1
|
Blokhina EA, Mardanova ES, Zykova AA, Shuklina MA, Stepanova LA, Tsybalova LM, Ravin NV. Chimeric Virus-like Particles of Physalis Mottle Virus as Carriers of M2e Peptides of Influenza a Virus. Viruses 2024; 16:1802. [PMID: 39599916 PMCID: PMC11598990 DOI: 10.3390/v16111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP. Four tandem copies of M2e were either fused to the N-terminus of the full-length PhMV CP or replaced the 43 N-terminal amino acids of the PhMV CP. Only the first fusion protein was successfully expressed in Escherichia coli, where it self-assembled into spherical VLPs of about 30 nm in size. The particles were efficiently recognized by anti-M2e antibodies, indicating that the M2e peptides were exposed on the surface. Subcutaneous immunization of mice with VLPs carrying four copies of M2e induced high levels of M2e-specific IgG antibodies in serum and protected animals from a lethal influenza A virus challenge. Therefore, PhMV particles carrying M2e peptides may become useful research tools for the development of recombinant influenza vaccines.
Collapse
Affiliation(s)
- Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina A. Shuklina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Shuklina M, Stepanova L, Ozhereleva O, Kovaleva A, Vidyaeva I, Korotkov A, Tsybalova L. Inserting CTL Epitopes of the Viral Nucleoprotein to Improve Immunogenicity and Protective Efficacy of Recombinant Protein against Influenza A Virus. BIOLOGY 2024; 13:801. [PMID: 39452110 PMCID: PMC11505154 DOI: 10.3390/biology13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.
Collapse
Affiliation(s)
- Marina Shuklina
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | - Liudmila Stepanova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
4
|
Meng X, Xu Y, Yang J, Meng S, Ding N, Sun T, Zong C. Strategic development of a self-adjuvanting SARS-CoV-2 RBD vaccine: From adjuvant screening to enhanced immunogenicity with a modified TLR7 agonist. Int Immunopharmacol 2024; 132:111909. [PMID: 38554446 DOI: 10.1016/j.intimp.2024.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
Adjuvants enhance the body's immune response to a vaccine, often leading to better protection against diseases. Monophosphoryl lipid A analogues (MPLA, TLR4 agonists), α-galactosylceramide analogues (NKT cell agonists), and imidazoquinoline compounds (TLR7/8 agonists) are emerging novel adjuvants on market or under clinical trials. Despite significant interest in these adjuvants, a direct comparison of their adjuvant activities remains unexplored. We initially assessed the activities of various adjuvants from three distinct categories using the SARS-CoV-2 RBD trimer antigen. TLR4 and TLR7/8 agonists are discovered to elicit robust IgG2a/2b antibodies, which is crucial for eliciting antibody dependent cytotoxicity. While α-galactosylceramide analogs induced mainly IgG1 antibody. Then, because of the flexibility of the TLR7/8 agonist, we designed and synthesized a tri-component self-adjuvanting SARS-CoV-2 RBD vaccine, featuring a covalent TLR7 agonist and targeting mannoside. Animal studies indicated that this vaccine generated antigen-specific humoral immunity. Yet, its immunogenicity seems compromised, indicating the complexity of the vaccine.
Collapse
Affiliation(s)
- Xiongyan Meng
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Ying Xu
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Jing Yang
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Shuai Meng
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Tiantian Sun
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Chengli Zong
- School of Pharmaceutical Sciences, School of Marine Biology and Fisheries, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Braz Gomes K, Zhang YN, Lee YZ, Eldad M, Lim A, Ward G, Auclair S, He L, Zhu J. Single-Component Multilayered Self-Assembling Protein Nanoparticles Displaying Extracellular Domains of Matrix Protein 2 as a Pan-influenza A Vaccine. ACS NANO 2023; 17:23545-23567. [PMID: 37988765 PMCID: PMC10722606 DOI: 10.1021/acsnano.3c06526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3). Vaccination with M2ex3 displayed on SApNPs demonstrated higher survival rates and less weight loss compared to the soluble M2ex3 antigen against the lethal challenges of H1N1 and H3N2 in mice. M2ex3 I3-01v9a SApNPs formulated with a squalene-based adjuvant were retained in the lymph node follicles over 8 weeks and induced long-lived germinal center reactions. Notably, a single low dose of M2ex3 I3-01v9a SApNP formulated with a potent adjuvant, either a Toll-like receptor 9 (TLR9) agonist or a stimulator of interferon genes (STING) agonist, conferred 90% protection against a lethal H1N1 challenge in mice. With the ability to induce robust and durable M2e-specific functional antibody and T cell responses, the M2ex3-presenting I3-01v9a SApNP provides a promising pan-influenza A vaccine candidate.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Nan Zhang
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yi-Zong Lee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mor Eldad
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Lim
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Garrett Ward
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sarah Auclair
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Linling He
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiang Zhu
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Nesovic LD, Roach CJ, Joshi G, Gill HS. Delivery of gold nanoparticle-conjugated M2e influenza vaccine in mice using coated microneedles. Biomater Sci 2023; 11:5859-5871. [PMID: 37455612 DOI: 10.1039/d3bm00305a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As a prospective influenza vaccination platform, a microneedle patch offers advantages such as self-administration and reduction of needle-phobia-associated vaccination avoidance. In an effort to design a broadly protective influenza vaccine we have previously developed a vaccine formulation containing the highly conserved ectodomain sequence of the M2 influenza protein (M2e) attached to the surface of gold nanoparticles (AuNPs) with CpG as a soluble adjuvant (AuNP-M2e + sCpG). Our previous studies have used the intranasal route for vaccination and demonstrated broad protection from this vaccine. Here we asked the question whether the same formulation can be effective when administered to mice using microneedles. We demonstrate that the microneedles can be coated with AuNP-M2e + sCpG formulation, and the AuNPs from the coating can be readily resuspended without aggregation. The AuNPs were delivered with high efficiency into murine skin, and the AuNPs cleared the skin within 12 h of microneedle treatment. After vaccination, strong M2e-specific humoral and cellular responses were stimulated, and the vaccinated mice were 100% protected following a lethal challenge with influenza A/PR/8/34 (H1N1).
