interleukins/genetics
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/biosynthesis
- Protein Biosynthesis
- Salmonella Infections, Animal/drug therapy
- Salmonella Infections, Animal/genetics
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/prevention & control
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription, Genetic
- Treatment Outcome
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Interleukin-22
Collapse
Affiliation(s)
- Gurpreet Kaur
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Romanutti C, D’Antuono A, Palacios C, Quattrocchi V, Zamorano P, La Torre J, Mattion N. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus. Vet Microbiol 2013; 165:333-40. [DOI: 10.1016/j.vetmic.2013.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|
12
|
Borrego B, Rodríguez-Pulido M, Mateos F, de la Losa N, Sobrino F, Sáiz M. Delivery of synthetic RNA can enhance the immunogenicity of vaccines against foot-and-mouth disease virus (FMDV) in mice. Vaccine 2013; 31:4375-81. [PMID: 23859841 DOI: 10.1016/j.vaccine.2013.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
We have recently described the antiviral effect in mice of in vitro-transcribed RNAs mimicking structural domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome RNA. These small, synthetic and non-infectious RNA molecules (ncRNAs) are potent type-I interferon (IFN) inducers in vivo. In this work, the immunomodulatory effect of the ncRNA corresponding to the internal ribosome entry site (IRES) on immunization with two different FMD vaccine formulations, both based on inactivated virus, including or not a commercial adjuvant, was analyzed in the mice model. The effect of the time interval between RNA inoculation and immunization was also studied. RNA delivery consistently increased the titers of specific anti-FMDV antibodies, including neutralizing antibodies, elicited after vaccination. Moreover, at day 2 after immunization, significant differences in mean antibody titers could be detected between the groups of mice receiving either vaccine co-administered with the RNA and the control group, unlike those immunized with the vaccine alone. When vaccinated mice were challenged with FMDV, the mean values of viral load were lower in the groups receiving the RNA together with the vaccine. Our results show the enhancing effect of the IRES RNA on the immune response elicited after vaccination and suggest the potential of this molecule as an adjuvant for new FMD vaccine design.
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, 28130 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Immunogenicity of two FMDV nonameric peptides encapsulated in liposomes in mice and the protective efficacy in guinea pigs. PLoS One 2013; 8:e68658. [PMID: 23874709 PMCID: PMC3706604 DOI: 10.1371/journal.pone.0068658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
It has been predicted that nonameric peptides I (VP126–34, RRQHTDVSF), II (VP1157–165, RTLPTSFNY) and III (VP145–53, KEQVNVLDL) from the VP1 capsid protein of the foot-and-mouth disease virus (FMDV) are T cell epitopes. To investigate whether these peptides have immunological activity, BALB/c mice were immunized with peptide I, II or III conjugated with immunostimulating complexes (ISCOMs). A cytotoxic T lymphocyte assay was used to evaluate the cytotoxic activity induced by peptides along with by measuring peptide-specific T-cell proliferation and CD8+ T lymphocyte numbers in whole blood and interferon (IFN)-γ production in peripheral blood mononuclear cells induced by peptides. To further identify the protective efficacy of peptides, an FMDV challenge assay was done in guinea pigs. Peptides I and II stimulated significant increases in T-cell proliferation, CD8+ T lymphocytes, and IFN-γ secretion and cytotoxic activity compared to controls. The FMDV challenge assay indicated peptides I and II can protect over 60% of animals from virus attack. The results demonstrate that peptides I and II encapsulated in liposomes should be CTL epitopes of FMDV and can protect animals from virus attack to some extent.
Collapse
|
14
|
Gülçe İz S, Döşkaya M, Borrego B, Rodriguez F, Gürüz Y, Gürhan İD. Co-expression of the Bcl-xL antiapoptotic protein enhances the induction of Th1-like immune responses in mice immunized with DNA vaccines encoding FMDV B and T cell epitopes. Vet Res Commun 2013; 37:187-96. [DOI: 10.1007/s11259-013-9560-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/20/2023]
|
15
|
Argilaguet JM, Pérez-Martín E, López S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res 2013; 98:61-5. [PMID: 23428670 DOI: 10.1016/j.antiviral.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.
