1
|
Xie Z, Chen Y, Xie J, Du S, Chen R, Zheng Y, You B, Feng M, Liao M, Dai M. Construction with recombinant epitope-expressing baculovirus enhances protective effects of inactivated H9N2 vaccine against heterologous virus. Vet Microbiol 2025; 300:110337. [PMID: 39671758 DOI: 10.1016/j.vetmic.2024.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Although the use of inactivated vaccines has kept avian influenza (AI) outbreaks largely under control, they fail to prevent virus shedding. To enhance the efficacy of inactivated H9N2 AIV vaccines (InV), we constructed a multi-epitope recombinant baculovirus (BV-BNT) containing two B cell epitopes and nine T cell epitopes of H9N2 AIV for combined immunization with InV. The results showed that HI titer, IgG and IgM levels, and the percentage of B cells, CD4+ T cells, CD8+ T cells, and CD4+CD8+ T cells were significantly higher in the InV+BV-BNT immunization group than the InV immunization group. Besides, the expression levels of IL-1β, IFN-γ, IFN-α, IL-4, IL-13, and CXCLi1 were significantly higher in the InV+BV-BNT group than the InV group. Moreover, four conservative peptides (NP182-190, NP455-463, NS198-106, and NP380-393) significantly stimulated splenocytes to express IFN-γ in the InV+BV-BNT group instead of InV group. After heterologous virus challenging, the percentages of CD4+ T and CD8+ T cells were significantly upregulated in the InV+BV-BNT group compared to Inv group at 3 DPI. Viral loads in oropharyngeal of the InV+BV-BNT group was significantly lower than that in the InV group at 3 days post-infection (DPI). Furthermore, compared to the InV group, the virus positivity rate of oropharyngeal and cloacal swabs in the InV+BV-BNT group was lower at 5 DPI, with none positive at 7 DPI. Hence, this study indicated that the combined immunization of InV and BV-BNT could induce stronger humoral and cellular immune responses, shorten the detoxification period and reduce viral load compared to Inv alone, which suggests BV-BNT could act as a supplementary vaccine to potentially address the protection deficiency of the H9N2 inactivated vaccine.
Collapse
Affiliation(s)
- Zimin Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingyi Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Shanyao Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongmao Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuqin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Bowen You
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Min Feng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
4
|
Plastine MDP, Amalfi S, López MG, Gravisaco MJ, Taboga O, Alfonso V. Development of a stable Sf9 insect cell line to produce VSV-G pseudotyped baculoviruses. Gene Ther 2024; 31:187-194. [PMID: 38278988 DOI: 10.1038/s41434-024-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Baculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses. It was obtained by inserting the VSV-G gene under the control of the very strong and infection-inducible pXXL promoter and was subsequently diluted to establish oligoclonal lines, which were selected by the fusogenic properties of VSV-G and its expression levels in infected cells and purified budded virions. Next, to enhance the performance of the cell line, the infection conditions under which functional pseudotyped baculoviruses are obtained were optimized. Finally, different baculoviruses were pseudotyped and the expression of the transgene was quantified in mammalian cells of diverse origins using flow cytometry. The transduction efficiency of pseudotyped baculovirus consistently increased across all tested mammalian cell lines compared with control viruses. These findings demonstrate the feasibility and advantages of improving gene delivery performance without the need to insert the pseudotyping gene into the baculoviral genomes.
Collapse
Affiliation(s)
- María Del Pilar Plastine
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Sabrina Amalfi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222, Villa Tesei, Hurlingham, B1688GEZ, Buenos Aires, Argentina
| | - María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Hsu CY, Jang Y, Huang WR, Wang CY, Wen HW, Tsai PC, Yang CY, Munir M, Liu HJ. Development of Polycistronic Baculovirus Surface Display Vectors to Simultaneously Express Viral Proteins of Porcine Reproductive and Respiratory Syndrome and Analysis of Their Immunogenicity in Swine. Vaccines (Basel) 2023; 11:1666. [PMID: 38005998 PMCID: PMC10674950 DOI: 10.3390/vaccines11111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
To simultaneously express and improve expression levels of multiple viral proteins of a porcine reproductive and respiratory syndrome virus (PRRSV), polycistronic baculovirus surface display vectors were constructed and characterized. We engineered polycistronic baculovirus surface display vectors, namely, pBacDual Display EGFP(BacDD)-2GP2-2GP4 and pBacDD-4GP5N34A/N51A (mtGP5), which simultaneously express and display the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP4-gp64TM-CTD, and His-tagged mtGP5-gp64TM-CTD fusion proteins of PRRSV on cell membrane of Sf-9 cells. Specific pathogen-free (SPF) pigs were administered intramuscularly in 2 doses at 21 and 35 days of age with genetic recombinant baculoviruses-infected cells. Our results revealed a high level of ELISA-specific antibodies, neutralizing antibodies, IL-4, and IFN-γ in SPF pigs immunized with the developed PRRSV subunit vaccine. To further assess the co-expression efficiency of different gene combinations, pBacDD-GP2-GP3-2GP4 and pBacDD-2mtGP5-2M constructs were designed for the co-expression of the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP3-gp64TM-CTD, and His-tagged GP4-gp64TM-CTD proteins as well as the ectodomain of His-tagged mtGP5-gp64TM-CTD and His-tagged M-gp64TM-CTD fusion proteins of PRRSV. To develop an ELISA assay for detecting antibodies against PRRSV proteins, the sequences encoding the ectodomain of the GP2, GP3, GP4, mtGP5, and M of PRRSV were amplified and subcloned into the pET32a vector and expressed in E. coli. In this work, the optimum conditions for expressing PRRSV proteins were evaluated, and the results suggested that 4 × 105 of Sf-9 cells supplemented with 7% fetal bovine serum and infected with the recombinant baculoviruses at an MOI of 20 for three days showed a higher expression levels of the protein. Taken together, the polycistronic baculovirus surface display system is a useful tool to increase expression levels of viral proteins and to simultaneously express multiple viral proteins of PRRSV for the preparation of subunit vaccines.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun Jang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Shi D, Fan B, Sun B, Zhou J, Zhao Y, Guo R, Ma Z, Song T, Fan H, Li J, Li L, Li B. LDH nanoparticle adjuvant subunit vaccine induces an effective immune response for porcine epidemic diarrhea virus. Virology 2022; 565:58-64. [PMID: 34739917 DOI: 10.1016/j.virol.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Porcine Epidemic Diarrhea (PED) is a highly contagious intestinal disease which mostly caused by Porcine Epidemic Diarrhea Virus (PEDV). The PED has caused huge economic losses to the pig industry all over the world and a valid PEDV vaccine is needed to prevent the infection. In this study, we constructed expression plasmid based on the spike (S) gene of the epidemic PEDV strain. The recombinant eukaryotic S (Se) and prokaryotic S (Sp) subunit proteins were expressed and purified as vaccine antigens. We designed a new subunit vaccine based on S proteins, adjuvanted with layered double hydroxide (LDH). The results indicated that the LDH adjuvanted subunit vaccines induced a better immune effect in terms of antibody level and cellular immune response. In conclusion, this study showed a new design of a PEDV subunit vaccine with nanotechnology and demonstrated the potential for its clinical application.