Collapse
Affiliation(s)
- Lazar D Nesovic
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Carsen J Roach
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Gaurav Joshi
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| | - Harvinder Singh Gill
- Department of Chemical Engineering Texas Tech University, 8th and Canton, Lubbock, Texas 79409, USA.
| |
Collapse
|
8
|
Lamontagne F, Arpin D, Côté‐Cyr M, Khatri V, St‐Louis P, Gauthier L, Archambault D, Bourgault S. Engineered Curli Nanofilaments as a Self-Adjuvanted Antigen Delivery Platform. Adv Healthc Mater 2023; 12:e2300224. [PMID: 37031161 PMCID: PMC11468023 DOI: 10.1002/adhm.202300224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Indexed: 04/10/2023]
Abstract
Proteinaceous nanoparticles constitute efficient antigen delivery systems in vaccine formulations due to their size and repetitive nature that mimic most invading pathogens and promote immune activation. Nonetheless, the coadministration of an adjuvant with subunit nanovaccines is usually required to induce a robust, long-lasting, and protective immune response. Herein, the protein Curli-specific gene A (CsgA), which is known to self-assemble into nanofilaments contributing to bacterial biofilm, is exploited to engineer an intrinsically immunostimulatory antigen delivery platform. Three repeats of the M2e antigenic sequence from the influenza A virus matrix 2 protein are merged to the N-terminal domain of engineered CsgA proteins. These chimeric 3M2e-CsgA spontaneously self-assemble into antigen-displaying cross-β-sheet nanofilaments that activate the heterodimeric toll-like receptors 2 and 1. The resulting nanofilaments are avidly internalized by antigen-presenting cells and stimulate the maturation of dendritic cells. Without the need of any additional adjuvants, both assemblies show robust humoral and cellular immune responses, which translate into complete protection against a lethal experimental infection with the H1N1 influenza virus. Notably, these CsgA-based nanovaccines induce neither overt systemic inflammation, nor reactogenicity, upon mice inoculation. These results highlight the potential of engineered CsgA nanostructures as self-adjuvanted, safe, and versatile antigen delivery systems to fight infectious diseases.
Collapse
Affiliation(s)
- Félix Lamontagne
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Dominic Arpin
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Mélanie Côté‐Cyr
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Vinay Khatri
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
| | - Philippe St‐Louis
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Laurie Gauthier
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
- Department of Biological SciencesUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
| | - Steve Bourgault
- Department of ChemistryUniversité du Québec à MontréalC.P.8888, Succursale Centre‐VilleMontrealH3C 3P8Canada
- Quebec Network for Research on Protein FunctionEngineering and Applications (PROTEO)QuebecH3C 3P8Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA)Saint‐HyacintheJ2S 2M2Canada
- The Center of Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO‐FC)MontrealH3C 3P8Canada
| |
Collapse
|
9
|
Park BR, Bommireddy R, Chung DH, Kim KH, Subbiah J, Jung YJ, Bhatnagar N, Pack CD, Ramachandiran S, Reddy SJC, Selvaraj P, Kang SM. Hemagglutinin virus-like particles incorporated with membrane-bound cytokine adjuvants provide protection against homologous and heterologous influenza virus challenge in aged mice. Immun Ageing 2023; 20:20. [PMID: 37170231 PMCID: PMC10173218 DOI: 10.1186/s12979-023-00344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Current influenza vaccines deliver satisfactory results in young people but are less effective in the elderly. Development of vaccines for an ever-increasing aging population has been an arduous challenge due to immunosenescence that impairs the immune response in the aged, both quantitatively and qualitatively. RESULTS To potentially enhance vaccine efficacy in the elderly, we investigated the immunogenicity and cross-protection of influenza hemagglutinin virus-like particles (HA-VLP) incorporated with glycosylphosphatidylinositol (GPI)-anchored cytokine-adjuvants (GPI-GM-CSF and GPI-IL-12) via protein transfer in aged mice. Lung viral replication against homologous and heterologous influenza viruses was significantly reduced in aged mice after vaccination with cytokine incorporated VLPs (HA-VLP-Cyt) in comparison to HA-VLP alone. Enhanced IFN-γ+CD4+ and IFN-γ+CD8+ T cell responses were also observed in aged mice immunized with HA-VLP-Cyt when compared to HA-VLP alone. CONCLUSIONS Cytokine-adjuvanted influenza HA-VLP vaccine induced enhanced protective response against homologous influenza A virus infection in aged mice. Influenza HA-VLP vaccine with GPI-cytokines also induced enhanced T cell responses correlating with better protection against heterologous infection in the absence of neutralizing antibodies. The results suggest that a vaccination strategy using cytokine-adjuvanted influenza HA-VLPs could be used to enhance protection against influenza A virus in the elderly.
Collapse
Affiliation(s)
- Bo Ryoung Park
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David Hyunjung Chung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jeeva Subbiah
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | | | | | | | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Mahmoudvand S, Esmaeili Gouvarchin Ghaleh H, Jalilian FA, Farzanehpour M, Dorostkar R. Design of a multi-epitope-based vaccine consisted of immunodominant epitopes of structural proteins of SARS-CoV-2 using immunoinformatics approach. Biotechnol Appl Biochem 2023:10.1002/bab.2431. [PMID: 36577011 PMCID: PMC9880719 DOI: 10.1002/bab.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown rapid global spread and has resulted in a significant death toll worldwide. In this study, we aimed to design a multi-epitope vaccine against SARS-CoV-2 based on structural proteins S, M, N, and E. We identified B- and T-cell epitopes and then the antigenicity, toxicity, allergenicity, and similarity of predicted epitopes were analyzed. T-cell epitopes were docked with corresponding HLA alleles. Consequently, the selected T- and B-cell epitopes were included in the final construct. All selected epitopes were connected with different linkers and flagellin and pan-HLA DR binding epitopes (PADRE) as an adjuvant were used in the vaccine construct. Furthermore, molecular docking was used to evaluate the complex between the final vaccine construct and two alleles, HLA-A*02:01 and HLA-DRB1*01:01. Finally, codons were optimized for in silico cloning into pET28a(+) vector using SnapGene. The final vaccine construct comprised 11 CTL, HTL, and B-cell epitopes corresponding to 394 amino acid residues. In silico evaluation showed that the designed vaccine might potentially promote an immune response. Further in vivo preclinical and clinical testing is required to determine the safety and efficacy of the designed vaccine.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Farid Azizi Jalilian
- Department of Medical VirologyFaculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
12
|
Kazemifard N, Dehkohneh A, Baradaran Ghavami S. Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy. Front Med (Lausanne) 2022; 9:940454. [PMID: 36313997 PMCID: PMC9606607 DOI: 10.3389/fmed.2022.940454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dehkohneh
- Department for Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany,Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shaghayegh Baradaran Ghavami
| |
Collapse
|
13
|
Upconversion nanoparticle platform for efficient dendritic cell antigen delivery and simultaneous tracking. Mikrochim Acta 2022; 189:368. [PMID: 36057018 PMCID: PMC9440881 DOI: 10.1007/s00604-022-05441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022]
Abstract
Upconversion nanoparticles (UCNPs) represent a group of NPs that can convert near-infrared (NIR) light into ultraviolet and visible light, thus possess deep tissue penetration power with less background fluorescence noise interference, and do not induce damage to biological tissues. Due to their unique optical properties and possibility for surface modification, UCNPs can be exploited for concomitant antigen delivery into dendritic cells (DCs) and monitoring by molecular imaging. In this study, we focus on the development of a nano-delivery platform targeting DCs for immunotherapy and simultaneous imaging. OVA 254–267 (OVA24) peptide antigen, harboring a CD8 T cell epitope, and Pam3CysSerLys4 (Pam3CSK4) adjuvant were chemically linked to the surface of UCNPs by amide condensation to stimulate DC maturation and antigen presentation. The OVA24-Pam3CSK4-UCNPs were thoroughly characterized and showed a homogeneous morphology and surface electronegativity, which promoted a good dispersion of the NPs. In vitro experiments demonstrated that OVA24-Pam3CSK4-UCNPs induced a strong immune response, including DC maturation, T cell activation, and proliferation, as well as interferon gamma (IFN-γ) production. In vivo, highly sensitive upconversion luminescence (UCL) imaging of OVA24-Pam3CSK4-UCNPs allowed tracking of UCNPs from the periphery to lymph nodes. In summary, OVA24-Pam3CSK4-UCNPs represent an effective tool for DC-based immunotherapy.