Collapse
Affiliation(s)
- Jordi M Argilaguet
- Centre de Recerca en Sanitat Animal-CReSA, UAB-IRTA, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fowler VL, Barnett PV. Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines 2012; 11:481-93. [PMID: 22551033 DOI: 10.1586/erv.11.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA vaccines are, in principle, the simplest yet most versatile methods of inducing protective humoral and cellular immune responses. Research involving this type of vaccine against veterinary diseases began in the early 1990s and has since seen the evaluation of more than 30 important viral pathogens, including the economically important foot-and-mouth disease. With the demonstration that DNA vaccines protect against foot-and-mouth disease in sheep and pigs, and the advantages these DNA vaccines have over the conventional formulations, this approach may provide a better solution to the control of this disease. In this review, we provide a comprehensive overview of DNA vaccination strategies for foot-and-mouth disease reported in the literature, in which we highlight the studies that have reported protection in the key target species.
Collapse
Affiliation(s)
- Veronica L Fowler
- Institute for Animal Health, Pirbright Laboratory, Surrey GU24 0NF, UK.
| | | |
Collapse
|
17
|
Grubman MJ, Diaz-San Segundo F, Dias CCA, Moraes MP, Perez-Martin E, de los Santos T. Use of replication-defective adenoviruses to develop vaccines and biotherapeutics against foot-and-mouth disease. Future Virol 2012. [DOI: 10.2217/fvl.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a replication-defective human adenovirus (Ad5) vectored foot-and-mouth disease (FMD) vaccine platform that protects both swine and cattle from subsequent challenge with homologous virus after a single immunization. This Ad5-FMD vaccine has undergone testing following the requirements of the Center for Veterinary Biologics of the Animal Plant and Health Inspection Service, US Department of Agriculture, and has recently been granted a conditional license for inclusion of the vaccine in the US National Veterinary Vaccine Stockpile. In this review, we will describe the approaches we have taken to improve the potency and efficacy of this vaccine platform. Furthermore, we will discuss the development of Ad5 vector-based biotherapeutics to generate rapid protection against FMD virus prior to vaccine-induced adaptive immunity and describe the use of a combination of these approaches to stimulate both fast and long-lasting immunity.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| | - Camila CA Dias
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science & Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Mauro P Moraes
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
- Ceva Biomune, 8906 Rosehill Rd, Shawnee Mission, KS 66215, USA
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science & Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Teresa de los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, US Department of Agriculture, Greenport, NY 11944, USA
| |
Collapse
|
18
|
Cubillos C, de la Torre BG, Bárcena J, Andreu D, Sobrino F, Blanco E. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virol J 2012; 9:66. [PMID: 22416886 PMCID: PMC3313860 DOI: 10.1186/1743-422x-9-66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals. FMD control in endemic regions is implemented using chemically inactivated whole-virus vaccines. Currently, efforts are directed to the development of safe and marked vaccines. We have previously reported solid protection against FMDV conferred by branched structures (dendrimeric peptides) harbouring virus-specific B and T-cell epitopes. In order to gain insights into the factors determining a protective immune response against FMDV, in this report we sought to dissect the immunogenicity conferred by different peptide-based immunogens. Thus, we have assessed the immune response and protection elicited in pigs by linear peptides harbouring the same FMDV B-cell or B and T-cell epitopes (B and TB peptides, respectively). Results Pigs were twice immunized with either the B-cell epitope (site A) peptide or with TB, a peptide where the B-cell epitope was in tandem with the T-cell epitope [3A (21-35)]. Both, B and TB peptides were able to induce specific humoral (including neutralizing antibodies) and cellular immune responses against FMDV, but did not afford full protection in pigs. The data obtained showed that the T-cell epitope used is capable to induce efficient T-cell priming that contributes to improve the protection against FMDV. However, the IgA titres and IFNγ release elicited by these linear peptides were lower than those detected previously with the dendrimeric peptides. Conclusions We conclude that the incorporation of a FMDV specific T-cell epitope in the peptide formulation allows a significant reduction in virus excretion and clinical score after challenge. However, the linear TB peptide did not afford full protection in challenged pigs, as that previously reported using the dendrimeric construction indicating that, besides the inclusion of an adecuate T-cell epitope in the formulation, an efficient presentation of the B-cell epitope is crucial to elicit full protection by peptide vaccines.
