1
|
Meng X, Yan F, Wang W, Wang S, Cong H, Li J, Zhao Y, Wang T, Li N, Gao Y, Wang J, Feng N, Xia X. A single dose of an ALVAC vector-based RABV virus-like particle candidate vaccine induces a potent immune response in mice, cats and dogs. Emerg Microbes Infect 2024; 13:2406280. [PMID: 39295522 PMCID: PMC11443554 DOI: 10.1080/22221751.2024.2406280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.
Collapse
Affiliation(s)
- Xianyong Meng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Haiyang Cong
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jiaqi Li
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
| | - Na Feng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
2
|
Zhou D, Xu W, Ding X, Guo H, Wang J, Zhao G, Zhang C, Zhang Z, Wang Z, Wang P, Lu L, Yuan M. Transient inhibition of neutrophil functions enhances the antitumor effect of intravenously delivered oncolytic vaccinia virus. Cancer Sci 2024; 115:1129-1140. [PMID: 38351514 PMCID: PMC11007063 DOI: 10.1111/cas.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 04/12/2024] Open
Abstract
Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.
Collapse
Affiliation(s)
- Danya Zhou
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wei Xu
- Pancreatic Surgery Department, Shanghai Ruijin Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xuping Ding
- Shanghai Institute of ImmunologyShanghai Jiaotong University School of MedicineShanghaiChina
| | - Haoran Guo
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianyao Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Guanghao Zhao
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenglin Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhimin Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Liming Lu
- Shanghai Institute of ImmunologyShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ming Yuan
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- R&D DepartmentHuayao Kangming Biopharmaceutical Co., LtdShenzhenChina
| |
Collapse
|
3
|
Herrera C, Veazey R, Lemke MM, Arnold K, Kim JH, Shattock RJ. Ex Vivo Evaluation of Mucosal Responses to Vaccination with ALVAC and AIDSVAX of Non-Human Primates. Vaccines (Basel) 2022; 10:187. [PMID: 35214645 PMCID: PMC8879115 DOI: 10.3390/vaccines10020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Non-human primates (NHPs) remain the most relevant challenge model for the evaluation of HIV vaccine candidates; however, discrepancies with clinical trial results have emphasized the need to further refine the NHP model. Furthermore, classical evaluation of vaccine candidates is based on endpoints measured systemically. We assessed the mucosal responses elicited upon vaccination with ALVAC and AIDSVAX using ex vivo Rhesus macaque mucosal tissue explant models. Following booster immunization with ALVAC/AIDSVAX, anti-gp120 HIV-1CM244-specific IgG and IgA were detected in culture supernatant cervicovaginal and colorectal tissue explants, as well as systemically. Despite protection from ex vivo viral challenge, no neutralization was observed with tissue explant culture supernatants. Priming with ALVAC induced distinct cytokine profiles in cervical and rectal tissue. However, ALVAC/AIDSVAX boosts resulted in similar modulations in both mucosal tissues with a statistically significant decrease in cytokines linked to inflammatory responses and lymphocyte differentiation. With ALVAC/AIDSVAX boosts, significant correlations were observed between cytokine levels and specific IgA in cervical explants and specific IgG and IgA in rectal tissue. The cytokine secretome revealed differences between vaccination with ALVAC and ALVAC/AIDSVAX not previously observed in mucosal tissues and distinct from the systemic response, which could represent a biosignature of the vaccine combination.
Collapse
Affiliation(s)
- Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK;
| | - Ronald Veazey
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, GA 70433, USA;
| | - Melissa M. Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Kelly Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MA 20817, USA;
| | | |
Collapse
|
4
|
Tomalka JA, Pelletier AN, Fourati S, Latif MB, Sharma A, Furr K, Carlson K, Lifton M, Gonzalez A, Wilkinson P, Franchini G, Parks R, Letvin N, Yates N, Seaton K, Tomaras G, Tartaglia J, Robb ML, Michael NL, Koup R, Haynes B, Santra S, Sekaly RP. The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nat Immunol 2021; 22:1294-1305. [PMID: 34556879 PMCID: PMC8525330 DOI: 10.1038/s41590-021-01026-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2021] [Indexed: 12/02/2022]
Abstract
Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.