Collapse
|
14
|
Tran-Mai AP, Tran HDT, Mai QG, Huynh KQ, Tran TL, Tran-Van H, Tran-Van H. Flagellin from Salmonella enteritidis Enhances the Immune Response of Fused F18 from Enterotoxigenic Escherichia coli. Trop Life Sci Res 2022; 33:19-32. [PMID: 36545054 PMCID: PMC9747111 DOI: 10.21315/tlsr2022.33.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
F18 plays an important role in helping Enterotoxigenic Escherichia coli (ETEC) binds to specific receptors on small intestinal enterocytes, followed by secreting of toxins causing diarrhea in post-weaning piglets (post-weaning diarrhea, PWD). However, the F18 subunit vaccine is not sufficient to stimulate an immune response that can protect weaning pigs from F18-positive ETEC (F18+ETEC). Recently, a body of evidence shows that flagellin protein (FliC) helps to increase the immunity of fused proteins. Therefore, in this study, we combined FliC with F18 to enhance the immune response of F18. The f18 gene was obtained from F18+ETEC, then was fused with the fliC gene. The expression of recombinant FliC-F18 protein was induced by Isopropyl-beta-D-Thiogalactopyranoside (IPTG). The purified protein was tested in vivo in mouse models to evaluate the immunostimulation. Results showed that the fusion of FliC and F18 protein increased the production of anti-F18 antibodies. Besides, the anti-F18 antibody in the collected antiserum specifically identified F18+ETEC. This result provides proof-of-concept for the development of subunit vaccine to prevent PWD using F18 antigen.
Collapse
Affiliation(s)
- An-Phuc Tran-Mai
- Department of Molecular and Environmental Biotechnology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Hong-Diep Thi Tran
- Department of Molecular and Environmental Biotechnology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Laboratory of Biosensors, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Vietnam National University, Vo Truong Toan Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Quoc-Gia Mai
- Laboratory of Biosensors, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Kien-Quang Huynh
- Department of Molecular and Environmental Biotechnology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Laboratory of Biosensors, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Vietnam National University, Vo Truong Toan Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuoc Linh Tran
- Department of Molecular and Environmental Biotechnology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Laboratory of Biosensors, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Vietnam National University, Vo Truong Toan Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hieu Tran-Van
- Department of Molecular and Environmental Biotechnology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Laboratory of Biosensors, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam,Vietnam National University, Vo Truong Toan Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam,Corresponding author:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang S, Li M, Chen L, Dai A, Liu Z, Wu M, Yang J, Hao H, Liang J, Zhou X, Qian Z. Codelivery of SARS-CoV-2 Prefusion-Spike Protein with CBLB502 by a Dual-Chambered Ferritin Nanocarrier Potentiates Systemic and Mucosal Immunity. ACS APPLIED BIO MATERIALS 2022; 5:3329-3337. [PMID: 35737819 PMCID: PMC9236219 DOI: 10.1021/acsabm.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Thousands of breakthrough infections are confirmed after intramuscular (i.m.) injection of the approved vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two major factors might contribute to breakthrough infections. One is the emergence of mutant variants of SARS-CoV-2, and the other is that i.m. injection has an inefficient ability to activate mucosal immunity in the upper respiratory tract. Here, we devised a dual-chambered nanocarrier that can codeliver the adjuvant CBLB502 with prefusion-spike (pre-S) onto a ferritin nanoparticle. This vaccine enabled enhanced systemic and local mucosal immunity in the upper and lower respiratory tract. Further, codelivery of CBLB502 with pre-S induced a Th1/Th2-balanced immunoglobulin G response. Moreover, the codelivery nanoparticle showed a Th1-biased cellular immune response as the release of splenic INF-γ was significantly heightened while the level of IL-4 was elevated to a moderate extent. In general, the developed dual-chambered nanoparticle can trigger multifaceted immune responses and shows great potential for mucosal vaccine development.