Collapse
Affiliation(s)
- Danyi Shi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China
| | - Zengjun Ma
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China
| | - Li Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; 5College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-gang, Nanjing, 210095, China.
| |
Collapse
|
7
|
Xu W, Du S, Li T, Wu S, Jin N, Ren L, Li C. Generation and Evaluation of Recombinant Baculovirus Coexpressing GP5 and M Proteins of Porcine Reproductive and Respiratory Syndrome Virus Type 1. Viral Immunol 2021; 34:697-707. [PMID: 34935524 DOI: 10.1089/vim.2021.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of the porcine reproductive and respiratory syndrome, which is one of the most economically devastating diseases of the swine industry. However, whether the inactivated vaccine and modified live attenuated vaccines are effective in disease control is still controversial. Although several groups developed PRRSV virus-like particles (VLPs) as a vaccine against PRRSV, all these VLP-based vaccines targeted PRRSV-2, but not PRRSV-1 or both. Therefore, it is urgent to produce VLPs against PRRSV-1. In this study, we rescued recombinant baculovirus expressing GP5 and M proteins of PRRSV-1 through the Bac-to-Bac® baculovirus expression system. Thereafter, PRRSV VLP was obtained efficiently in the recombinant baculovirus-infected High Five insect cells. Moreover, the PRRSV VLP and PRRSV VLP+A5 could efficiently trigger specific humoral immune responses and B cellular immune responses through intranasal immunization. The combination of PRRSV VLP and A5 adjuvant could improve the level of the immune response. The PRRSV-1 VLPs generated in this study have greater potential for vaccine development to control PRRSV-1 infection.
Collapse
Affiliation(s)
- Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Tiyuan Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shipin Wu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
8
|
Liu P, Bai Y, Jiang X, Zhou L, Yuan S, Yao H, Yang H, Sun Z. High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Vet Microbiol 2018; 227:133-142. [PMID: 30473344 DOI: 10.1016/j.vetmic.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Modified live vaccine (MLV) based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is prone to quick reversion of virulence upon circulating in host animals. The objective of this study was to evaluate the virulence reversion potential of HP-PRRSV MLV and to identify elements within the HP-PRRSV genome contributing to this phenomenon. A blind passage, cell-adaptation strategy was attempted to attenuate a HP-PRRSV strain JX143, which was isolated during the atypical PRRS outbreak in 2006. Two attenuated candidates passage 87 (JXM87) and passage 105 (JXM105) used as MLVs showed the best balance of safety and efficacy in 4 week-old piglets (unpublished data). Two studies were performed during which the candidates were assessed for reversion to virulence through five back passages in susceptible piglets (21 ± 3 days of age). Both study results showed increase in clinical signs, pyrexia and lung lesions as well as decreased average daily weight gain as of passage 3 in susceptible pigs clearly, and it indicated that both candidates regained virulence, irrespective of the passage level. Increase in respective parameters was accompanied by increase in viremia in piglets: JXM87 virus titer increased from Passage 1 (P1) 4.40 Lg TCID50/mL to P4 5.75 Lg TCID50/mL, and JXM105 virus titer increased from P1 3.78 Lg TCID50/mL to P4 6.42 Lg TCID50/mL. Next generation sequencing (NGS) was performed on clinical samples (serum, lung tissue) from P4 animals. Sequence analysis comparing P4 materials with their parental strains revealed 10 amino acid mutations in 4 proteins for JXM87 and 14 amino acid mutations in 9 proteins for JXM105, respectively. Interestingly, five amino acid mutations were identical for the two candidates, which were located in nsp1β, GP5a and nsp10 coding regions, suggesting nsp1β, GP5a and nsp10 could contribute to virulence in HP-PRRSV.
Collapse
Affiliation(s)
- Ping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China; Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Yajun Bai
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Xiaohong Jiang
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Lei Zhou
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Shishan Yuan
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China.
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China.
| |
Collapse
|
9
|
Hu P, Chen X, Huang L, Liu S, Zang F, Xing J, Zhang Y, Liang J, Zhang G, Liao M, Qi W. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system. PeerJ 2017; 5:e3514. [PMID: 28740748 PMCID: PMC5522605 DOI: 10.7717/peerj.3514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/07/2017] [Indexed: 01/19/2023] Open
Abstract
In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS.
Collapse
Affiliation(s)
- Pingsheng Hu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoming Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Huang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shukai Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fuyu Zang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinchao Xing
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Youyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaqi Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
10
|
El-Mogy MA, Abdalla MA, Misic V, Haj-Ahmad Y. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells. J Genet Eng Biotechnol 2017; 15:211-217. [PMID: 30647657 PMCID: PMC6296590 DOI: 10.1016/j.jgeb.2017.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 02/27/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
The adenovirus major late promoter (MLP) and its translational regulator - the tripartite leader (TPL) sequence - can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie) promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO) cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds) than translation (11 folds). Even with adenovirus infection to provide additional elements (in trans), CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.