Collapse
Affiliation(s)
- Carolina Cubillos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar, Valdeolmos, 28130 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease. J Virol 2011; 86:1316-27. [PMID: 22114339 DOI: 10.1128/jvi.05941-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L(pro) is also associated with degradation of nuclear factor κB (NF-κB), a process that requires L(pro) nuclear localization. Additionally, we reported that disruption of a conserved protein domain within the L(pro) coding sequence, SAP mutation, prevented L(pro) nuclear retention and degradation of NF-κB, resulting in in vitro attenuation. Here we report that inoculation of swine with this SAP-mutant virus does not cause clinical signs of disease, viremia, or virus shedding even when inoculated at doses 100-fold higher than those required to cause disease with wild-type (WT) virus. Remarkably, SAP-mutant virus-inoculated animals developed a strong neutralizing antibody response and were completely protected against challenge with WT FMDV as early as 2 days postinoculation and for at least 21 days postinoculation. Early protection correlated with a distinct pattern in the serum levels of proinflammatory cytokines in comparison to the levels detected in animals inoculated with WT FMDV that developed disease. In addition, animals inoculated with the FMDV SAP mutant displayed a memory T cell response that resembled infection with WT virus. Our results suggest that L(pro) plays a pivotal role in modulating several pathways of the immune response. Furthermore, manipulation of the L(pro) coding region may serve as a viable strategy to derive live attenuated strains with potential for development as effective vaccines against foot-and-mouth disease.
Collapse
|
20
|
Vesicular Stomatitis Virus glycoprotein G carrying a tandem dimer of Foot and Mouth Disease Virus antigenic site A can be used as DNA and peptide vaccine for cattle. Antiviral Res 2011; 92:219-27. [DOI: 10.1016/j.antiviral.2011.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
|
21
|
A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antiviral Res 2011; 92:359-63. [PMID: 21820470 DOI: 10.1016/j.antiviral.2011.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/12/2011] [Accepted: 07/19/2011] [Indexed: 11/22/2022]
Abstract
Development of efficient and safer vaccines against foot-and-mouth disease virus (FMDV) is a must. Previous results obtained in our laboratory have demonstrated that DNA vaccines encoding B and T cell epitopes from type C FMDV, efficiently controlled virus replication in mice, while they did not protect against FMDV challenge in pigs, one of the FMDV natural hosts. The main finding of this work is the ability to improve the protection afforded in swine using a new DNA-vaccine prototype (pCMV-APCH1BTT), encoding FMDV B and T-cell epitopes fused to the single-chain variable fragment of the 1F12 mouse monoclonal antibody that recognizes Class-II Swine Leukocyte antigens. Half of the DNA-immunized pigs were fully protected upon viral challenge, while the remaining animals were partially protected, showing a delayed, shorter and milder disease than control pigs. Full protection in a given vaccinated-pig correlated with the induction of specific IFNγ-secreting T-cells, detectable prior to FMDV-challenge, together with a rapid development of neutralizing antibodies after viral challenge, pointing towards the relevance that both arms of the immune response can play in protection. Our results open new avenues for developing future FMDV subunit vaccines.