Collapse
Affiliation(s)
- Jeffrey Alan Tomalka
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Nicolas Pelletier
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Bilal Latif
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn Furr
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Carlson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ana Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Genoveffa Franchini
- Center for Cancer Research Vaccine Branch, National Cancer Institute NIH, Bethesda, MD, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Norman Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kelly Seaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Merlin L Robb
- Military HIV Research Program, Henry Jackson Foundation and Walter Reed Army Institute for Research, Bethesda and Silver Spring, MD, USA
| | - Nelson L Michael
- Military HIV Research Program, Henry Jackson Foundation and Walter Reed Army Institute for Research, Bethesda and Silver Spring, MD, USA
| | - Richard Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Barton Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Rafick Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Lei V, Petty AJ, Atwater AR, Wolfe SA, MacLeod AS. Skin Viral Infections: Host Antiviral Innate Immunity and Viral Immune Evasion. Front Immunol 2020; 11:593901. [PMID: 33240281 PMCID: PMC7677409 DOI: 10.3389/fimmu.2020.593901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
The skin is an active immune organ that functions as the first and largest site of defense to the outside environment. Serving as the primary interface between host and pathogen, the skin’s early immune responses to viral invaders often determine the course and severity of infection. We review the current literature pertaining to the mechanisms of cutaneous viral invasion for classical skin-tropic, oncogenic, and vector-borne skin viruses. We discuss the skin’s evolved mechanisms for innate immune viral defense against these invading pathogens, as well as unique strategies utilized by the viruses to escape immune detection. We additionally explore the roles that demographic and environmental factors, such as age, biological sex, and the cutaneous microbiome, play in altering the host immune response to viral threats.
Collapse
Affiliation(s)
- Vivian Lei
- Department of Dermatology, Duke University, Durham, NC, United States.,School of Medicine, Duke University, Durham, NC, United States
| | - Amy J Petty
- School of Medicine, Duke University, Durham, NC, United States
| | - Amber R Atwater
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Sarah A Wolfe
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States.,Department of Immunology, Duke University, Durham, NC, United States.,Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Gorini G, Fourati S, Vaccari M, Rahman MA, Gordon SN, Brown DR, Law L, Chang J, Green R, Barrenäs F, Liyanage NPM, Doster MN, Schifanella L, Bissa M, Silva de Castro I, Washington-Parks R, Galli V, Fuller DH, Santra S, Agy M, Pal R, Palermo RE, Tomaras GD, Shen X, LaBranche CC, Montefiori DC, Venzon DJ, Trinh HV, Rao M, Gale M, Sekaly RP, Franchini G. Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathog 2020; 16:e1008377. [PMID: 32163525 PMCID: PMC7093029 DOI: 10.1371/journal.ppat.1008377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/24/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4β7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4β7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
Collapse
Affiliation(s)
- Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shari N. Gordon
- Department of Infectious Diseases, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Barrenäs
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Deborah H. Fuller
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Agy
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Rockville, Maryland, United States of America
| | - Robert E. Palermo
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Schifanella L, Barnett SW, Bissa M, Galli V, Doster MN, Vaccari M, Tomaras GD, Shen X, Phogat S, Pal R, Montefiori DC, LaBranche CC, Rao M, Trinh HV, Washington-Parks R, Liyanage NPM, Brown DR, Liang F, Loré K, Venzon DJ, Magnanelli W, Metrinko M, Kramer J, Breed M, Alter G, Ruprecht RM, Franchini G. ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathog 2019; 15:e1008121. [PMID: 31794588 PMCID: PMC6890176 DOI: 10.1371/journal.ppat.1008121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1β, respectively.