Collapse
Key Words
- Adenovirus
- CHO, Chinese hamster ovary
- CMVie promoter/enhancer
- CMVie, cytomegalovirus immediate early
- GFP, green fluorescence proteins
- IRES, internal ribosome entry site
- MLP
- MLP, major late promoter
- MOI, multiplicity of infection
- PFU, plaque forming unit
- RFU, relative fluorescence units
- TPL
- TPL, tripartite leader
- Transgene expression
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Mohamed A. El-Mogy
- Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
- Corresponding author at: Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt.
| | - Moemen A.K. Abdalla
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Vanja Misic
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Yousef Haj-Ahmad
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
11
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
12
|
Du L, Li B, Pang F, Yu Z, Xu X, Fan B, Tan Y, He K, Huang K. Porcine GPX1 enhances GP5-based DNA vaccination against porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2016; 183:31-39. [PMID: 28063474 DOI: 10.1016/j.vetimm.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/12/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been causing huge economic losses to the swine industry worldwide. Commercial PRRSV vaccines including killed and modified live ones are available. However the protective efficacy of these vaccines is incomplete. Thus, it is in urgent need to develop safer and more effective PRRSV vaccines. In this study, we constructed a recombinant plasmid co-expressing porcine glutathione peroxidase-1 (GPX1) and the envelope glycoprotein (GP5) encoding-gene of PRRSV (pcDNA3.1-GPX1-LSynORF5), and investigated the immune response induced following inoculation of mice and piglets. Significantly enhanced GP5-specific antibody, PRRSV-specific neutralizing antibody, IFN-γ level, as well as lymphocyte proliferation response, were induced in mice and pigs immunized with the DNA construct encoding GPX1 and GP5 compared with those inoculated with a construct encoding PRRSV GP5 only (pcDNA3.1-SynORF5). The enhanced cellular immune response in pigs induced by pcDNA3.1-GPX1-LSynORF5 was comparable to that induced by the attenuated virus vaccine JXA1-R, although the humoral immune response induced by the plasmid was much lower than the response induced by JXA1-R. Following the challenge with highly pathogenic PRRSV, less-severe clinical signs and rectal temperatures were observed in pigs immunized with the GPX1-GP5 construct compared with the control group. However, the viraemia of groups immunized with plasmid was more severe than that inoculated with JXA1-R, and it is likely that this could be attributed to the poor humoral response induced by the GPX1-GP5 construct. These results demonstrated that inclusion of GPX1 in a PRRSV DNA vaccine leads to an adjuvant effect, enhancing the humoral and cellular responses following vaccination.
Collapse
Affiliation(s)
- Luping Du
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Fengjiao Pang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Xiangwei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Yeping Tan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Nanjing, 210014 Jiangsu Province, China; Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009 Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-gang, Nanjing 210095, China.
| |
Collapse
|
13
|
Abstract
Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
14
|
Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition. J Virol Methods 2016; 236:77-86. [PMID: 27435337 DOI: 10.1016/j.jviromet.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/03/2023]
Abstract
The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus.
Collapse
|
15
|
Shi Y, Xiang J, Zhou G, Ron TB, Tong HI, Kang W, Sun S, Lu Y. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:349-358. [PMID: 27177910 DOI: 10.1007/s10126-016-9700-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.
Collapse
Affiliation(s)
- Yingli Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Guangzhou Zhou
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tetsuzan Benny Ron
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Hsin-I Tong
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Wen Kang
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Si Sun
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
16
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
17
|
Kolangath SM, Basagoudanavar SH, Hosamani M, Saravanan P, Tamil Selvan RP. Baculovirus mediated transduction: analysis of vesicular stomatitis virus glycoprotein pseudotyping. Virusdisease 2014; 25:441-6. [PMID: 25674620 DOI: 10.1007/s13337-014-0229-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022] Open
Abstract
The recombinant baculoviruses were constructed to investigate the necessity of VSV-G pseudotyping for mammalian cell transduction. The viruses were designed to express green fluorescent protein (GFP) gene under the control of cytomegalovirus promoter, with or without pseudotyping with VSV-G. VSV-G was placed under the control of polyhedrin promoter that is recognized by insect cells, allowing the formation of pseudotyped baculovirus. The study findings demonstrate that the pseudotyping of baculovirus significantly enhanced transduction efficiency compared to non-pseudotyped baculovirus, resulting in consequent distinction in the expression of GFP in mammalian cells. The results confirmed that pseudotyping is important for baculovirus mediated gene delivery. Further, when full-length VSV-G pseudotyping was compared with truncated VSV-G containing GED domain (G-stem of ectodomain in conjunction with the TM and CT domains of the glycoprotein), latter was relatively less efficient in transducing mammalian cells. This study demonstrated that pseudotyping with full-length VSV-G had better transduction efficiency in mammalian cells. However, at higher multiplicity of infection, both full-length and truncated VSV-G showed equivalent transduction. This study established the significance of pseudotyping of baculovirus with full-length VSV-G for efficient transduction of mammalian cells, utilizing the highly sensitive GFP marker system. These findings have significant implications in designing of baculovirus vector based antigen delivery for developing new generation vaccines.
Collapse
Affiliation(s)
- Sujit M Kolangath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bangalore, 560 024 India
| | - S H Basagoudanavar
- ICAR-Indian Veterinary Research Institute, Hebbal, Bangalore, 560 024 India
| | - M Hosamani
- ICAR-Indian Veterinary Research Institute, Hebbal, Bangalore, 560 024 India
| | - P Saravanan
- ICAR-Indian Veterinary Research Institute, Hebbal, Bangalore, 560 024 India
| | - R P Tamil Selvan
- ICAR-Indian Veterinary Research Institute, Hebbal, Bangalore, 560 024 India
| |
Collapse
|
18
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Construction and immunogenicity of DNA vaccines encoding fusion protein of porcine IFN- λ 1 and GP5 gene of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2013; 2013:318698. [PMID: 24490154 PMCID: PMC3884778 DOI: 10.1155/2013/318698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the catastrophic economic losses in pig industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. Thus, the focus and direction is to develop safer and more effective vaccines in the research field of PRRS. The immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. IFN-λ1 belongs to type III interferon, a new interferon family. IFN-λ1 is an important cytokine with multiple functions in innate and acquired immunity. In this study, porcine IFN-λ1 (PoIFN-λ1) was evaluated for its adjuvant effects on the immunity of a DNA vaccine carrying the GP5 gene of PRRSV. Groups of mice were immunized twice at 2-week interval with 100 μg of the plasmid DNA vaccine pcDNA3.1-SynORF5, pcDNA3.1-PoIFN-λ1-SynORF5, and the blank vector pcDNA3.1, respectively. The results showed that pcDNA3.1-PoIFN-λ1-SynORF5 can significantly enhance GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, and lymphocyte proliferation rather than the responses induced by pcDNA3.1-SynORF5. Therefore, type III interferon PoIFN-λ1 could enhance the immune responses of DNA vaccine of PRRSV, highlighting the potential value of PoIFN-λ1 as a molecular adjuvant in the prevention of PRRSV infection.
