1
|
He Q, Jiang L, Cao K, Zhang L, Xie X, Zhang S, Ding X, He Y, Zhang M, Qiu T, Jin X, Zhao C, Zhang X, Xu J. A Systemic Prime-Intrarectal Pull Strategy Raises Rectum-Resident CD8+ T Cells for Effective Protection in a Murine Model of LM-OVA Infection. Front Immunol 2020; 11:571248. [PMID: 33072113 PMCID: PMC7541937 DOI: 10.3389/fimmu.2020.571248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
As the entry sites of many pathogens such as human immunodeficiency virus (HIV), mucosal sites are defended by rapidly reacting resident memory T cells (TRM). TRMs represent a special subpopulation of memory T cells that persist long term in non-lymphoid sites without entering the circulation and provide the “sensing and alarming” role in the first-line defense against infection. The rectum and vagina are the two primary mucosal portals for HIV entry. However, compared to vaginal TRM, rectal TRM is poorly understood. Herein, we investigated the optimal vaccination strategy to induce rectal TRM. We identified an intranasal prime–intrarectal boost (pull) strategy that is effective in engaging rectal TRM alongside circulating memory T cells and demonstrated its protective efficacy in mice against infection of Listeria monocytogenes. On the contrary, the same vaccine delivered via either intranasal or intrarectal route failed to raise rectal TRM, setting it apart from vaginal TRM, which can be induced by both intranasal and intrarectal immunizations. Moreover, intramuscular prime was also effective in inducing rectal TRM in combination with intrarectal pull, highlighting the need of a primed systemic T cell response. A comparison of different pull modalities led to the identification that raising rectal TRM is mainly driven by local antigen presence. We further demonstrated the interval between prime and boost steps to be critical for the induction of rectal TRM, revealing circulating recently activated CD8+ T cells as the likely primary pullable precursor of rectal TRM. Altogether, our studies lay a new framework for harnessing rectal TRM in vaccine development.
Collapse
Affiliation(s)
- Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kangli Cao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinci Xie
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongquan He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miaomiao Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuanxuan Jin
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Walter F, Winter E, Rahn S, Heidland J, Meier S, Struzek AM, Lettau M, Philipp LM, Beckinger S, Otto L, Möller JL, Helm O, Wesch D, Scherließ R, Sebens S. Chitosan nanoparticles as antigen vehicles to induce effective tumor specific T cell responses. PLoS One 2020; 15:e0239369. [PMID: 32997691 PMCID: PMC7526875 DOI: 10.1371/journal.pone.0239369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer vaccinations sensitize the immune system to recognize tumor-specific antigens de novo or boosting preexisting immune responses. Dendritic cells (DCs) are regarded as the most potent antigen presenting cells (APCs) for induction of (cancer) antigen-specific CD8+ T cell responses. Chitosan nanoparticles (CNPs) used as delivery vehicle have been shown to improve anti-tumor responses. This study aimed at exploring the potential of CNPs as antigen delivery system by assessing activation and expansion of antigen-specific CD8+ T cells by DCs and subsequent T cell-mediated lysis of pancreatic ductal adenocarcinoma (PDAC) cells. As model antigen the ovalbumin-derived peptide SIINFEKL was chosen. Using imaging cytometry, intracellular uptake of FITC-labelled CNPs of three different sizes and qualities (90/10, 90/20 and 90/50) was demonstrated in DCs and in pro- and anti-inflammatory macrophages to different extents. While larger particles (90/50) impaired survival of all APCs, small CNPs (90/10) were not toxic for DCs. Internalization of SIINFEKL-loaded but not empty 90/10-CNPs promoted a pro-inflammatory phenotype of DCs indicated by elevated expression of pro-inflammatory cytokines. Treatment of murine DC2.4 cells with SIINFEKL-loaded 90/10-CNPs led to a marked MHC-related presentation of SIINFEKL and enabled DC2.4 cells to potently activate SIINFEKL-specific CD8+ OT-1 T cells finally leading to effective lysis of the PDAC cell line Panc-OVA. Overall, our study supports the suitability of CNPs as antigen vehicle to induce potent anti-tumor immune responses by activation and expansion of tumor antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Frederik Walter