Collapse
Affiliation(s)
- Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Inc, Cambridge, Massachusetts, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | | | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Magnanelli
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Michelle Metrinko
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Matthew Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard Cambridge, Boston, Massachusetts, United States of America
| | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Primary Human B Cells at Different Differentiation and Maturation Stages Exhibit Distinct Susceptibilities to Vaccinia Virus Binding and Infection. J Virol 2019; 93:JVI.00973-19. [PMID: 31292245 DOI: 10.1128/jvi.00973-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Vaccinia virus (VACV), the prototypical member of the poxvirus family, was used as a live-virus vaccine to eradicate smallpox worldwide and has recently received considerable attention because of its potential as a prominent vector for the development of vaccines against infectious diseases and as an oncolytic virus for cancer therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigen-presenting cells (APCs), including monocytes, macrophages, and dendritic cells. However, very few studies have assessed the interactions of VACV with primary human B cells, a main type of professional APCs. In this study, we evaluated the susceptibility of primary human peripheral B cells at various differentiation and maturation stages to VACV binding, infection, and replication. We found that plasmablasts were resistant to VACV binding, while other B subsets, including transitional, mature naive, memory, and plasma cells, were highly susceptible to VACV binding. VACV binding preference was likely associated with differential expression of chemokine receptors, particularly CXCR5. Infection studies showed that plasmablast, plasma, transitional, and mature naive B cells were resistant to VACV infection, while memory B cells were preferentially infected. VACV infection in ex vivo B cells was abortive, which occurred at the stage of late viral gene expression. In contrast, activated B cells were permissive to productive VACV infection. Thus, primary human B cells at different differentiation stages exhibit distinct susceptibilities to VACV binding and infection, and the infections are abortive and productive in ex vivo and activated B cells, respectively.IMPORTANCE Our results provide critical information to the field of poxvirus binding and infection tropism. We demonstrate that VACV preferentially infects memory B cells that play an important role in a rapid and vigorous antibody-mediated immune response upon reinfection by a pathogen. Additionally, this work highlights the potential of B cells as natural cellular models to identify VACV receptors or dissect the molecular mechanisms underlying key steps of the VACV life cycle, such as binding, penetration, entry, and replication in primary human cells. The understanding of VACV biology in human primary cells is essential for the development of a safe and effective live-virus vector for oncolytic virus therapy and vaccines against smallpox, other pathogens, and cancer.
Collapse
|
9
|
Vaccari M, Fourati S, Gordon SN, Brown DR, Bissa M, Schifanella L, Silva de Castro I, Doster MN, Galli V, Omsland M, Fujikawa D, Gorini G, Liyanage NPM, Trinh HV, McKinnon KM, Foulds KE, Keele BF, Roederer M, Koup RA, Shen X, Tomaras GD, Wong MP, Munoz KJ, Gach JS, Forthal DN, Montefiori DC, Venzon DJ, Felber BK, Rosati M, Pavlakis GN, Rao M, Sekaly RP, Franchini G. HIV vaccine candidate activation of hypoxia and the inflammasome in CD14 + monocytes is associated with a decreased risk of SIV mac251 acquisition. Nat Med 2018; 24:847-856. [PMID: 29785023 PMCID: PMC5992093 DOI: 10.1038/s41591-018-0025-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023]
Abstract
Qualitative differences in the innate and adaptive responses elicited by different HIV vaccine candidates have not been thoroughly investigated. We tested the ability of the Aventis Pasteur live recombinant canarypox vector (ALVAC)-SIV, DNA-SIV and Ad26-SIV vaccine prime modalities together with two ALVAC-SIV + gp120 protein boosts to reduce the risk of SIVmac251 acquisition in rhesus macaques. We found that the DNA and ALVAC prime regimens were effective, but the Ad26 prime was not. The activation of hypoxia and the inflammasome in CD14+CD16- monocytes, gut-homing CCR5-negative CD4+ T helper 2 (TH2) cells and antibodies to variable region 2 correlated with a decreased risk of SIVmac251 acquisition. By contrast, signal transducer and activator of transcription 3 activation in CD16+ monocytes was associated with an increased risk of virus acquisition. The Ad26 prime regimen induced the accumulation of CX3CR1+CD163+ macrophages in lymph nodes and of long-lasting CD4+ TH17 cells in the gut and lungs. Our data indicate that the selective engagement of monocyte subsets following a vaccine prime influences long-term immunity, uncovering an unexpected association of CD14+ innate monocytes with a reduced risk of SIVmac251 acquisition.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shari N Gordon
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dallas R Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Massimilano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dai Fujikawa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hung V Trinh