Collapse
Affiliation(s)
- Shubing Tang
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Min Li
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Lixiang Chen
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Aguang Dai
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Mangteng Wu
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Jingyi Yang
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Hongyun Hao
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, College of
Life Sciences and Biotechnology, Shanghai Jiao Tong University,
200030 Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Zhikang Qian
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| |
Collapse
|
16
|
Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022; 13:915565. [PMID: 35847031 PMCID: PMC9280161 DOI: 10.3389/fphar.2022.915565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| |
Collapse
|
17
|
Bommireddy R, Stone S, Bhatnagar N, Kumari P, Munoz LE, Oh J, Kim KH, Berry JTL, Jacobsen KM, Jaafar L, Naing SH, Blackerby AN, der Gaag TV, Wright CN, Lai L, Pack CD, Ramachandiran S, Suthar MS, Kang SM, Kumar M, Reddy SJC, Selvaraj P. Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines (Basel) 2022; 10:944. [PMID: 35746552 PMCID: PMC9230705 DOI: 10.3390/vaccines10060944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Pratima Kumari
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Judy Oh
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Jameson T. L. Berry
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Kristen M. Jacobsen
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lahcen Jaafar
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Swe-Htet Naing
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Allison N. Blackerby
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Tori Van der Gaag
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Chloe N. Wright
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Christopher D. Pack
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Sampath Ramachandiran
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Shaker J. C. Reddy
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| |
Collapse
|
18
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
19
|
Zhao Y, Li Z, Voyer J, Li Y, Chen X. Flagellin/Virus-like Particle Hybrid Platform with High Immunogenicity, Safety, and Versatility for Vaccine Development. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21872-21885. [PMID: 35467839 PMCID: PMC9121874 DOI: 10.1021/acsami.2c01028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 05/07/2023]
Abstract
Hepatitis B core (HBc) virus-like particles (VLPs) and flagellin are highly immunogenic and widely explored vaccine delivery platforms. Yet, HBc VLPs mainly allow the insertion of relatively short antigenic epitopes into the immunodominant c/e1 loop without affecting VLP assembly, and flagellin-based vaccines carry the risk of inducing systemic adverse reactions. This study explored a hybrid flagellin/HBc VLP (FH VLP) platform to present heterologous antigens by replacing the surface-exposed D3 domain of flagellin. FH VLPs were prepared by the insertion of flagellin gene into the c/e1 loop of HBc, followed by E. coli expression, purification, and self-assembly into VLPs. Using the ectodomain of influenza matrix protein 2 (M2e) and ovalbumin (OVA) as models, we found that the D3 domain of flagellin could be replaced with four tandem copies of M2e or the cytotoxic T lymphocyte (CTL) epitope of OVA without interfering with the FH VLP assembly, while the insertion of four tandem copies of M2e into the c/e1 loop of HBc disrupted the VLP assembly. FH VLP-based M2e vaccine elicited potent anti-M2e antibody responses and conferred significant protection against multiple influenza A viral strains, while FljB- or HBc-based M2e vaccine failed to elicit significant protection. FH VLP-based OVA peptide vaccine elicited more potent CTL responses and protection against OVA-expressing lymphoma or melanoma challenges than FljB- or HBc-based OVA peptide vaccine. FH VLP-based vaccines showed a good systemic safety, while flagellin-based vaccines significantly increased serum interleukin 6 and tumor necrosis factor α levels and also rectal temperature at increased doses. We further found that the incorporation of a clinical CpG 1018 adjuvant could enhance the efficacy of FH VLP-based vaccines. Our data support FH VLPs to be a highly immunogenic, safe, and versatile platform for vaccine development to elicit potent humoral and cellular immune responses.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Zhuofan Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Jewel Voyer
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Yibo Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Xinyuan Chen
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| |
Collapse
|
20
|
Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.
Collapse
|
21
|
Côté-Cyr M, Zottig X, Gauthier L, Archambault D, Bourgault S. Self-Assembly of Flagellin into Immunostimulatory Ring-like Nanostructures as an Antigen Delivery System. ACS Biomater Sci Eng 2022; 8:694-707. [PMID: 35080372 DOI: 10.1021/acsbiomaterials.1c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteinaceous nanoparticles represent attractive antigen carriers for vaccination as their size and repetitive antigen displays that mimic most viral particles enable efficient immune processing. However, these nanocarriers are often unable to stimulate efficiently the innate immune system, requiring coadministration with adjuvants to promote long-lasting protective immunity. The protein flagellin, which constitutes the primary constituent of the bacterial flagellum, has been widely evaluated as an antigen carrier due to its intrinsic adjuvant properties involving activation of the innate immune receptor Toll-like receptor 5 (TLR5). Although flagellin is known for its ability to self-assemble into micron-scale length nanotubes, few studies have evaluated the potential usage of flagellin-based nanostructures as immunostimulatory antigen carriers. In this study, we reported for the first time a strategy to guide the self-assembly of a flagellin protein from Bacillus subtilis, Hag, into lower aspect ratio nanoparticles by hindering non-covalent interactions responsible for its elongation into nanotubes. We observed that addition of an antigenic sequence derived from the influenza A virus (3M2e) at the C-terminus of this flagellin, as opposed to positioning the epitope into mid-sequence, precluded filament elongation and resulted in low aspect ratio ring-like nanostructures upon salting-out-induced self-assembly. These nanostructures displayed the antigen at their surface and shared morphological and structural characteristics with flagellin nanotubes, with a diameter of approximately 12 nm, and an α-helix-rich secondary structure. Flagellin ring-like nanostructures were efficiently internalized by antigen-presenting cells, and avidly activated the TLR5 in vitro as well as the innate and adaptive immune responses. Intranasal immunization of mice with these nanostructures resulted in the potentiation of the antigen-specific antibody response and protection against a lethal infection with the influenza A virus, illustrating the potential of these intrinsically immunostimulatory nanostructures as antigen carriers.
Collapse
Affiliation(s)
- Mélanie Côté-Cyr
- Chemistry Department, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada.,Department of Biological Sciences, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
| | - Ximena Zottig
- Chemistry Department, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada.,Department of Biological Sciences, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
| | - Laurie Gauthier
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada.,Department of Biological Sciences, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada.,The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
| |
Collapse
|
22
|
Côté-Cyr M, Gauthier L, Zottig X, Bourgault S, Archambault D. Recombinant Bacillus subtilis flagellin Hag is a potent immunostimulant with reduced proinflammatory properties compared to Salmonella enterica serovar Typhimurium FljB. Vaccine 2022; 40:11-17. [PMID: 34844822 DOI: 10.1016/j.vaccine.2021.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
Flagellin constitutes a potential adjuvant for vaccines owing to its robust immunostimulatory properties. However, clinical trials have revealed that flagellin derived from Salmonella enterica serovar Typhimurium induces high levels of proinflammatory markers and substantial adverse effects. The flagellin from Bacillus subtilis, Hag, shares high sequence homology with Salmonella FljB within the D0 and D1 domains responsible for TLR5 engagement, while the D2 and D3 domains associated with an off-target immune response are absent. Accordingly, we compared the immunostimulatory and proinflammatory properties of Hag with FljB by harnessing an epitope from the matrix 2 protein (M2e) of the influenza virus. Both flagellins engaged TLR5, with FljB showing a 2.5-fold higher potency than Hag. Mice inoculation showed a robust FljB- or Hag-induced M2e-specific antibody response, with Hag demonstrating a decreased secretion of proinflammatory markers and reduced weight loss. This study revealed that flagellin Hag is a potent immunoadjuvant with reduced proinflammatory properties.
Collapse
Affiliation(s)
- Mélanie Côté-Cyr
- Chemistry Department, Université du Québec à Montréal, Montréal, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada
| | - Laurie Gauthier
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada
| | - Ximena Zottig
- Chemistry Department, Université du Québec à Montréal, Montréal, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada; Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montréal, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada.
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada.
| |
Collapse
|
23
|
Ren Y, Lu X, Yang Z, Lei H. Protective immunity induced by oral vaccination with a recombinant Lactococcus lactis vaccine against H5Nx in chickens. BMC Vet Res 2022; 18:3. [PMID: 34980121 PMCID: PMC8720943 DOI: 10.1186/s12917-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. RESULTS Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. CONCLUSIONS L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.