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Elsa Winter
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Judith Heidland
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Saskia Meier
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Anna-Maria Struzek
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Kiel University and UKSH Campus Kiel, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Silje Beckinger
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Lilli Otto
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Julia Luisa Möller
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Kiel University and UKSH Campus Kiel, Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Xie X, Zhao C, He Q, Qiu T, Yuan S, Ding L, Liu L, Jiang L, Wang J, Zhang L, Zhang C, Wang X, Zhou D, Zhang X, Xu J. Influenza Vaccine With Consensus Internal Antigens as Immunogens Provides Cross-Group Protection Against Influenza A Viruses. Front Microbiol 2019; 10:1630. [PMID: 31379782 PMCID: PMC6647892 DOI: 10.3389/fmicb.2019.01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Given that continuing antigenic shift and drift of influenza A viruses result in the escape from previous vaccine-induced immune protection, a universal influenza vaccine has been actively sought. However, there were very few vaccines capable of eliciting cross-group ant-influenza immunity. Here, we designed two novel composite immunogens containing highly conserved T-cell epitopes of six influenza A virus internal antigens, and expressed them in DNA, recombinant adenovirus-based (AdC68) and recombinant vaccinia vectors, respectively, to formulate three vaccine forms. The introduction of the two immunogens via a DNA priming and viral vectored vaccine boosting modality afforded cross-group protection from both PR8 and H7N9 influenza virus challenges in mice. Both respiratory residential and systemic T cells contributed to the protective efficacy. Intranasal but not intramuscular administration of AdC68 based vaccine was capable of raising both T cell subpopulations to confer a full protection from lethal PR8 and H7N9 challenges, and blocking the lymphatic egress of T cells during challenges attenuated the protection. Thus, by targeting highly conserved internal viral epitopes to efficiently generate both respiratory and systemic memory T cells, the sequential vaccination strategy reported here represented a new promising candidate for the development of T-cell based universal influenza vaccines.
Collapse
Affiliation(s)
- Xinci Xie
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Trivedi S, Neeman T, Jackson RJ, Ranasinghe R, Jack C, Ranasinghe C. Identification of biomarkers to measure HIV-specific mucosal and systemic CD8(+) T-cell immunity using single cell Fluidigm 48.48 Dynamic arrays. Vaccine 2015; 33:7315-7327. [PMID: 26519547 DOI: 10.1016/j.vaccine.2015.10.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/06/2015] [Accepted: 10/17/2015] [Indexed: 11/16/2022]
Abstract
Thirty genes composed of cytokines, chemokines, granzymes, perforin and integrins were evaluated in gut and splenic K(d)Gag197-205-specific single CD8(+) T cells using Fluidigm 48.48 Dynamic arrays, with the aim of identifying biomarkers to predict effective mucosal and systemic vaccine efficacy. The mRNA expression profiles were analyzed in three ways: (i) the "number" of K(d)Gag197-205-specific CD8(+) T cells expressing the biomarker, (ii) "level" of mRNA expression using principal component analysis (PCA) and (iii) poly-functionality in relation to RANTES expression. In total, 21 genes were found to be differentially expressed between the vaccine groups and the immune compartments tested. Overall, the PCA indicated that IL-13Rα2 or IL-4R antagonist adjuvanted vaccines that previously induced high-avidity mucosal/systemic CD8(+) T cells with better protective efficacy, the "level" of mRNA expression, specifically