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Katherine M McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Marcus P Wong
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Karissa J Munoz
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mangala Rao
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. J Transl Med 2016; 14:241. [PMID: 27538520 PMCID: PMC4989492 DOI: 10.1186/s12967-016-1002-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background Tumour resistance to a wide range of drugs (multiple drug resistant, MDR) acquired after intensive chemotherapy is considered to be the main obstacle of the curative treatment of cancer patients. Recent work has shown that oncolytic viruses demonstrated prominent potential for effective treatment of diverse cancers. Here, we evaluated whether genetically modified vaccinia virus (LIVP-GFP) may be effective in treatment of cancers displaying MDR phenotype. Methods LIVP-GFP replication, transgene expression and cytopathic effects were analysed in human cervical carcinomas KB-3-1 (MDR−), KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), murine lymphosarcomas RLS and RLS-40 (MDR+). To investigate the efficacy of this therapy in vivo, we treated immunocompetent mice bearing murine lymphosarcoma RLS-40 (MDR+) (6- to 8-week-old female CBA mice; n = 10/group) or melanoma B-16 (MDR−) (6- to 8-week-old female C57Bl mice; n = 6/group) with LIVP-GFP (5 × 107 PFU of virus in 0.1 mL of IMDM immediately and 4 days after tumour implantation). Results We demonstrated that LIVP-GFP replication was effective in human cervical carcinomas KB-3-1 (MDR−) and KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), whereas active viral production was not detected in murine lymphosarcomas RLS and RLS-40 (MDR+). Additionally, it was found that in tumour models in immunocompetent mice under the optimized regimen intratumoural injections of LIVP-GFP significantly inhibited melanoma B16 (33 % of mice were with complete response after 90 days) and RLS-40 tumour growth (fourfold increase in tumour doubling time) as well as metastasis. Conclusion The anti-tumour activity of LIVP-GFP is a result of direct oncolysis of tumour cells in case of melanoma B-16 because the virus effectively replicates and destroys these cells, and virus-mediated activation of the host immune system followed by immunologically mediated destruction of of tumour cells in case of lymphosarcoma RLS-40. Thus, the recombinant vaccinia virus LIVP-GFP is able to inhibit the growth of malignant cells with the MDR phenotype and tumour metastasis when administered in the early stages of tumour development. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1002-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
12
|
The canarypox virus vector ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC in rhesus monkeys. J Virol 2013; 88:1809-14. [PMID: 24257612 DOI: 10.1128/jvi.02386-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the growing use of poxvirus vectors as vaccine candidates for multiple pathogens and cancers, their innate stimulatory properties remain poorly characterized. Here we show that the canarypox virus-based vector ALVAC induced distinct systemic proinflammatory and antiviral cytokine and chemokine levels following the vaccination of rhesus monkeys compared to the vaccinia virus-based vectors MVA and NYVAC. These data suggest that there are substantial biological differences among leading poxvirus vaccine vectors that may influence resultant adaptive immune responses following vaccination.
Collapse
|
13
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
14
|
Kennedy RB, Oberg AL, Ovsyannikova IG, Haralambieva IH, Grill D, Poland GA. Transcriptomic profiles of high and low antibody responders to smallpox vaccine. Genes Immun 2013; 14:277-85. [PMID: 23594957 PMCID: PMC3723701 DOI: 10.1038/gene.2013.14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022]
Abstract
Despite its eradication over 30 years ago, smallpox (as well as other orthopox viruses) remains a pathogen of interest both in terms of biodefense and for its use as a vector for vaccines and immunotherapies. Here we describe the application of mRNA-Seq transcriptome profiling to understanding immune responses in smallpox vaccine recipients. Contrary to other studies examining gene expression in virally infected cell lines, we utilized a mixed population of peripheral blood mononuclear cells in order to capture the essential intercellular interactions that occur in vivo, and would otherwise be lost, using single cell lines or isolated primary cell subsets. In this mixed cell population we were able to detect expression of all annotated vaccinia genes. On the host side, a number of genes encoding cytokines, chemokines, complement factors and intracellular signaling molecules were downregulated upon viral infection, whereas genes encoding histone proteins and the interferon response were upregulated. We also identified a small number of genes that exhibited significantly different expression profiles in subjects with robust humoral immunity compared with those with weaker humoral responses. Our results provide evidence that differential gene regulation patterns may be at work in individuals with robust humoral immunity compared with those with weaker humoral immune responses.