Collapse
|
22
|
Boshra H, Lorenzo G, Rodriguez F, Brun A. A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR−/− mice upon lethal virus challenge. Vaccine 2011; 29:4469-75. [DOI: 10.1016/j.vaccine.2011.04.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
23
|
Golde WT, de Los Santos T, Robinson L, Grubman MJ, Sevilla N, Summerfield A, Charleston B. Evidence of activation and suppression during the early immune response to foot-and-mouth disease virus. Transbound Emerg Dis 2011; 58:283-90. [PMID: 21501424 DOI: 10.1111/j.1865-1682.2011.01223.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus causes a serious disease of livestock species, threatening free global trade and food security. The disease spreads rapidly between animals, and to ensure a window of opportunity for such spread, the virus has evolved multiple mechanisms to subvert the early immune response. The cycle of infection in the individual animal is very short, infection is initiated, disseminated throughout the body and infectious virus produced in <7 days. Foot-and-mouth disease virus has been shown to disrupt the innate response in vitro and also interacts directly with antigen-presenting cells and their precursors. This interaction results in suboptimal immune function, favouring viral replication and the delayed onset of specific adaptive T-cell responses. Detailed understanding of this cycle is crucial to effectively control disease in livestock populations. Knowledge-based vaccine design would specifically target and induce the immunological mechanisms of early protection and of robust memory induction. Specifically, information on the contribution of cytokines and interferon, innate immune cells as well as humoral and cellular immunity can be employed to design vaccines promoting such responses. Furthermore, understanding of viral escape mechanisms of immunity can be used to create attenuated viruses that could be used to develop novel vaccines and to study viral pathogenesis.
Collapse
Affiliation(s)
- W T Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ganges L, Borrego B, Fernández-Pacheco P, Revilla C, Fernández-Borges N, Domínguez J, Sobrino F, Rodriguez F. DNA immunization of pigs with foot-and-mouth disease virus minigenes: from partial protection to disease exacerbation. Virus Res 2011; 157:121-5. [PMID: 21315115 DOI: 10.1016/j.virusres.2011.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/25/2022]
Abstract
Despite several attempts to design new vaccines, there are as of yet no available alternatives to the conventional FMDV vaccines. Here, we present the divergent results obtained in pigs after immunization with two experimental DNA vaccines encoding one B and two T cell FMDV epitopes, either expressed alone (pCMV-BTT) or fused to a strong signal peptide (pCMV-spBTT). While all pigs vaccinated with pCMV-spBTT showed both a delay in the disease onset and reduced severity of signs and lesions after FMDV challenge, pigs immunized with pCMV-BTT showed an exacerbation of the disease and most of the pigs remained viremic at 10 days post-infection, the end-point of the experiment, thus opening concerns about FMDV-suboptimal immunization. Interestingly, only one of the four pigs vaccinated with pCMV-spBTT showed neutralizing antibodies before challenge, demonstrating that partial protection against FMDV could be afforded in the absence of preexisting neutralizing antibodies.
Collapse
Affiliation(s)
- Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Promising multiple-epitope recombinant vaccine against foot-and-mouth disease virus type O in swine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:143-9. [PMID: 21084463 DOI: 10.1128/cvi.00236-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to develop a completely safe immunogen to replace the traditional inactivated vaccine, a tandem-repeat multiple-epitope recombinant vaccine against foot-and-mouth disease (FMD) virus (FMDV) type O was developed. It contained three copies each of residues 141 to 160 and 200 to 213 of VP1 of the O/China/99 strain of FMDV coupled with a swine immunoglobulin G heavy-chain constant region (scIgG). The data showed that the multiple-epitope recombinant vaccine elicited high titers of anti-FMDV specific antibodies in swine at 30 days postvaccination (dpv) and conferred complete protection against a challenge with 10³ 50% swine infective doses of the O/China/99 strain. The anti-FMDV specific antibody titers were not significantly different between the multiple-epitope recombinant vaccine and the traditional vaccine (t test, P > 0.05). The number of 50% pig protective doses was 6.47, which is higher than the number recommended by the World Organization for Animal Health. The multiple-epitope recombinant vaccine resulted in a duration of immunity of at least 6 months. We speculate that the multiple-epitope recombinant vaccine is a promising vaccine that may replace the traditional inactivated vaccine for the prevention and control of FMD in swine in the future.