Collapse
Affiliation(s)
- Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Zhonghe Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
24
|
Mardanova ES, Kotlyarov RY, Ravin NV. High-Yield Production of Receptor Binding Domain of SARS-CoV-2 Linked to Bacterial Flagellin in Plants Using Self-Replicating Viral Vector pEff. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122682. [PMID: 34961153 PMCID: PMC8708900 DOI: 10.3390/plants10122682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 05/07/2023]
Abstract
The development of recombinant vaccines against SARS-CoV-2 is required to eliminate the COVID-19 pandemic. We reported the expression of a recombinant protein Flg-RBD comprising receptor binding domain of SARS-CoV-2 spike glycoprotein (RBD) fused to flagellin of Salmonella typhimurium (Flg), known as mucosal adjuvant, in Nicotiana benthamiana plants. The fusion protein, targeted to the cytosol, was transiently expressed using the self-replicating vector pEff based on potato virus X genome. The recombinant protein Flg-RBD was expressed at the level of about 110-140 μg per gram of fresh leaf tissue and was found to be insoluble. The fusion protein was purified using metal affinity chromatography under denaturing conditions. To increase the yield of Flg-RBD, the flow-through fraction obtained after loading of the protein sample on the Ni-NTA resin was re-loaded on the sorbent. The yield of Flg-RBD after purification reached about 100 μg per gram of fresh leaf tissue and the purified protein remained soluble after dialysis. The control flagellin was expressed in a soluble form and its yield after purification was about 300 μg per gram of fresh leaf biomass. Plant-produced Flg-RBD protein could be further used for the development of intranasal recombinant mucosal vaccines against COVID-19.
Collapse
|
25
|
Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge. Biotechnol Lett 2021; 43:2137-2147. [PMID: 34491470 DOI: 10.1007/s10529-021-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Influenza is one of the most important agents of pandemic outbreak causing substantial morbidity and mortality. Vaccination strategies of influenza must be adapted annually due to constant antigenic changes in various strains. Therefore, the present study was conducted to evaluate protective immunity of the conserved influenza proteins. METHODS For this purpose, three tandem repeats of M2e (3M2e) and NP were separately expressed in E. coli and were purified using column chromatography. Female Balb/c mice were injected intradermally with a combination of the purified 3M2e and NP alone or formulated with Alum (AlOH3) adjuvant in three doses. The mice were challenged by intranasal administration of H1N1 (A/PR/8/34) 2 weeks after the last vaccination. RESULTS The results demonstrated that recombinant NP and M2e proteins are immunogenic and could efficiently elicit immune responses in mice compared to non-immunized mice. The combination of 3M2e and NP supplemented with Alum stimulated both NP and M2e-specific antibodies, which were higher than those stimulated by each single antigen plus Alum. In addition, the secretion of IFN-γ and IL-4 as well as the induction of lymphocyte proliferation in mice received the mixture of these proteins with Alum was considerably higher than other groups. Moreover, the highest survival rate (86%) with the least body weight change was observed in the mice immunized with 3M2e and NP supplemented with Alum followed by the mice received NP supplemented with Alum (71%). CONCLUSION Accordingly, this regimen can be considered as an attractive candidate for global vaccination against influenza.
Collapse
|
26
|
Mytle N, Leyrer S, Inglefield JR, Harris AM, Hickey TE, Minang J, Lu H, Ma Z, Andersen H, Grubaugh ND, Guina T, Skiadopoulos MH, Lacy MJ. Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice against Lethal Challenge with H1N1, Pandemic H1N1 or H5N1 Influenza A Viruses. Viruses 2021; 13:1708. [PMID: 34578289 PMCID: PMC8473317 DOI: 10.3390/v13091708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
Influenza hemagglutinin (HA) is considered a major protective antigen of seasonal influenza vaccine but antigenic drift of HA necessitates annual immunizations using new circulating HA versions. Low variation found within conserved non-HA influenza virus (INFV) antigens may maintain protection with less frequent immunizations. Conserved antigens of influenza A virus (INFV A) that can generate cross protection against multiple INFV strains were evaluated in BALB/c mice using modified Vaccinia virus Ankara (MVA)-vectored vaccines that expressed INFV A antigens hemagglutinin (HA), matrix protein 1 (M1), nucleoprotein (NP), matrix protein 2 (M2), repeats of the external portion of M2 (M2e) or as tandem repeats (METR), and M2e with transmembrane region and cytoplasmic loop (M2eTML). Protection by combinations of non-HA antigens was equivalent to that of subtype-matched HA. Combinations of NP and forms of M2e generated serum antibody responses and protected mice against lethal INFV A challenge using PR8, pandemic H1N1 A/Mexico/4108/2009 (pH1N1) or H5N1 A/Vietnam/1203/2004 (H5N1) viruses, as demonstrated by reduced lung viral burden and protection against weight loss. The highest levels of protection were obtained with NP and M2e antigens delivered as MVA inserts, resulting in broadly protective immunity in mice and enhancement of previous natural immunity to INFV A.
Collapse
Affiliation(s)
- Nutan Mytle
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Biomedical Advanced Research and Development Agency, U.S. Department of Health and Human Services, Washington, DC 20201, USA
| | - Sonja Leyrer
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jon R. Inglefield
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Andrea M. Harris
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Thomas E. Hickey
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 20814, USA
| | - Jacob Minang
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Optimal Health Care, 11377 Robinwood Dr, Hagerstown, MD 21742, USA
| | - Hang Lu
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Zhidong Ma
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Hanné Andersen
- BIOQUAL, Inc., 12301 Parklawn Dr, Rockville, MD 20852, USA;
| | - Nathan D. Grubaugh
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Tina Guina
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mario H. Skiadopoulos
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J. Lacy
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| |
Collapse
|
27
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
28
|
Ahn HS, Park BJ, Go HJ, Lyoo EL, Kim DH, Lee JB, Park SY, Song CS, Lee SW, Choi YK, Jung HJ, Kim HM, Choi IS. Induction of immunocontraceptive effects in both male and female mice immunized with GnRH vaccine. Vet Med Sci 2021; 7:1999-2007. [PMID: 34236748 PMCID: PMC8464238 DOI: 10.1002/vms3.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Gonadotropin‐releasing hormone (GnRH) plays a pivotal role in regulating the reproductive endocrine system. Objective An immunocontraception vaccine aimed at inhibiting the functions of GnRH is tested as a potential tool for controlling animal populations. Methods We developed a recombinant immunocontraceptive vaccine composed of GnRH‐I and GnRH‐II (GnRH I+II), which was conjugated with Salmonella typhimurium flagellin. Forty‐eight BALB/c mice aged 4 weeks were divided into four groups (each group had n = 12): non‐vaccinated male (NVM), non‐vaccinated female (NVF), vaccinated male (VM), and vaccinated female (VF). Mice in the vaccinated groups were vaccinated twice by intramuscular injection at 0 and 2 weeks with 300 μg of the recombinant GnRH protein complex per mouse. Mice in the non‐vaccinated groups were injected with saline and served as the unimmunized controls. Twenty‐four pairs of male and female mice were mated for 10–12 weeks after initial immunization in four groups: 6 NVF × 6 NVM, 6 VF × 6 NVM, 6 NVF × 6 VM, and 6 VF × 6 VM. Results: An increase (p < 0.001) in antibody titers in VM and VF mice was observed. The testosterone levels and the number of spermatocytes were lower (p < 0.001) in VM mice than those in the control mice. The progesterone levels and the number of corpora lutea were lower (p < 0.001) than those in the control mice. Mating results in both VM and VF mice confirmed a 60% reduction in pregnancy rates and offspring numbers. Conclusions The recombinant GnRH vaccine can be used for birth control in both male and female animals.