Collapse
Affiliation(s)
- Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester MN, USA
| | - Ann L. Oberg
- Mayo Vaccine Research Group, Mayo Clinic, Rochester MN, USA
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Diane Grill
- Mayo Vaccine Research Group, Mayo Clinic, Rochester MN, USA
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
15
|
Primary human leukocyte subsets differentially express vaccinia virus receptors enriched in lipid rafts. J Virol 2013; 87:9301-12. [PMID: 23785200 DOI: 10.1128/jvi.01545-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxviruses, including vaccinia virus (VV) and canarypox virus (ALVAC), do not indiscriminately infect all cell types of the primary human leukocytes (PHLs) that they encounter but instead demonstrate an extremely strong bias toward infection of monocytes and monocyte lineage cells. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias of cell surface protein-dependent binding to monocytes, B cells, and activated T cells to a similar degree and to neutrophils to a much lesser extent. Resting T cells and resting NK cells exhibited only trace amounts of VV binding. Activated T cells, however, became permissive to VV binding, infection, and replication, while activated NK cells still resisted VV binding. VV binding strongly colocalized with lipid rafts on the surfaces of all VV binding-susceptible PHL subsets, even when lipid rafts were relocated to cell uropods upon cell polarization. Immunosera raised against detergent-resistant membranes (DRMs) from monocytes or activated T cells, but not resting T cells, effectively cross-blocked VV binding to and infection of PHL subsets. CD29 and CD98, two lipid raft-associated membrane proteins that had been found to be important for VV entry into HeLa cells, had no effect on VV binding to and infection of primary activated T cells. Our data indicate that PHL subsets express VV protein receptors enriched in lipid rafts and that receptors are cross-presented on all susceptible PHLs.
Collapse
|
16
|
Hu N, Yu R, Shikuma C, Shiramizu B, Ostrwoski MA, Yu Q. Role of cell signaling in poxvirus-mediated foreign gene expression in mammalian cells. Vaccine 2009; 27:2994-3006. [PMID: 19428911 DOI: 10.1016/j.vaccine.2009.02.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/15/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Poxviruses have been extensively used as a promising vehicle to efficiently deliver a variety of antigens in mammalian hosts to induce immune responses against infectious diseases and cancer. Using recombinant vaccinia virus (VV) and canarypox virus (ALVAC) expressing enhanced green fluorescent protein (EGFP) or multiple HIV-1 gene products, we studied the role of four cellular signaling pathways, the phosphoinositide-3-OH kinase (PI3K), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), and c-Jun N-terminal kinase (JNK), in poxvirus-mediated foreign gene expression in mammalian cells. In nonpermissive infection (human monocytes), activation of PI3K, ERK, p38 MAPK, and JNK was observed in both VV and ALVAC and blocking PI3K, p38 MAKP, and JNK pathways with their specific inhibitors significantly reduced viral and vaccine antigen gene expression. Whereas, blocking the ERK pathway had no significant effect. Among these cellular signaling pathways studied, PI3K was the most critical pathway involved in gene expression by VV- or ALVAC-infected monocytes. The important role of PI3K in poxvirus-mediated gene expression was further confirmed in mouse epidermal cells stably transfected with dominant-negative PI3K mutant, as poxvirus-mediated targeted gene expression was significantly decreased in these cells when compared with their parental cells. Signaling pathway activation influenced gene expression at the mRNA level rather than virus binding. In permissive mammalian cells, however, VV DNA copies were also significantly decreased in the absence of normal function of the PI3K pathway. Poxvirus-triggered activation of PI3K pathway could be completely abolished by atazanavir, a new generation of antiretroviral protease inhibitors (PIs). As a consequence, ALVAC-mediated EGFP or HIV-1 gag gene expression in infected primary human monocytes was significantly reduced in the presence of atazanavir. These findings implicate that antiretroviral therapy (ART), also known as highly active antiretroviral therapy (HAART), may negatively impact the efficacy of live poxvirus vector-based vaccines and should be carefully considered when administering such live vaccines to individuals on ART.