Collapse
|
21
|
Karuppannan AK, Qiang J, Chang CC, Kwang J. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response. Vaccine 2013; 31:5471-8. [PMID: 24035590 DOI: 10.1016/j.vaccine.2013.08.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.
Collapse
Affiliation(s)
- Anbu K Karuppannan
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai 600051, India
| | | | | | | |
Collapse
|
22
|
Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 2013; 158:1275-85. [PMID: 23392631 PMCID: PMC4126520 DOI: 10.1007/s00705-013-1612-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/09/2012] [Indexed: 01/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces reproductive failure in sows and respiratory problems in pigs of all ages. Live attenuated and inactivated vaccines are used on swine farms to control PRRSV. However, their protective efficacy against field strains of PRRSV remains questionable. New vaccines have been developed to improve the efficacy of these traditional vaccines. In this study, virus-like particles (VLPs) composed of the GP5 and M proteins of PRRSV were developed, and the capacity of the VLPs to elicit antigen-specific immunity was evaluated. Serum antibody titers and production of cytokines were measured in BALB/C mice immunized intramuscularly three times with different doses (0.5, 1.0, 2.0, and 4.0 μg) of the VLP vaccine. A commercial vaccine consisting of inactivated PRRSV and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. IgG titers to GP5 were significantly higher in all groups of mice vaccinated with the VLPs than in control mice. Neutralizing antibodies were only detected in mice vaccinated with 2.0 and 4.0 μg of the VLPs. Cytokine levels were determined in cell culture supernatants after in vitro stimulation of splenocytes with the VLPs for 3 days. Mice immunized with 4.0 μg of the VLPs produced a significantly higher amount of interferon-gamma (IFN-γ) than mice immunized with the commercial inactivated PRRSV vaccine and PBS. In contrast, immunization with the commercial vaccine induced higher production of IL-4 and IL-10 in mice than mice vaccinated with VLPs. These data together demonstrate the capacity of VLPs to induce both neutralizing antibodies and IFN-γ in immunized mice. The VLP vaccine developed in this study could serve as a platform for the generation of improved VLP vaccines to control PRRSV.
Collapse
Affiliation(s)
- Hae-Mi Nam
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kyung-Sil Chae
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Nak-Hyung Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Kun-Ho Seo
- Department of Public Health, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | - Sang-Moo Kang
- Department of Biology, Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea; Department of Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
23
|
Argilaguet JM, Pérez-Martín E, López S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res 2013; 98:61-5. [PMID: 23428670 DOI: 10.1016/j.antiviral.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development.
Collapse
Affiliation(s)
- Jordi M Argilaguet
- Centre de Recerca en Sanitat Animal-CReSA, UAB-IRTA, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cross-protective efficacy of bivalent recombinant baculoviral vaccine against heterologous influenza H5N1 challenge. Vaccine 2013; 31:1385-92. [PMID: 23328313 DOI: 10.1016/j.vaccine.2013.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 11/22/2022]
Abstract
The present study demonstrates the cross-protective efficacy of baculovirus displayed HAs of A/Indonesia/669/06 and A/Anhui/01/05 against heterologous H5N1 challenges in a mouse model. Mice orally or subcutaneously immunized with live bivalent-BacHA vaccine significantly induced higher HA-specific humoral and cellular immune responses when compared with inactivated bivalent-BacHA. In addition, oral administration of live bivalent-BacHA vaccine was able to induce significant level of antigen-specific mucosal IgA levels. Microneutralization assay indicated that live bivalent-BacHA vaccine was able to induce strong cross-clade neutralization titer against distinct H5N1 clades (1, 2.1.3, 2.2.1.1, 2.3.2, 2.3.4, 4, 7 and 9). The production of both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) by splenocytes from vaccinated mice indicated that mice vaccinated orally or subcutaneously with live bivalent-BacHA stimulated both IFN-γ secreting Th1 cells and IL-4 secreting Th2 cells, whereas mice immunized subcutaneously with inactive adjuvanted bivalent-BacHA stimulated only IL-4 secreting Th2 cells. Cross-protective immunity study also showed that mice immunized either orally or subcutaneously with live bivalent-BacHA were completely protected against 5MLD50 of clade 1 and clade 2.2.1.1 H5N1 viral infections. The protective immune response elicited by bivalent-BacHA vaccine against H5N1 variants demonstrates the possibility of protection against a broad range of H5N1 strains.
Collapse
|
25
|
Wu Q, Xu F, Fang L, Xu J, Li B, Jiang Y, Chen H, Xiao S. Enhanced immunogenicity induced by an alphavirus replicon-based pseudotyped baculovirus vaccine against porcine reproductive and respiratory syndrome virus. J Virol Methods 2012. [PMID: 23201089 DOI: 10.1016/j.jviromet.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudotyped baculovirus has emerged as a promising vector for vaccine development and gene therapy. Alphaviruses, such as Semliki Forest virus (SFV), have also received considerable attention for use as expression vectors because of their self-replicating properties. In this study, pseudotyped baculovirus containing the hybrid cytomegalovirus (CMV) promoter/SFV replicon was used as a vector to co-express the GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV). The immunogenicity of the resulting recombinant baculovirus (BV-SFV-5m6) was compared with the pseudotyped baculovirus vaccine (BV-CMV-5m6), in which the expression of GP5 and M were driven by the CMV promoter only. In vitro, BV-SFV-5m6 exhibited enhanced expression of foreign proteins and also caused apoptosis in transduced cells. After immunization in BALB/c mice, BV-SFV-5m6 induced strong GP5-specific ELISA antibodies and neutralizing antibodies against homologous and heterologous viruses, along with dose sparing. Further analysis of the cell-mediated immune response showed that BV-SFV-5m6 elicited a Th1-dominant immune response that was greater than that elicited by BV-CMV-5m6. Taken together, the results of this study indicate that a baculovirus containing the hybrid CMV promoter/alphavirus replicon can be utilized as an alternative strategy to develop an efficacious vaccine against PRRSV infection.