RANTES, MIP-1β, and integrin α4 in gut K(d)Gag197-205-specific single CD8(+) T cells, were significantly elevated compared to unadjuvanted vaccine. Furthermore, significantly elevated granzymes/perforin levels were detected in IL-13(-/-) mice given the unadjuvanted vaccine, indicating that the degree of IL-13 inhibition (total, transient or no inhibition) can considerably alter the level of T-cell activity/poly-functionality. When splenic- and gut-K(d)Gag197-205-specific CD8(+) T cells were compared, PC1 vs. PC2 scores revealed that not only RANTES, MIP-1β, and integrin α4 mRNA, but also perforin, granzymes A/B, and integrins β1 and β2 mRNA were elevated in spleen. Collectively, data suggest that RANTES, MIP-1β, perforin, and integrins α4, β1 and β7 mRNA in single HIV-specific CD8(+) T cells could be used as a measure of effective mucosal and systemic vaccine efficacy.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia
| | - Teresa Neeman
- Statistical Consultant Unit, The Australian National University, Canberra, ACT 2601, Australia
| | - Ronald J Jackson
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia
| | - Roshanka Ranasinghe
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; UNESCO-IHE, Institute for Water Education, 2601 DA Delft, The Netherlands
| | - Cameron Jack
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Genome Discovery Unit, The Australian National University, Canberra, ACT 2601, Australia
| | - Charani Ranasinghe
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2014; 8:1171-81. [DOI: 10.1586/erv.09.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Liu H, Patil HP, de Vries-Idema J, Wilschut J, Huckriede A. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies. PLoS One 2013; 8:e69649. [PMID: 23936066 PMCID: PMC3729563 DOI: 10.1371/journal.pone.0069649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/13/2013] [Indexed: 12/27/2022] Open
Abstract
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Drug Administration Routes
- Drug Evaluation, Preclinical
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunity/immunology
- Immunity, Mucosal/immunology
- Immunization/methods
- Immunization, Secondary/methods
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Mice
- Mice, Inbred BALB C
- Saponins/administration & dosage
- Saponins/immunology
- T-Lymphocytes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Heng Liu
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harshad P. Patil
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
García-Díaz D, Rodríguez I, Santisteban Y, Márquez G, Terrero Y, Brown E, Iglesias E. Th2-Th1 shift with the multiantigenic formulation TERAVAC-HIV-1 in Balb/c mice. Immunol Lett 2012. [PMID: 23183092 DOI: 10.1016/j.imlet.2012.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In chronic HIV infection a progressive Th1 to Th2/Th0 cytokine-profile shift is related to disease progression. One of the possible benefits of a therapeutic vaccination might be to counterbalance this phenomenon to allow viral replication control under a Th1-type immune response. TERAVAC-HIV-1 is a multiantigenic formulation vaccine candidate against HIV-1 which comprises the recombinant protein CR3 that contains T cell epitopes and the surface and nucleocapsid antigens of Hepatitis B Virus (HBV). Previous studies showed that such virus like particles of the HBV provide a Th1 adjuvant effect. The present studies examined the capacity of TERAVAC to elicit a Th1 response in the presence of an ongoing HIV-specific Th2-type response in Balb/c mice. To examine this issue, we injected subcutaneously the animals with CR3 or viral lysate in alum which resulted in a Th2-type response. The CR3-specific Th2-type response was verified by induction of IL-4 and IL-10 secretion in ex vivo stimulated splenocytes without secretion of IFN-γ and IgG2a antibodies in serum. Further subcutaneous and simultaneous subcutaneous-nasal immunizations of the same mice with TERAVAC promoted IFN-γ secretion and production of IgG2a antibodies in accordance with a Th1-type response. This result suggests a therapeutic benefit of this vaccine candidate in the restoration of the Th1-type HIV-specific cellular response in seropositive patients.