Collapse
Affiliation(s)
- Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Eu-Lim Lyoo
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyun-Ju Jung
- Department of Applied Statistics, College of Social Sciences, Konkuk University, Seoul, Korea
| | - Hyoung-Moon Kim
- Department of Applied Statistics, College of Social Sciences, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
29
|
Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines (Basel) 2021; 9:739. [PMID: 34358155 PMCID: PMC8310010 DOI: 10.3390/vaccines9070739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.
Collapse
Affiliation(s)
- Mei Peng Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
30
|
Universal Live-Attenuated Influenza Vaccine Candidates Expressing Multiple M2e Epitopes Protect Ferrets against a High-Dose Heterologous Virus Challenge. Viruses 2021; 13:v13071280. [PMID: 34209093 PMCID: PMC8310119 DOI: 10.3390/v13071280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of an influenza vaccine with broad protection and durability remains an attractive idea due to the high mutation rate of the influenza virus. An extracellular domain of Matrix 2 protein (M2e) is among the most attractive target for the universal influenza vaccine owing to its high conservancy rate. Here, we generated two recombinant live attenuated influenza vaccine (LAIV) candidates encoding four M2e epitopes representing consensus sequences of human, avian and swine influenza viruses, and studied them in a preclinical ferret model. Both LAIV+4M2e viruses induced higher levels of M2e-specific antibodies compared to the control LAIV strain, with the LAIV/HA+4M2e candidate being significantly more immunogenic than the LAIV/NS+4M2e counterpart. A high-dose heterosubtypic influenza virus challenge revealed the highest degree of protection after immunization with LAIV/HA+4M2e strain, followed by the NS-modified LAIV and the classical LAIV virus. Furthermore, only the immune sera from the LAIV/HA+4M2e-immunized ferrets protected mice from a panel of lethal influenza viruses encoding M genes of various origins. These data suggest that the improved cross-protection of the LAIV/HA+4M2e universal influenza vaccine candidate was mediated by the M2e-targeted antibodies. Taking into account the safety profile and improved cross-protective potential, the LAIV/HA+4M2e vaccine warrants its further evaluation in a phase I clinical trial.
Collapse
|
31
|
An Antigenic Thrift-Based Approach to Influenza Vaccine Design. Vaccines (Basel) 2021; 9:vaccines9060657. [PMID: 34208489 PMCID: PMC8235769 DOI: 10.3390/vaccines9060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
The antigenic drift theory states that influenza evolves via the gradual accumulation of mutations, decreasing a host’s immune protection against previous strains. Influenza vaccines are designed accordingly, under the premise of antigenic drift. However, a paradox exists at the centre of influenza research. If influenza evolved primarily through mutation in multiple epitopes, multiple influenza strains should co-circulate. Such a multitude of strains would render influenza vaccines quickly inefficacious. Instead, a single or limited number of strains dominate circulation each influenza season. Unless additional constraints are placed on the evolution of influenza, antigenic drift does not adequately explain these observations. Here, we explore the constraints placed on antigenic drift and a competing theory of influenza evolution – antigenic thrift. In contrast to antigenic drift, antigenic thrift states that immune selection targets epitopes of limited variability, which constrain the variability of the virus. We explain the implications of antigenic drift and antigenic thrift and explore their current and potential uses in the context of influenza vaccine design.
Collapse
|
32
|
Kalaiyarasu S, Bhatia S, Mishra N, Senthil Kumar D, Kumar M, Sood R, Rajukumar K, Ponnusamy B, Desai D, Singh VP. Elicitation of Highly Pathogenic Avian Influenza H5N1 M2e and HA2-Specific Humoral and Cell-Mediated Immune Response in Chicken Following Immunization With Recombinant M2e-HA2 Fusion Protein. Front Vet Sci 2021; 7:571999. [PMID: 33614753 PMCID: PMC7892607 DOI: 10.3389/fvets.2020.571999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The study was aimed to evaluate the elicitation of highly pathogenic avian influenza (HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1 sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2 were identified. Synthetic gene construct coding for M2e and two immunodominant HA2 conserved regions was designed and synthesized after codon optimization. The fusion recombinant protein (~38 kDa) was expressed in a prokaryotic system and characterized by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The M2e–HA2 fusion protein was found to be highly reactive with known AIV-positive and -negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens were immunized (i/m) with M2e synthetic peptide and M2e–HA2 recombinant protein along with one control group with booster on the 14th day and 28th day with the same dose and route. Pre-immunization sera and whole blood were collected on day 0 followed by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method revealed that the stimulation index (SI) was increased gradually from days 0 to 14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR) mRNA analysis by RT-qPCR showed maximum upregulation in the M2e–HA2-vaccinated group compared to M2e- and sham-vaccinated groups. M2e–HA2 recombinant protein-based indirect ELISA revealed that M2e–HA2 recombinant fusion protein has induced strong M2e and HA2-specific antibody responses from 7 days post-primary immunization, and then the titer gradually increased after booster dose. Similarly, M2e peptide ELISA revealed that M2e–HA2 recombinant fusion protein elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response was detected in the chicken immunized with synthetic peptide M2e alone or control group. Findings of this study will be very useful in future development of broad protective H5N1 influenza vaccine targeting M2e and HA2.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Bhatia
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Dhanapal Senthil Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Manoj Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Katherukamem Rajukumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Boopathi Ponnusamy
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Dhruv Desai
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Vijendra Pal Singh
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
33
|
Abstract
Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Drug Carriers/chemistry
- Humans
- Immunogenicity, Vaccine
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacokinetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Nanoparticles/chemistry
- Protein Engineering
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacokinetics
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
34
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
35
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
36
|
Zykova AA, Blokhina EA, Kotlyarov RY, Stepanova LA, Tsybalova LM, Kuprianov VV, Ravin NV. Highly Immunogenic Nanoparticles Based on a Fusion Protein Comprising the M2e of Influenza A Virus and a Lipopeptide. Viruses 2020; 12:E1133. [PMID: 33036278 PMCID: PMC7601894 DOI: 10.3390/v12101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
The highly conserved extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is a promising target for the development of broad-spectrum vaccines. However, M2e is a poor immunogen by itself and must be linked to an appropriate carrier to induce an efficient immune response. In this study, we obtained recombinant mosaic proteins containing tandem copies of M2e fused to a lipopeptide from Neisseria meningitidis surface lipoprotein Ag473 and alpha-helical linkers and analyzed their immunogenicity. Six fusion proteins, comprising four or eight tandem copies of M2e flanked by alpha-helical linkers, lipopeptides, or a combination of both of these elements, were produced in Escherichia coli. The proteins, containing both alpha-helical linkers and lipopeptides at each side of M2e repeats, formed nanosized particles, but no particulate structures were observed in the absence of lipopeptides. Animal study results showed that proteins with lipopeptides induced strong M2e-specific antibody responses in the absence of external adjuvants compared to similar proteins without lipopeptides. Thus, the recombinant M2e-based proteins containing alpha-helical linkers and N. meningitidis lipopeptide sequences at the N- and C-termini of four or eight tandem copies of M2e peptide are promising vaccine candidates.