Collapse
Affiliation(s)
- Ningjie Hu
- Hawaii AIDS Clinical Research Program, University of Hawaii at Manoa, Leahi Hospital, Honolulu, HI 96816, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Poxviruses including canarypox (ALVAC) and vaccinia viruses have, in recent years, received considerable attention as live vectors for the development of vaccines against infectious diseases such as AIDS, malaria, and tuberculosis. However, the cellular targets for viral infection within the human immune system and the consequences of infection for cells involved in the generation of immune responses have not been clearly delineated. Using recombinant enhanced green fluorescence protein (EGFP)-expressing ALVAC and vaccinia viruses, we have focused here on a side-by-side comparison of ALVAC and vaccinia virus tropism for cells from human peripheral blood and bone marrow. Both ALVAC and vaccinia viruses showed a strong bias toward monocyte infection. ALVAC minimally infected CD19(+) B cells and was unable to infect ex vivo NK cells and T lymphocytes, whereas vaccinia virus could infect B lymphocytes and NK cell populations. Vaccinia virus was also able to infect T lymphocytes at low but detectable levels which could be enhanced upon their activation. Both ALVAC and vaccinia viruses could infect immature monocyte-derived dendritic cells (MDDCs), but only ALVAC infection induced their subsequent maturation. Infection in human bone marrow cells showed that ALVAC infection was restricted to a myelomonocytoid cell-specific CD33(+) cell population, while vaccinia virus showed a strong, but not exclusive, preference for these cells.
Collapse
Affiliation(s)
- Qigui Yu
- University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| | | | | |
Collapse
|
18
|
Abstract
In an earlier report, we provided evidence that expression of CCR5 by primary human T cells renders them permissive for vaccinia virus (VACV) replication. This may represent a mechanism for dissemination throughout the lymphatic system. To test this hypothesis, wild-type CCR5(+/+) and CCR5 null mice were challenged with VACV by intranasal inoculation. In time course studies using different infective doses of VACV, we identified viral replication in the lungs of both CCR5(+/+) and CCR5(-/-) mice, yet there were diminished viral loads in the spleens and brains of CCR5(-/-) mice compared with CCR5(+/+) mice. Moreover, in association with VACV infection, we provide evidence for CD4+ and CD8+ T-cell as well as CD11c+ and F4/80+ cell infiltration into the lungs of CCR5(+/+) but not CCR5(-/-) mice, and we show that the CCR5-expressing T cells harbor virus. We demonstrate that this CCR5 dependence is VACV specific, since CCR5(-/-) mice are as susceptible to intranasal influenza virus (A/WSN/33) infection as CCR5(+/+) mice. In a final series of experiments, we provide evidence that adoptive transfer of CCR5(+/+) bone marrow leukocytes into CCR5(-/-) mice restores VACV permissiveness, with evidence of lung and spleen infection. Taken together, our data suggest a novel role for CCR5 in VACV dissemination in vivo.
Collapse
|
19
|
Harenberg A, Guillaume F, Ryan EJ, Burdin N, Spada F. Gene profiling analysis of ALVAC infected human monocyte derived dendritic cells. Vaccine 2008; 26:5004-13. [PMID: 18691624 PMCID: PMC7115550 DOI: 10.1016/j.vaccine.2008.07.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/13/2008] [Accepted: 07/20/2008] [Indexed: 02/06/2023]
Abstract
The recombinant canarypox virus ALVAC is being extensively studied as vaccine vector for the development of new vaccine strategies against chronic infectious diseases and cancer. However, the mechanisms by which ALVAC initiates the immune response have not been completely elucidated. In order to determine the type of innate immunity triggered by ALVAC, we characterized the gene expression profile of human monocyte derived dendritic cells (MDDCs) upon ALVAC infection. These cells are permissive to poxvirus infection and play a key role in the initiation of immune responses. The majority of the genes that were up-regulated by ALVAC belong to the type I interferon signaling pathway including IRF7, STAT1, RIG-1, and MDA-5. Genes involved in the NF-κB pathway were not up-regulated. The gene encoding for the chemokine CXCL10, a direct target of the transcription factor IRF3 was among those up-regulated and DC secretion of CXCL10 following exposure to ALVAC was confirmed by ELISA. Many downstream type I interferon activated genes with anti-viral activity (PKR, Mx, ISG15 and OAS among others) were also up-regulated in response to ALVAC. Among these, ISG15 expression in its unconjugated form by Western blot analysis was demonstrated. In view of these results we propose that ALVAC induces type I interferon anti-viral innate immunity via a cytosolic pattern-recognition-receptor (PRR) sensing double-stranded DNA, through activation of IRF3 and IRF7. These findings may aid in the design of more effective ALVAC-vectored vaccines.