Collapse
Affiliation(s)
- Darien García-Díaz
- Centro de Ingeniería Genética y Biotecnología (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | |
Collapse
|
8
|
Optimization and proficiency testing of a pseudovirus-based assay for detection of HIV-1 neutralizing antibody in China. J Virol Methods 2012; 185:267-75. [DOI: 10.1016/j.jviromet.2012.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 11/23/2022]
|
9
|
Wen J, Yang Y, Zhao G, Tong S, Yu H, Jin X, Du L, Jiang S, Kou Z, Zhou Y. Salmonella typhi Ty21a bacterial ghost vector augments HIV-1 gp140 DNA vaccine-induced peripheral and mucosal antibody responses via TLR4 pathway. Vaccine 2012; 30:5733-9. [DOI: 10.1016/j.vaccine.2012.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 11/16/2022]
|
10
|
Liao Q, Strong AJ, Liu Y, Liu Y, Meng P, Fu Y, Touzjian N, Shao Y, Zhao Z, Lu Y. HIV vaccine candidates generate in vitro T cell response to putative epitopes in Chinese-origin rhesus macaques. Vaccine 2012; 30:1601-8. [PMID: 22261410 DOI: 10.1016/j.vaccine.2011.12.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022]
Abstract
The Indian rhesus macaque is the established animal model for HIV infection and vaccine research. Growing evidence suggests that the more readily available Chinese rhesus macaque may be a more relevant option. As increasing numbers of novel Chinese rhesus MHC alleles are reported, we decided to explore potential HIV vaccine epitopes in this model. We immunized forty Chinese rhesus macaques with three different HIV vaccine candidates either individually or following a prime/boost strategy. We used ELISPOT to measure immune response in vitro to HIV-1 p24C and HIV-1 gp160 peptide libraries. We identified five putative epitopes with associations to HLA-I alleles including HLA*B-2705 and HLA-B*5101 (associated with slow disease progression and low viral set point) and HLA-B*18 (associated with rapid disease progression and high viral set point). This suggests the possible use of Chinese rhesus macaques to model different disease progressions. We also explored the use of fusion proteins as stimulators in ELISPOT assays. While PBMCs from 6 monkeys responded to peptide stimulation, PBMCs from 28 monkeys responded to the anthrax lethal factor fusion proteins LFn p24C and/or LFn gp140C. Our results support the use of Chinese rhesus macaques in HIV vaccine studies.
Collapse
Affiliation(s)
- Qi Liao
- Vaccine Laboratory, NanKai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Iglesias E, García D, Márquez G, Prieto YC, Sánchez J, Trimiño L, Soria Y, García D. Two mucosal-parenteral schedules to coadminister a multiantigenic formulation against HIV-1 in Balb/c mice. Int Immunopharmacol 2012; 12:487-93. [PMID: 22240123 DOI: 10.1016/j.intimp.2011.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 11/27/2022]
Abstract
Previous studies showed that simultaneous immunization through the nasal (IN) and subcutaneous (SC) route of a multiantigenic formulation induced a Th1 anti-HIV humoral and cellular immune responses. The formulation was comprised of a recombinant protein of HIV-1 (named CR3; Cellular Response number 3) and the surface and nucleocapsid antigens of hepatitis B virus. This study asks whether four times simultaneous administration through the IN and SC routes (SC+IN) of the multiantigenic formulation induces a similar systemic and mucosal immune responses than two sequential IN priming and two SC boosting (2IN&2SC) inoculations in mice. To answer this question, we tested the same total dose of each antigen per animal in both schedules of inoculation. We found that SC+IN and 2IN&2SC coadministration induced comparable levels of CR3(HIV)-specific IFN-γ-secreting cells and CD8+ cells proliferation in the systemic compartment of animals. Consistent with these findings, a similar Th1 profile considering anti-CR3 IgG1:IGg2a ratio was observed. Additionally, the level of IgG antibodies and the frequency of seroconverting animals in vagina were not different. However, in the case of IgA antibodies the same parameters were significantly higher in the SC+IN group. We also found important level of HBsAg-specific antibodies in serum and vaginal washes.