Collapse
Affiliation(s)
- Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Victor V. Kuprianov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| |
Collapse
|
37
|
Yazdani Z, Rafiei A, Yazdani M, Valadan R. Design an Efficient Multi-Epitope Peptide Vaccine Candidate Against SARS-CoV-2: An in silico Analysis. Infect Drug Resist 2020; 13:3007-3022. [PMID: 32943888 PMCID: PMC7459237 DOI: 10.2147/idr.s264573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, no specific vaccine or drug has been proven to be effective against SARS-CoV-2 infection. Therefore, we implemented an immunoinformatic approach to design an efficient multi-epitopes vaccine against SARS-CoV-2. RESULTS The designed-vaccine construct consists of several immunodominant epitopes from structural proteins of spike, nucleocapsid, membrane, and envelope. These peptides promote cellular and humoral immunity and interferon-gamma responses. Also, these epitopes have a high antigenic capacity and are not likely to cause allergies. To enhance the vaccine immunogenicity, we used three potent adjuvants: Flagellin of Salmonella enterica subsp. enterica serovar Dublin, a driven peptide from high mobility group box 1 as HP-91, and human beta-defensin 3 protein. The physicochemical and immunological properties of the vaccine structure were evaluated. The tertiary structure of the vaccine protein was predicted and refined by Phyre2 and Galaxi refine and validated using RAMPAGE and ERRAT. Results of ElliPro showed 246 sresidues from vaccine might be conformational B-cell epitopes. Docking of the vaccine with toll-like receptors (TLR) 3, 5, 8, and angiotensin-converting enzyme 2 approved an appropriate interaction between the vaccine and receptors. Prediction of mRNA secondary structure and in silico cloning demonstrated that the vaccine can be efficiently expressed in Escherichia coli. CONCLUSION Our results demonstrated that the multi-epitope vaccine might be potentially antigenic and induce humoral and cellular immune responses against SARS-CoV-2. This vaccine can interact appropriately with the TLR3, 5, and 8. Also, it has a high-quality structure and suitable characteristics such as high stability and potential for expression in Escherichia coli .
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Yazdani
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
38
|
Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1008. [PMID: 32466176 PMCID: PMC7281494 DOI: 10.3390/nano10051008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.
Collapse
Affiliation(s)
- Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Dominic Arpin
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
39
|
Gauthier L, Babych M, Segura M, Bourgault S, Archambault D. Identification of a novel TLR5 agonist derived from the P97 protein of Mycoplasma hyopneumoniae. Immunobiology 2020; 225:151962. [PMID: 32747018 DOI: 10.1016/j.imbio.2020.151962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
By modulating specific immune responses against antigens, adjuvants are used in many vaccine preparations to enhance protective immunity. The C-terminal domain of the protein P97 (P97c) of Mycoplasma hyopneumoniae, which is the etiologic agent of porcine enzootic pneumonia, has been shown to increase the specific humoral response against an antigen when this antigen is merged with P97c and delivered by adenovectors. However, the immunostimulating mechanism of this protein remains unknown. In the present study, recombinantly expressed P97c triggered a concentration-dependent TLR5 activation and stimulates the production of interleukin-8 from HEK-Blue mTLR5 cells. Circular dichroism spectroscopy and prediction of 3-dimensional conformation exposed a relevant secondary and tertiary structural homology between P97c and flagellin, the known potent TLR5 agonist. P97c adjuvanticity was evaluated by fusing the conserved epitope of the ectodomain matrix 2 protein (M2e) of the influenza A virus to the protein. Mice immunized with P97c-3M2e revealed a high antibody titer against the M2e epitope associated with a mixed Th1/Th2 immune response. Overall, this study identifies a novel agonist of the pattern recognition receptor TLR5 and reveals that P97c is a potential adjuvant through the activation of the innate immune system.
Collapse
Affiliation(s)
- Laurie Gauthier
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Mariela Segura
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.
| |
Collapse
|
40
|
Saad-Roy CM, McDermott AB, Grenfell BT. Dynamic Perspectives on the Search for a Universal Influenza Vaccine. J Infect Dis 2020; 219:S46-S56. [PMID: 30715467 DOI: 10.1093/infdis/jiz044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A universal influenza vaccine (UIV) could considerably alleviate the public health burden of both seasonal and pandemic influenza. Although significant progress has been achieved in clarifying basic immunology and virology relating to UIV, several important questions relating to the dynamics of infection, immunity, and pathogen evolution remain unsolved. In this study, we review these gaps, which span integrative levels, from cellular to global and timescales from molecular events to decades. We argue that they can be best addressed by a tight integration of empirical (laboratory, epidemiological) research and theory and suggest fruitful areas for this synthesis. In particular, quantifying natural and vaccinal limitations on viral transmission are central to this effort.
Collapse
Affiliation(s)
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey.,Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey.,Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
42
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
43
|
Blokhina EA, Mardanova ES, Stepanova LA, Tsybalova LM, Ravin NV. Plant-Produced Recombinant Influenza A Virus Candidate Vaccine Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin. PLANTS 2020; 9:plants9020162. [PMID: 32013187 PMCID: PMC7076671 DOI: 10.3390/plants9020162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an opportunity for the development of universal influenza vaccines. Immunogenicity of the antigens could be enhanced by fusion to bacterial flagellin, the ligand for Toll-like receptor 5, acting as a powerful mucosal adjuvant. In this study, we report the transient expression in plants of a recombinant protein comprising flagellin of Salmonella typhimurium fused to the conserved region of the second subunit of HA (76–130 a.a.) of the first phylogenetic group of influenza A viruses and four tandem copies of the M2e peptide. The hybrid protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 300 µg/g of fresh leaf tissue. The intranasal immunization of mice with purified fusion protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza A virus strain A/Aichi/2/68(H3N2). Our results show that M2e and hemagglutinin-derived peptide can be used as important targets for the development of a plant-produced vaccine against influenza.