Collapse
Affiliation(s)
- Qunfeng Wu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang W, Chen X, Xue C, Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H, Cao Y. Production and immunogenicity of chimeric virus-like particles containing porcine reproductive and respiratory syndrome virus GP5 protein. Vaccine 2012; 30:7072-7. [PMID: 23036496 DOI: 10.1016/j.vaccine.2012.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 01/28/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat in swine industry and causes heavy economic losses worldwide. Currently, the available vaccines are the inactivated and attenuated virus vaccines, but the use of PRRSV in their production raises the issue of safety. We developed a chimeric virus-like particles (VLPs) vaccine candidate for PRRSV protection. The chimeric VLPs was composed of M1 protein from H1N1 influenza virus and a fusion protein, denoted as NA/GP5, containing the cytoplasmic and transmembrane domains of H1N1 virus NA protein and PRRSV GP5 protein. Vaccination of BALB/c mice with 10 μg of chimeirc VLPs by intramuscular immunization stimulated antibody responses to GP5 protein, and induced cellular immune response. The data suggested that the chimeric VLP vaccine candidate may provide a new strategy for further development of vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu B, Ye J, Lu P, Jiang R, Yang X, Fu ZF, Chen H, Cao S. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus. Virol J 2012; 9:132. [PMID: 22799608 PMCID: PMC3424137 DOI: 10.1186/1743-422x-9-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/16/2012] [Indexed: 02/10/2023] Open
Abstract
Background West Nile Virus (WNV) is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM) and envelope (E) proteins under the cytomegalovirus (CMV) promoter with or without vesicular stomatitis virus glycoprotein (VSV/G) were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse) induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ) in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.
Collapse
Affiliation(s)
- Bibo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Baculovirus is extensively utilized as an excellent tool for production of recombinant protein in insect cells. Baculovirus infects insects in nature and is non-pathogenic to humans. In addition to insect cells, baculovirus is capable of transducing a broad range of animal cells. Due to its biosafety, large cloning capacity, low cytotoxicity, and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has been utilized as RNA interference mediators, gene delivery vectors, and vaccine vectors for a wide variety of applications. This article focuses on the utilization of baculoviruses as vaccine vectors to prepare antigen or subunit vaccines.
Collapse
Affiliation(s)
- Hsin-Yu Lu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | |
Collapse
|
29
|
Hu ZP, Yin J, Zhang YY, Jia SY, Chen ZJ, Zhong J. Characterization of the immune responses elicited by baculovirus-based vector vaccines against influenza virus hemagglutinin. Acta Pharmacol Sin 2012; 33:783-90. [PMID: 22562016 PMCID: PMC4010374 DOI: 10.1038/aps.2012.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To compare the specific immune responses elicited by different baculovirus vectors in immunized mice. METHODS We constructed and characterized two recombinant baculoviruses carrying the expression cassette for the H5N1 influenza virus hemagglutinin (HA) gene driven by either an insect cell promoter (vAc-HA) or a dual-promoter active both in insect and mammalian cells (vAc-HA-DUAL). Virus without the HA gene (vAc-EGFP) was used as a control. These viruses were used to immunize mice subcutaneously and intraperitoneally. The production of total and specific antibodies was determined by ELISA and competitive ELISA. Cytokine production by the spleen cells of immunized mice was studied using the ELISPOT assay. RESULTS Both the vAc-HA and vAc-HA-DUAL vectors expressed HA proteins in insect Sf9 cells, and HA antigen was present in progeny virions. The vAc-HA-DUAL vector also mediated HA expression in virus-transduced mammalian cell lines (BHK and A547). Both vAc-HA and vAc-HA-DUAL exhibited higher transduction efficiencies than vAc-EGFP in mammalian cells, as shown by the expression of the reporter gene egfp. Additionally, both vAc-HA and vAc-HA-DUAL induced high levels of HA-specific antibody production in immunized mice; vAc-HA-DUAL was more efficient in inducing IFN-γ and IL-2 upon stimulation with specific antigen, whereas vAc-HA was more efficient in inducing IL-4 and IL-6. CONCLUSION Baculovirus vectors elicited efficient, specific immune responses in immunized mice. The vector displaying the HA antigen on the virion surface (vAc-HA) elicited a Th2-biased immune response, whereas the vector displaying HA and mediating HA expression in the cell (vAc-HA-DUAL) elicited a Th1-biased immune response.
Collapse
|
30
|
Fang R, Feng H, Hu M, Khan MK, Wang L, Zhou Y, Zhao J. Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 2012; 187:140-6. [DOI: 10.1016/j.vetpar.2011.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
31
|
Xu XG, Wang ZS, Zhang Q, Li ZC, Ding L, Li W, Wu HY, Chang CD, Lee LH, Tong DW, Liu HJ. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2. J Virol Methods 2011; 179:359-66. [PMID: 22172969 DOI: 10.1016/j.jviromet.2011.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
Abstract
The GP5 glycoprotein of PRRSV is the main target for inducing neutralizing antibodies and protective immunity in the natural host. The capsid (Cap) protein is the major immunogenic protein and associated with the production of PCV2-specific neutralizing antibodies. In the present study, one genetic recombinant baculovirus BacSC-Dual-GP5-Cap was constructed. This virus displays simultaneously histidine-tagged GP5 and Cap proteins with the baculovirus glycoprotein gp64 TM and CTD on the virion surface as well as the surface of the virus-infected cells. After infection, the GP5 and Cap proteins were expressed and anchored simultaneously on the plasma membrane of Sf-9 cells, as revealed by Western blot and confocal microscopy. This report demonstrated first that both GP5 and Cap proteins were displayed successfully on the viral surface, revealed by immunogold electron microscopy. Vaccination of swine with recombinant baculovirus BacSC-Dual-GP5-Cap elicited significantly higher GP5 and Cap ELISA antibody titers in swine than the control groups. Virus neutralization test also showed that serum from the BacSC-Dual-GP5-Cap treated swine had significant levels of virus neutralization titers. Lymphocyte proliferation responses could be induced in swine immunized with BacSC-Dual-GP5-Cap than the control groups. These findings demonstrate that the BacSC-Dual-GP5-Cap bivalent subunit vaccine can be a potential vaccine against PRRSV and PCV2 infections.