Collapse
|
26
|
Bae JY, Moon SH, Choi JA, Park JS, Hahn BS, Kim KY, Kim B, Song JY, Kwon DH, Lee SC, Kim JB, Yang JS. Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice. Immune Netw 2009; 9:265-73. [PMID: 20157614 PMCID: PMC2816960 DOI: 10.4110/in.2009.9.6.265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 11/23/2009] [Accepted: 12/18/2009] [Indexed: 12/01/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. Methods VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Results Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. Conclusion The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ji-Young Bae
- Department of Genetic Engineering, Faculty of Life Sciences and Technology, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
RNA immunization can protect mice against foot-and-mouth disease virus. Antiviral Res 2009; 85:556-8. [PMID: 20005905 DOI: 10.1016/j.antiviral.2009.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/20/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
In previous work we have reported the immunization of swine using in vitro-transcribed foot-and-mouth disease virus (FMDV) RNA. With the aim of testing whether RNA-induced immunization can mediate protection against viral infection, a group of Swiss adult mice was inoculated with FMDV infectious transcripts. In most inoculated animals viral RNA was detected in serum at 48-72h postinoculation. A group of the RNA-inoculated mice (11 out of 19) developed significant titers of neutralizing antibodies against FMDV. Among those animals that were successfully challenged with infectious virus (15 out of 19), three out of the eight animals immunized upon RNA inoculation were protected, as infectious virus could not be isolated from sera but specific anti-FMDV antibodies could be readily detected. These results suggest the potential of the inoculation of genetically engineered FMDV RNA for virulence and protection assays in the murine model and allow to explore the suitability of RNA-based FMDV vaccination in natural host animals.
Collapse
|
28
|
Dory D, Rémond M, Béven V, Cariolet R, Zientara S, Jestin A. Foot-and-Mouth Disease Virus neutralizing antibodies production induced by pcDNA3 and Sindbis virus based plasmid encoding FMDV P1-2A3C3D in swine. Antiviral Res 2009; 83:45-52. [DOI: 10.1016/j.antiviral.2009.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 03/02/2009] [Accepted: 03/13/2009] [Indexed: 11/17/2022]
|
29
|
Dory D, Rémond M, Béven V, Cariolet R, Backovic M, Zientara S, Jestin A. Pseudorabies virus glycoprotein B can be used to carry foot and mouth disease antigens in DNA vaccination of pigs. Antiviral Res 2009; 81:217-25. [DOI: 10.1016/j.antiviral.2008.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/17/2008] [Accepted: 11/24/2008] [Indexed: 02/03/2023]
|
30
|
De Clercq K, Goris N, Barnett PV, MacKay DK. FMD Vaccines: Reflections on Quality Aspects for Applicability in European Disease Control Policy. Transbound Emerg Dis 2008; 55:46-56. [DOI: 10.1111/j.1865-1682.2007.01012.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 2008; 15:1184-90. [PMID: 18418419 DOI: 10.1038/gt.2008.59] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We recently demonstrated that noninvasive food-grade Lactococcus lactis (L. lactis) can deliver eukaryotic expression plasmid in mammalian cells in vitro. Here, we evaluated, in vivo, whether a eukaryotic expression plasmid carried by lactococci can translocate to the epithelial cells of the intestinal membrane. The strain LL(pLIG:BLG1) carrying one plasmid containing a eukaryotic expression cassette encoding beta-lactoglobulin (BLG), a major allergen of cow's milk, was orally administered by gavage to mice. BLG cDNA was detected in the epithelial membrane of the small intestine of 40% of the mice and BLG was produced in 53% of the mice. Oral administration of LL(pLIG:BLG1) induced a low and transitory Th1-type immune response counteracting a Th2 response in case of further sensitization. We demonstrated for the first time the transfer of a functional plasmid to the epithelial membrane of the small intestine in mice by noninvasive food-grade lactococci.