Collapse
Affiliation(s)
- Anke Harenberg
- Sanofi-Pasteur, Campus Mérieux, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | | | | | | | | |
Collapse
|
20
|
Liu J, Yu Q, Stone GW, Yue FY, Ngai N, Jones RB, Kornbluth RS, Ostrowski MA. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 2008; 26:4062-72. [PMID: 18562053 PMCID: PMC3060027 DOI: 10.1016/j.vaccine.2008.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal costimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor alpha chain (IL-7Ralpha, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor-alpha (TNF-alpha) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity.
Collapse
Affiliation(s)
- Jun Liu
- Clinical Sciences Division, University of Toronto
| | - Qigui Yu
- Clinical Sciences Division, University of Toronto
| | | | - Feng Yun Yue
- Clinical Sciences Division, University of Toronto
| | | | | | | | | |
Collapse
|
21
|
Diener KR, Lousberg EL, Beukema EL, Yu A, Howley PM, Brown MP, Hayball JD. Recombinant fowlpox virus elicits transient cytotoxic T cell responses due to suboptimal innate recognition and recruitment of T cell help. Vaccine 2008; 26:3566-73. [PMID: 18541346 DOI: 10.1016/j.vaccine.2008.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 12/23/2022]
Abstract
Recombinant fowlpox viruses (FPVs) have been used in a variety of vaccine strategies; however strong data clearly demonstrating the characteristics of the strength and nature of the resultant immune response elicited by these vectors are lacking. By utilising a recombinant variant of FPV which expresses the nominal antigen chicken ovalbumin (OVA), and assessing innate FPV- and OVA-specific adaptive immune responses, we show that recombinant FPV induces a rapid type I interferon (IFN) response, mediated primarily by plasmacytoid dendritic cells (pDCs). These cells are necessary for the development of a strong but transient CD8(+) T cell effector response directed against OVA-expressing target cells. We propose that a combination of suboptimal type I IFN production, poor CD4(+) T cell helper function and inefficient DC licensing likely contribute to this transient response. These findings now provide a sound basis for rational modifications to be made to recombinant FPV, designed to improve subsequent vaccine responses.
Collapse
|
22
|
Vanpouille C, Biancotto A, Lisco A, Brichacek B. Interactions between human immunodeficiency virus type 1 and vaccinia virus in human lymphoid tissue ex vivo. J Virol 2007; 81:12458-64. [PMID: 17804502 PMCID: PMC2169030 DOI: 10.1128/jvi.00326-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vaccinia virus (VACV) has been attracting attention recently not only as a vector for various vaccines but also as an immunization tool against smallpox because of its potential use as a bioterrorism agent. It has become evident that in spite of a long history of studies of VACV, its tissue pathogenesis remains to be fully understood. Here, we investigated the pathogenesis of VACV and its interactions with human immunodeficiency virus type 1 (HIV-1) in the context of human lymphoid tissues. We found that ex vivo-cultured tonsillar tissue supports productive infection by the New York City Board of Health strain, the VACV strain of the Dryvax vaccine. VACV readily infected both T and non-T (B) lymphocytes and depleted cells of both of these subsets equally over a 12-day period postinfection. Among T lymphocytes, CD8(+) cells are preferentially depleted in accordance with their preferential infection: the probability that a CD8(+) T cell will be productively infected is almost six times higher than for a CD4(+) T cell. T cells expressing CCR5 and the activation markers CD25, CD38, and HLA-DR are other major targets for infection by VACV in lymphoid tissue. As a consequence, VACV predominantly inhibits the replication of the R5(SF162) phenotype of HIV-1 in coinfected tissues, as R5-tropic HIV-1 requires activated CCR5(+) CD4(+) cells for productive infection. Human lymphoid tissue infected ex vivo by VACV can be used to investigate interactions of VACV with other viruses, in particular HIV-1, and to evaluate various VACV vectors for the purpose of recombinant vaccine development.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Laboratory of Molecular and Cellular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
23
|
Ferenczy A, Franco EL. Prophylactic human papillomavirus vaccines: potential for sea change. Expert Rev Vaccines 2007; 6:511-25. [PMID: 17669006 DOI: 10.1586/14760584.6.4.511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Persistent human papillomavirus (HPV) infection is the central cause in the development of anogenital warts, precancers and cancers of uterine cervix, and a major factor in the genesis of other malignancies of the lower anogenital and upper aerodigestive tracts. The burden of disease carries very high medical, financial and psychosocial costs. The role of prophylactic HPV vaccines in reducing the burden of disease is discussed in light of the results of multiple randomized, controlled trials conducted worldwide in thousands of young females. The review discusses some of the issues that are still unknown, with respect to long-term vaccine performance, challenges to be overcome to achieve universal, mass prophylactic HPV vaccination, as well as the potential impact of the vaccines on primary screening for, and management of, HPV-related anogenital infection and disease.