Collapse
Affiliation(s)
- Xin-Gang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin W, Fan H, Cheng X, Ye Y, Chen X, Ren T, Qi W, Liao M. A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice. Virol J 2011; 8:273. [PMID: 21639929 PMCID: PMC3120790 DOI: 10.1186/1743-422x-8-273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian influenza viruses of H9N2 subtype have become highly prevalent in avian species. Although these viruses generally cause only mild to moderate disease, they can infect a wide variety of species, including chickens, quail, turkeys, ducks, geese, pheasant, partridge, and pigeon, even transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. RESULTS The results showed that stronger immune responses were induced in a mouse model immunized with BV-Dual-HA than in those vaccinated with a DNA vaccine encoding the same antigen. Moreover, complete protection against lethal challenge with H9N2 virus was observed in mice. CONCLUSION BV-Dual-HA could be utilized as a vaccine candidate against H9N2 virus infection.
Collapse
Affiliation(s)
- Wenyao Lin
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
34
|
Cao Y, Lu Z, Sun P, Fu Y, Tian F, Hao X, Bao H, Liu X, Liu Z. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-cell immunogen shows enhanced immunogenicity in mice. Virol J 2011; 8:77. [PMID: 21342530 PMCID: PMC3050825 DOI: 10.1186/1743-422x-8-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 02/23/2011] [Indexed: 01/17/2023] Open
Abstract
Background Foot-and-mouth disease (FMD) is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV) under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE), and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA) and indirect sandwich-ELISA (IS-ELISA) showed both recombinant baculoviruses (with or without T-cell epitopes) were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ). Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P < 0.01) and higher neutralizing antibody titer (P < 0.05). Although the inactivated vaccine produced the highest titer of neutralizing antibodies, a lower IFN-γ expression was observed compared to the two recombinant pseudotype baculoviruses. Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.
Collapse
Affiliation(s)
- Yimei Cao
- Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Xujiaping No 1, Yanchangpu, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet Immunol Immunopathol 2010; 135:234-42. [PMID: 20053461 DOI: 10.1016/j.vetimm.2009.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/04/2009] [Accepted: 12/13/2009] [Indexed: 12/13/2022]
Abstract
The aim of the study was to evaluate the immunogenicity of the ORF5-encoded major envelop glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) expressed in tobacco plant as a potential pig oral vaccine in protection against PRRSV infection. Six-week-old PRRSV-free pigs were fed four times orally with 50g of chopped fresh GP5 transgenic tobacco leaves (GP5-T) (GP5 reaching 0.011% of total soluble protein) or wild-type tobacco leaves (W-T) each on days 0, 14, 28, and 42. Samples of serum, saliva, and peripheral blood mononuclear cells (PBMCs) were collected on days -1, 6, 13, 20, 27, 34, 41, and 48 after the initial oral vaccination. A similar vaccination-dependent gradual increase in the responses of serum and saliva anti-PRRSV total IgG and IgA, respectively, and in the levels of PRRSV-specific blastogenic response of PBMCs was seen in GP5-T-treated pigs; all statistically significant elevations occurred after the 2nd vaccination and were revealed after 20 days post-initial oral vaccination (DPIOV). Pigs fed on GP5-T also developed serum neutralizing antibodies to PRRSV at a titer of 1:4-1:8 after the 4th vaccination by 48 DPIOV. No detectable anti-PRRSV antibody responses and PRRSV-specific blastogenic response were seen in W-T-treated pigs. The present study has demonstrated that pigs fed on GP5-T could develop specific mucosal as well as systemic humoral and cellular immune responses against PRRSV. The results also support that transgenic plant as GP5-T can be an effective system for oral delivery of recombinant subunit vaccines in pigs.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Base Sequence
- Bioreactors
- DNA, Viral/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Lymphocyte Activation
- Male
- Plants, Genetically Modified
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/prevention & control
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Saliva/immunology
- Sus scrofa
- Swine
- Nicotiana/genetics
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Vet Microbiol 2010; 146:189-99. [PMID: 20570063 DOI: 10.1016/j.vetmic.2010.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/26/2010] [Accepted: 05/03/2010] [Indexed: 01/13/2023]
Abstract
The heterodimer of glycoprotein 5 (GP5) and non-glycosylated matrix protein (M) is the leading target for the development of new generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) infection. It has been demonstrated that DNA vaccine co-expressing GP5 and M proteins as a fusion protein aroused better immunogenicity than that expressing GP5 or M alone, but it was no better than the DNA vaccine co-expressing GP5 and M proteins with two different promoters. Altered natural conformation of the co-expressed GP5 and M fusion protein was considered as the major cause. Glycine-proline-glycine-proline (GPGP) linker can minimize the conformational changes in tertiary structure and provide flexibility of the peptide chain. The objective of this study was to evaluate whether the immunogenicity of DNA constructs co-expressing GP5 and M proteins linked by GPGP could be enhanced in pigs. Three recombinant DNA constructs expressing GP5/M fusion protein without GPGP linker (pcDNA-56), GP5/M fusion protein conjugated by GPGP linker (pcDNA-5L6), and M/GP5 fusion protein conjugated by GPGP linker (pcDNA-6L5) were established. Sixteen PRRSV-free pigs were randomly assigned to four groups and inoculated intramuscularly with 3 consecutive doses of 500 μg of empty vector pcDNA3.1, pcDNA-56, pcDNA-5L6 or pcDNA-6L5 each at a 2-week interval followed by challenge with 5 × 10(5) TCID(50) PRRSV at 3 weeks after the final inoculation. All pcDNA-56-, pcDNA-5L6-, and pcDNA-6L5- but not pcDNA-3.1-inoculated pigs developed neutralizing antibodies (NAs) 3 weeks after the final inoculation and a gradual increase in NA titers after PRRSV challenge, indicating that pigs inoculated with these DNA constructs could establish a sufficient immune memory. The pcDNA-5L6- and pcDNA-6L5-inoculated pigs displayed lower level and shorter period of viremia and lower tissue viral load following PRRSV challenge than did the pcDNA-56-inoculated pigs. The strategy of co-expressing GPGP-linked GP5 and M fusion protein may be a promising approach for future PRRSV vaccine development, possibly via the improvement of natural conformation of the target fusion protein.