Collapse
Affiliation(s)
- Enrique Iglesias
- Centro de Ingeniería Genética y Biotecnología (CIGB), P.O. Box 6162, Havana 10600, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Yang J, Bao R, Chen Y, Zhou D, He B, Zhong M, Li Y, Liu F, Li Q, Yang Y, Han C, Sun Y, Cao Y, Yan H. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses. PLoS One 2011; 6:e24296. [PMID: 21935396 PMCID: PMC3174162 DOI: 10.1371/journal.pone.0024296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rong Bao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoqing Chen
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Benxia He
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoming Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Liu
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiaoli Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Han
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Sun
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Cao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
13
|
Lu B, Yu W, Huang X, Wang H, Liu L, Chen Z. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain. J Biomed Biotechnol 2011; 2011:970424. [PMID: 21765641 PMCID: PMC3134386 DOI: 10.1155/2011/970424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022] Open
Abstract
The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Immunity, Mucosal/immunology
- Immunization
- Injections, Intramuscular
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Smallpox/immunology
- Smallpox/prevention & control
- Smallpox Vaccine/administration & dosage
- Smallpox Vaccine/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccinia/immunology
- Vaccinia/prevention & control
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Variola virus/immunology
Collapse
Affiliation(s)
- Bin Lu
- AIDS Center and Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Wenbo Yu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxing Huang
- AIDS Center and Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Haibo Wang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Microbiology and Research Center for Infection and Immunity, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Ranasinghe C, Eyers F, Stambas J, Boyle DB, Ramshaw IA, Ramsay AJ. A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations. Vaccine 2011; 29:3008-20. [PMID: 21352941 PMCID: PMC3244379 DOI: 10.1016/j.vaccine.2011.01.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 11/25/2022]
Abstract
In this study we have firstly compared a range of recombinant DNA poxvirus prime-boost immunisation strategies and shown that combined intramuscular (i.m.) 2× DNA-HIV/intranasal (i.n.) 2× FPV-HIV prime-boost immunisation can generate high-level of HIV-specific systemic (spleen) and mucosal (genito-rectal nodes, vaginal tissues and lung tissues) T cell responses and HIV-1 p24 Gag-specific serum IgG1, IgG2a and mucosal IgG, SIgA responses in vaginal secretions in BALB/c mice. Data indicate that following rDNA priming, two rFPV booster immunisations were necessary to generate good antibody and mucosal T cell immunity. This data also revealed that mucosal uptake of recombinant fowl pox (rFPV) was far superior to plasmid DNA. To further evaluate CD8+ T cell immunity, i.m. 2× DNA-HIV/i.n. 1× FPV-HIV immunisation strategy was directly compared with single shot poxvirus/poxvirus, i.n. FPV-HIV/i.m. VV-HIV immunisation. Results indicate that the latter strategy was able to generate strong sustained HIV-specific CD8+ T cells with higher avidity, broader cytokine/chemokine profiles and better protection following influenza-K(d)Gag(197-205) challenge compared to rDNA poxvirus prime-boost strategy. Our findings further substantiate the importance of vector selection/combination, order and route of delivery when designing effective vaccines for HIV-1.
Collapse
Affiliation(s)
- Charani Ranasinghe
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 2010; 10:1181-95. [PMID: 20624114 DOI: 10.1517/14712598.2010.496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. WHAT THE READER WILL GAIN Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. AREAS COVERED IN THIS REVIEW Covering publications from 1980s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. TAKE HOME MESSAGE Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intensive research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine.