Collapse
|
32
|
Construction and immune response characterization of a recombinant pseudorabies virus co-expressing capsid precursor protein (P1) and a multiepitope peptide of foot-and-mouth disease virus in swine. Virus Genes 2008; 36:393-400. [DOI: 10.1007/s11262-008-0204-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
33
|
Su C, Duan X, Wang X, Wang C, Cao R, Zhou B, Chen P. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Vet Microbiol 2007; 124:256-63. [PMID: 17548173 DOI: 10.1016/j.vetmic.2007.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis heat shock protein70 (HSP70) is a major antigen with both chaperone and cytokine functions. It has been used as an adjuvant to induce or potentiate humoral and cellular immunity, both in the form of a mixture with peptide antigens, and as a fusion protein. We have evaluated the effects of HSP70 on foot and mouth virus (FMDV) subunit vaccines. FMDV VP1, and a synthetic multi-epitope FMDV (EG), and VP1-HSP70 and EG-HSP70 fusion proteins were all heterologously expressed in the yeast Pichia pastoris, and used as antigen in mice. The recombinant VP1 and EG alone was able to induce both humoral and marginal cell-mediated immune responses, while the HSP70 fusions markedly enhanced both the humoral and cell-mediated immune responses. The most prominent immune responses arose from vaccination with the EG-HSP70 fusion product. Both fusion protein-induced Th1-like cytokine (IFN-gamma) and Th2-like cytokine (IL-4) were identified.
Collapse
Affiliation(s)
- Chunxia Su
- Key Laboratory of Animal Diseases Diagnosis & Immunology of China's Department of Agriculture, Nanjing Agricultural University, Jiangsu, Nanjing 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Fan H, Tong T, Chen H, Guo A. Immunization of DNA vaccine encoding C3d-VP1 fusion enhanced protective immune response against foot-and-mouth disease virus. Virus Genes 2007; 35:347-57. [PMID: 17497212 DOI: 10.1007/s11262-007-0105-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 04/12/2007] [Indexed: 11/24/2022]
Abstract
Because foot-and-mouth disease virus (FMDV) remains a great problem to many livestock of agricultural importance, safe, effective vaccines are in great need. DNA vaccine would be a promising candidate but the design remains to be optimized. VP1 gene of FMDV strain O/ES/2001 was linked to three copies of either porcine or murine C3d or four copies of a 28-aa fragment of murine C3d containing the CR2 receptor binding domain (M28). The resultant plasmids encoding C3d/M28-VP1 fusion or only VP1 as control were immunized guinea pigs. Both cellular and humoral immune responses were evaluated and protection was observed after virus challenge. As a result, although the plasmid encoding only VP1 could elicit virus-binding antibody detected by ELISA, splenocyte proliferation, IL-4 and IFN-gamma production, the levels were significantly less than C3d/M28-VP1 fusion. Furthermore, VP1 failed to induce neutralization antibody and protect animals against virus challenge, while murine C3d-VP1 fusion efficiently induced neutralization antibody response and provided 87.50% of the animals with complete protection and 12.50% with partial protection. Among murine C3d, M28, and porcine C3d, the adjuvant effect of murine C3d is strongest, followed by porcine C3d, and last murine M28. In conclusion, the fact that C3d genes, when coupled to VP1 gene, are able to greatly enhance the protective immune response of VP1 DNA in guinea pigs suggests that C3d-VP1 DNA chimera has a significant potential for use as a novel DNA vaccine against FMDV.
Collapse
Affiliation(s)
- Huiying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|