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fang R, Feng H, Nie H, Wang L, Tu P, Song Q, Zhou Y, Zhao J. Construction and immunogenicity of pseudotype baculovirus expressing Toxoplasma gondii SAG1 protein in BALB/c mice model. Vaccine 2009; 28:1803-7. [PMID: 20018269 DOI: 10.1016/j.vaccine.2009.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/20/2009] [Accepted: 12/01/2009] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii is a protozoan parasite causing toxoplasmosis to almost one-third of population all over the world. One of the most efficient ways to control this disease is immunization. However, so far, there is no effective vaccine available against this pathogen. Recently, a baculovirus pseudotype with vesicular stomatitis virus G protein (Bac-VSV-G) was found to efficiently transduce and express transgenes on mammalian cells, so it was considered as an excellent expressing vector. In this study, the value of Bac-VSV-G in delivering T. gondii antigen was investigated. T. gondii SAG1 gene was cloned into Bac-VSV-G, and recombinant baculovirus BV-G-SAG1 was obtained. Indirect immunofluorescence test showed BV-G-SAG1 was efficiently transduced and expressed in pig kidney cells. Then BALB/c mice were immunized with BV-G-SAG1 at different doses (1 x 10(8), 1 x 10(9), and 1 x 10(10)PFU/mouse) and challenged with T. gondii RH strain tachyzoites after immunization. The levels of specific T. gondii antibody, interferon (IFN)-gamma, IL-4, IL-10 expression and release, and the survival rate of treated mice were evaluated. Compared with the mice immunized with DNA vaccine (pcDNA/SAG1) encoding the same gene, BV-G-SAG1 induced higher levels of specific T. gondii antibody and (IFN)-gamma expression with dose-dependent manner and the survival rate of mice with BV-G-SAG1 was significantly improved. These results indicated that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop new generation of vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Syed Musthaq S, Madhan S, Sahul Hameed A, Kwang J. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 2009; 391:315-24. [DOI: 10.1016/j.virol.2009.06.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/24/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
|
39
|
Li M, Wang YF, Wang Y, Gao H, Li N, Sun Y, Liang BB, Qiu HJ. Immune responses induced by a BacMam virus expressing the E2 protein of classical swine fever virus in mice. Immunol Lett 2009; 125:145-50. [DOI: 10.1016/j.imlet.2009.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/28/2009] [Accepted: 07/01/2009] [Indexed: 01/31/2023]
|
40
|
Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 2009; 164:134-40. [PMID: 19592172 DOI: 10.1016/j.vetpar.2009.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/03/2009] [Accepted: 06/11/2009] [Indexed: 11/18/2022]
Abstract
To evaluate the protective efficiency of a suicidal DNA vaccine against protozoal parasite Toxoplasma gondii, the microneme protein 3 (MIC3) gene was cloned into suicidal vector pSCA1 and conventional DNA vaccine vector pcDNA3.1+ respectively, their protection against T. gondii challenge were assessed in this study. The recombinant plasmids named pSCA/MIC3 and pcDNA/MIC3 were transfected into BHK-21 cells. The expression of MIC3 in BHK-21 cells was confirmed by RT-PCR and indirect immunofluorescence test. Then BALB/c mice were immunized with pSCA/MIC3 or pcDNA/MIC3. Anti-Tg-MIC3 antibodies were detected by indirect ELISA and the cell immune response were examined by lymphocyte proliferation assay and real time RT-PCR. The results showed that the titre of anti-Tg-MIC3 antibodies, stimulation index (SI) of lymphocyte proliferation response and IFN-gamma expression level induced by pSCA/MIC3 and pcDNA/MIC3 were significantly higher than controls (P<0.05), whereas IL-4 expression level in BALB/c mice immunized with either pSCA/MIC3 or pcDNA/MIC3 was lower than that in control group. After a lethal challenge against T. gondii, survival time of the mice immunized with this suicidal DNA vaccine pSCA/MIC3 and conventional DNA vaccine pcDNA/MIC3 were significantly prolonged in comparison with the control groups (P<0.05), but the difference of protective immune response in BALB/c mice between pSCA/MIC3 and pcDNA/MIC3 was not statistically significant (P>0.05). The findings demonstrated that like conventional DNA vaccine pcDNA/MIC3, suicidal DNA vaccine pSCA/MIC3 also provided favourable efficacy, but it could improve the biosafety of conventional vaccines. This result suggested that suicidal DNA vaccine pSCA/MIC3 is a potential candidate vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu Q, Fang L, Wu X, Li B, Luo R, Yu Z, Jin M, Chen H, Xiao S. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol Immunol 2009; 46:2210-7. [PMID: 19446339 DOI: 10.1016/j.molimm.2009.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/12/2009] [Accepted: 04/16/2009] [Indexed: 12/22/2022]
Abstract
Baculovirus has emerged recently as a novel and attractive gene delivery vehicle for mammalian cells. In this study, baculovirus pseudotyped with vesicular stomatitis virus glycoprotein was used as a vector to express the hemagglutinin (HA) protein of highly pathogenic H5N1 avian influenza virus, A/Chicken/Hubei/327/2004 (HB/327). The resultant recombinant baculovirus (BV-G-HA) mediated gene delivery and HA expression efficiently in mammalian cells. Mice immunized with 1 x 10(9)PFU of BV-G-HA developed significantly higher levels of H5-specific antibodies and cellular immunity than those that received 100 microg of DNA vaccines expressing HA, and were completely protected from lethal challenge with HB/327. Different vaccination doses were further tested in chickens, and these experiments demonstrated that 1 x 10(8)PFU of BV-G-HA offered complete protection from challenge with 100 LD(50) of HB/327. These data indicate that the pseudotype baculovirus-mediated vaccine could be utilized as an alternative strategy against the pandemic spread of H5N1 influenza virus.