Collapse
Affiliation(s)
- Mingke Yu
- EpitoGenesis, Inc., Walnut Creek, CA 94598, USA
| | | |
Collapse
|
16
|
Impact of ETIF deletion on safety and immunogenicity of equine herpesvirus type 1-vectored vaccines. J Virol 2010; 84:11602-13. [PMID: 20826695 DOI: 10.1128/jvi.00677-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterologous gene transfer by viral vector systems is often limited by factors such as preexisting immunity, toxicity, low packaging capacity, or weak immunogenic potential. A novel viral vector system derived from equine herpesvirus type 1 (EHV-1) not only overcomes some of these obstacles but also promotes the robust expression of a delivered transgene and the induction of antigen-specific immune responses. Regarding an enhanced safety profile, we assessed the impact of the gene encoding the sole essential tegument protein, ETIF, on the replication and immunogenicity of recombinant EHVs. The deletion of ETIF severely attenuates replication in permissive RK13 cells and a human lung epithelial cell line but without influencing transgene expression. Whereas the intranasal administration of a recombinant luciferase EHV in BALB/c mice resulted in transgene expression in nasal cavities and lungs for 5 to 6 days, the ETIF deletion limited expression to 2 days and resulted in 30-fold-less luminescence. Attenuated replication was accompanied by a decreased capacity to induce CD8(+) T cells against a delivered HIV Gag transgene in BALB/c mice following repeated intranasal application. However, a single subcutaneous immunization with a gag DNA vaccine primed specific T cells for substantial expansion by two subsequent intranasal booster immunizations with either the gag recombinant ETIF mutant or the parental virus. In addition to inducing Gag-specific serum antibodies, this prime-boost strategy clearly outperformed three sequential immunizations with the parental or EHV-ΔETIF virus or repeated DNA vaccination by inducing substantial specific secretory IgA (sIgA) titers.
Collapse
|
17
|
Qiao Y, Huang Y, Qiu C, Yue X, Deng L, Wan Y, Xing J, Zhang C, Yuan S, Dong A, Xu J. The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials 2009; 31:115-23. [PMID: 19781770 DOI: 10.1016/j.biomaterials.2009.09.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/09/2009] [Indexed: 11/25/2022]
Abstract
To minimize the cytotoxicity of poly (2-(dimethylamino) ethyl methacrylate) (PDMAEMA) as a gene delivery vector, we synthesized PEGylated PDMAEMA by atom transfer radical polymerization (ATRP). Here we report its effects on transfection efficiency in vitro delivered with a GFP expression plasmid and immunogenicity in vivo after complexed with a HIV gag gene DNA vaccine. mPEG(113)-b-PDMAEMA(94) was efficient in condensing DNA and formed polyplexes with an average diameter of about 150 nm. The in vitro transfection experiments demonstrated that PEGylation dramatically decreased the cytotoxicity at the N/P ratios above 30, although the transfection efficiency in vitro was reduced. Interestingly, mice in vivo vaccination study clearly showed that PEGylated PDMAEMA used as DNA delivery vector significantly improved the prime effect of DNA vaccine through intranasal administration. Importantly, PEGylated PDMAEMA was further proved its ability to induce cytokines production by murine macrophages. Overall, mPEG-b-PDMAEMA can be used as an efficient DNA vaccine vector which enhances adaptive immune responses by activating innate immunity.
Collapse
Affiliation(s)
- Yong Qiao
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang X, Lu B, Yu W, Fang Q, Liu L, Zhuang K, Shen T, Wang H, Tian P, Zhang L, Chen Z. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLoS One 2009; 4:e4180. [PMID: 19159014 PMCID: PMC2613559 DOI: 10.1371/journal.pone.0004180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 12/06/2008] [Indexed: 11/25/2022] Open
Abstract
Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels (∼2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (∼10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.
Collapse
Affiliation(s)
- Xiaoxing Huang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Bin Lu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Wenbo Yu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qing Fang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ke Zhuang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Tingting Shen
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Haibo Wang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Po Tian
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China
| | - Linqi Zhang
- AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Comprehensive AIDS Research Center, Tsinghua University, Beijing, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Schulte R, Suh YS, Sauermann U, Ochieng W, Sopper S, Kim KS, Ahn SS, Park KS, Stolte-Leeb N, Hunsmann G, Sung YC, Stahl-Hennig C. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques. Virology 2009; 383:300-9. [DOI: 10.1016/j.virol.2008.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/21/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|