Collapse
Affiliation(s)
- Alex Ferenczy
- McGill University and The Sir Mortimer B. Davis - Jewish General Hospital, Montreal, Quebec, Canada.
| | | |
Collapse
|
24
|
Nazarian SH, Barrett JW, Stanford MM, Johnston JB, Essani K, McFadden G. Tropism of Tanapox virus infection in primary human cells. Virology 2007; 368:32-40. [PMID: 17632198 DOI: 10.1016/j.virol.2007.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/11/2007] [Accepted: 06/20/2007] [Indexed: 11/17/2022]
Abstract
Tanapox virus (TPV) belongs to the genus Yatapoxvirus and causes a relatively benign zoonotic disease in man, with symptoms that resemble a mild version of human monkeypox. In order to investigate the underlying mechanisms of TPV pathogenesis, the tropism and replication characteristics of TPV were examined in a variety of primary human cells. A GFP expressing TPV (TPV-GFP) was constructed and used to infect primary human dermal fibroblasts (pHDFs) and peripheral blood mononuclear cells (PBMCs), both of which are believed to be major in vivo targets of poxvirus infection. pHDFs fully supported productive replication and cell-cell spread of TPV-GFP. However, induction of cell cycle arrest in pHDFs by contact mediated inhibition or rapamycin treatment eliminated the ability of TPV to fully stimulate cell cycle progression and dramatically reduced viral replication. TPV-GFP-infected human PBMCs were screened for permissiveness by FACS analysis. CD14+ cells (monocytes) were the primary cellular target for TPV infection. A small proportion of CD3+ cells (T cells) were positive for GFP expression, yet TPV was not able to replicate and spread in cultured peripheral blood lymphocytes, regardless of their state of activation. Primary human monocytes, however, demonstrated robust TPV replication, yet these cells no longer supported replication of TPV once they differentiated into macrophages. This unique ex vivo tropism of TPV gives key insights into the basis for the self-limiting pathogenicity of TPV in man.
Collapse
Affiliation(s)
- Steven H Nazarian
- Biotherapeutics Research Group, Robarts Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | | | | | |
Collapse
|
25
|
Ryan EJ, Harenberg A, Burdin N. The Canarypox-virus vaccine vector ALVAC triggers the release of IFN-gamma by Natural Killer (NK) cells enhancing Th1 polarization. Vaccine 2007; 25:3380-90. [PMID: 17234309 PMCID: PMC7115637 DOI: 10.1016/j.vaccine.2006.12.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/06/2006] [Accepted: 12/21/2006] [Indexed: 12/03/2022]
Abstract
We investigated the mechanism by which ALVAC activates innate immunity. Combining ALVAC with protein antigens significantly augmented antigen-specific IgG2a responses; this was dependent on the presence of bioactive interferon (IFN)-γ. Immuno-depletion of NK cells prior to ALVAC immunisation abrogated IFN-γ production indicating that they are the main cellular source of early IFN-γ in vivo. Murine bone-marrow derived dendritic cells (BMDCs) cultured in the presence of ALVAC secreted high levels of the chemokines CXCL10 and CCL2 and up-regulated expression of the maturation markers CD40, CD80 and CD86. Therefore, we conclude that ALVAC acts as an adjuvant through a mechanism requiring NK cell derived IFN-γ, DC activation and chemokine secretion.
Collapse
Affiliation(s)
- Elizabeth J Ryan
- Sanofi-Pasteur, Campus Mérieux, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | | | | |
Collapse
|