Collapse
Affiliation(s)
- Qunfeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
43
|
Li Y, Ye J, Cao S, Xiao S, Zhao Q, Liu X, Jin M, Chen H. Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice. J Gene Med 2009; 11:57-65. [PMID: 19006097 DOI: 10.1002/jgm.1271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Japanese encephalitis (JE) is a serious infection and disease in southern and eastern Asia. The design and development of safer and more efficacious vaccines against Japanese encephalitis virus (JEV) is a high-priority target in the world. Recently, baculovirus pseudotyped with vesicular stomatitis virus glycoprotein (VSVG) was described as an attractive gene delivery vehicle in mammalian cells and a potential vector for vaccine development. In the present study, we constructed a recombinant pseudotype baculovirus encoding the JEV envelope (E) protein and demonstrated that it could elicit high protective immunity in mice. METHODS Recombinant pseudotype baculovirus (BV-G-E) was generated by inserting JEV E gene fragment into pFastBac-VSV/G vector. BALB/c mice were immunized with BV-G-E and challenged with JEV wild-type strain. The neutralization antibody, interferon (IFN)-gamma expression and release, and survival rate were analysed and compared with the group of immunized with inactivated vaccine and DNA vaccine (pc-E) encoding the same gene of JEV. RESULTS We demonstrated that intramuscular injections of BV-G-E at various doses into mice produced higher levels of JEV-specific neutralizing antibodies, IFN-gamma and better protective efficacy against a lethal challenge with JEV than that of pc-E. Furthermore, BV-G-E could elicit a higher level of cellular immunity response and provide equal protective efficacy against JEV challenge compared to inactivated vaccine. CONCLUSIONS Our data demonstrate that BV-G-E elicited higher levels of protective immunity compared to DNA vaccine and that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop new generations of vaccines against JEV infection.
Collapse
Affiliation(s)
- Yaoming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li Y, Ye J, Cao S, Xiao S, Zhao Q, Liu X, Jin M, Chen H. Withdrawn: Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice. J Gene Med 2009; 11:150-9. [DOI: 10.1002/jgm.1282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Li B, Xiao S, Wang Y, Xu S, Jiang Y, Chen H, Fang L. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine 2009; 27:1957-63. [PMID: 19368777 DOI: 10.1016/j.vaccine.2009.01.098] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 11/16/2022]
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV), which causes continuous high fever and a high proportion of deaths in vaccinated pigs of all ages, has emerged and prevailed in Mainland China. Huge efforts should be made towards the development of an efficient vaccine against the highly pathogenic PRRSV. Although the ORF5-encoded GP5 is the most important immunogenic protein, accumulating evidences have demonstrated that incomplete protection conferred by GP5-based vaccines. The inability to induce robust protective immunity has been postulated to be associated with the presence of a non-neutralizing decoy epitope and heavy glycosylation in close to its neutralizing epitope. In this study, a synthetic ORF5 gene (SynORF5) was engineered with the codon usage optimized for mammalian cell expression based on the native ORF5 gene of highly pathogenic PRRSV strain WUH3. Additional modifications, i.e., inserting a Pan DR T-helper cell epitope (PADRE) between the neutralizing epitope and the non-neutralizing decoy epitope, and mutating four potential N-glycosylation sites (N30, N34, N35 and N51) were also included in the synthetic ORF5 gene. The immunogenicity of the SynORF5-encoded GP5 was evaluated by DNA vaccination in mice and piglets. Results showed that significantly enhanced GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-gamma level, as well as lymphocyte proliferation response, could be induced in mice and piglets immunized with DNA construct encoding the modified GP5 than those received DNA vaccine expressing the native GP5. The enhanced immunogenicity of the modified GP5 will be useful to facilitate the development of efficient vaccines against the highly pathogenic PRRSV in the future.
Collapse
Affiliation(s)
- Bin Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
He F, Ho Y, Yu L, Kwang J. WSSV ie1 promoter is more efficient than CMV promoter to express H5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. BMC Microbiol 2008; 8:238. [PMID: 19116038 PMCID: PMC2631607 DOI: 10.1186/1471-2180-8-238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The worldwide outbreak of influenza A (H5N1) viruses among poultry species and humans highlighted the need to develop efficacious and safe vaccines based on efficient and scaleable production. RESULTS White spot syndrome virus (WSSV) immediate-early promoter one (ie1) was shown to be a stronger promoter for gene expression in insect cells compared with Cytomegalovirus immediate-early (CMV) promoter in luciferase assays. In an attempt to improve expression efficiency, a recombinant baculovirus was constructed expressing hemagglutinin (HA) of H5N1 influenza virus under the control of WSSV ie1 promoter. HA expression in SF9 cells increased significantly with baculovirus under WSSV ie1 promoter, compared with CMV promoter based on HA contents and hemagglutination activity. Further, immunization with baculovirus under WSSV ie1 promoter in chickens elicited higher level anti-HA antibodies compared to CMV promoter, as indicated in hemagglutination inhibition, virus neutralization and enzyme-linked immunosorbent assays. By immunohistochemistry, strong HA antigen expression was observed in different chicken organs with vaccination of WSSV ie1 promoter controlled baculovirus, confirming higher efficiency in HA expression by WSSV ie1 promoter. CONCLUSION The production of H5 HA by baculovirus was enhanced with WSSV ie1 promoter, especially compared with CMV promoter. This contributed to effective elicitation of HA-specific antibody in vaccinated chickens. This study provides an alternative choice for baculovirus based vaccine production.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|