Collapse
Affiliation(s)
- Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 23805, Russia; (L.A.S.); (L.M.T.)
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 23805, Russia; (L.A.S.); (L.M.T.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
- Correspondence: ; Tel.: +7-499-7833264
| |
Collapse
|
44
|
Highly Pathogenic Avian Influenza H5 Hemagglutinin Fused with the A Subunit of Type IIb Escherichia coli Heat Labile Enterotoxin Elicited Protective Immunity and Neutralization by Intranasal Immunization in Mouse and Chicken Models. Vaccines (Basel) 2019; 7:vaccines7040193. [PMID: 31766677 PMCID: PMC6963717 DOI: 10.3390/vaccines7040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic avian influenza viruses are classified by the World Organization for Animal Health (OIE) as causes of devastating avian diseases. This study aimed to develop type IIb Escherichiacoli heat-labile enterotoxin (LTIIb) as novel mucosal adjuvants for mucosal vaccine development. The fusion protein of H5 and LTIIb-A subunit was expressed and purified for mouse and chicken intranasal immunizations. Intranasal immunization with the H5-LTIIb-A fusion protein in mice elicited potent neutralizing antibodies in sera and bronchoalveolar lavage fluids, induced stronger Th1 and Th17 cellular responses in spleen and cervical lymph nodes, and improved protection against H5N1 influenza virus challenge. More interestingly, intranasal immunization with the H5-LTIIb-A fusion protein in chickens elicited high titers of IgY, IgA, hemagglutinin inhibition (HAI), and neutralizing antibodies in their antisera. This study employed the novel adjuvants of LTIIb for the development of a new generation of mucosal vaccines against highly pathogenic avian influenza viruses.
Collapse
|
45
|
Sisteré-Oró M, Martínez-Pulgarín S, Solanes D, Veljkovic V, López-Serrano S, Córdoba L, Cordón I, Escribano JM, Darji A. Conserved HA-peptides expressed along with flagellin in Trichoplusia ni larvae protects chicken against intranasal H7N1 HPAIV challenge. Vaccine 2019; 38:416-422. [PMID: 31735501 DOI: 10.1016/j.vaccine.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
The immunization of poultry where H5 and H7 influenza viruses (IVs) are endemic is one of the strategies to prevent unexpected zoonoses. Our group has been focused on conserved HA-epitopes as potential vaccine candidates to obtain multivalent immune responses against distinct IV subtypes. In this study, two conserved epitopes (NG-34 and CS-17) fused to flagellin were produced in a Baculovirus platform based on Trichoplusia ni larvae as living biofactories. Soluble extracts obtained from larvae expressing "flagellin-NG34/CS17 antigen" were used to immunize chickens and the efficacy of the vaccine was evaluated against a heterologous H7N1 HPAIV challenge in chickens. The flagellin-NG34/CS17 vaccine protected the vaccinated chickens and blocked viral shedding orally and cloacally. Furthermore, no apparent clinical signs were monitored in 10/12 vaccinated individuals. The mechanism of protection conferred is under investigation.
Collapse
Affiliation(s)
- Marta Sisteré-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - David Solanes
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Ivan Cordón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - José M Escribano
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
46
|
Mezhenskaya D, Isakova-Sivak I, Rudenko L. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci 2019; 26:76. [PMID: 31629405 PMCID: PMC6800501 DOI: 10.1186/s12929-019-0572-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The influenza A virus was isolated for the first time in 1931, and the first attempts to develop a vaccine against the virus began soon afterwards. In addition to causing seasonal epidemics, influenza viruses can cause pandemics at random intervals, which are very hard to predict. Vaccination is the most effective way of preventing the spread of influenza infection. However, seasonal vaccination is ineffective against pandemic influenza viruses because of antigenic differences, and it takes approximately six months from isolation of a new virus to develop an effective vaccine. One of the possible ways to fight the emergence of pandemics may be by using a new type of vaccine, with a long and broad spectrum of action. The extracellular domain of the M2 protein (M2e) of influenza A virus is a conservative region, and an attractive target for a universal influenza vaccine. This review gives a historical overview of the study of M2 protein, and summarizes the latest developments in the preparation of M2e-based universal influenza vaccines.
Collapse
Affiliation(s)
- Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia.
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| |
Collapse
|
47
|
DNA vaccine based on conserved HA-peptides induces strong immune response and rapidly clears influenza virus infection from vaccinated pigs. PLoS One 2019; 14:e0222201. [PMID: 31553755 PMCID: PMC6760788 DOI: 10.1371/journal.pone.0222201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023] Open
Abstract
Swine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions. In order to confront and prevent these possible emergences as well as antigenic drift phenomena, vaccination remains of vital importance. The present work aimed to evaluate a new DNA influenza vaccine based on distinct conserved HA-peptides fused with flagellin and applied together with Diluvac Forte as adjuvant using a needle-free device (IntraDermal Application of Liquids, IDAL®). Two experimental pig studies were performed to test DNA-vaccine efficacy against SIVs in pigs. In the first experiment, SIV-seronegative pigs were vaccinated with VC4-flagellin DNA and intranasally challenged with a pH1N1. In the second study, VC4-flagellin DNA vaccine was employed in SIV-seropositive animals and challenged intranasally with an H3N2 SIV-isolate. Both experiments demonstrated a reduction in the viral shedding after challenge, suggesting vaccine efficacy against both the H1 and H3 influenza virus subtypes. In addition, the results proved that maternally derived antibodies (MDA) did not constitute an obstacle to the vaccine approach used. Moreover, elevated titers in antibodies both against H1 and H3 proteins in serum and in bronchoalveolar lavage fluids (BALFs) was detected in the vaccinated animals along with a markedly increased mucosal IgA response. Additionally, vaccinated animals developed stronger neutralizing antibodies in BALFs and higher inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that the described DNA-vaccine formulation could potentially be used as a multivalent vaccine against SIV infections.
Collapse
|
48
|
Intragastric delivery of recombinant Lactococcus lactis displaying ectodomain of influenza matrix protein 2 (M2e) and neuraminidase (NA) induced focused mucosal and systemic immune responses in chickens. Mol Immunol 2019; 114:497-512. [PMID: 31518854 DOI: 10.1016/j.molimm.2019.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Compounding with the problem of frequent antigenic shift and occasional drift of the segmented genome of Avian Influenza Virus (AIV), vaccines based on major surface glycoproteins such as haemagglutinin (HA) to counter heterosubtypic AIV infection in chickens remain unsuccessful. In contrast, neuraminidase (NA), the second most abundant surface glycoprotein present in viral capsid is less mutable and, in some instances, successful in eliciting inter-species cross-reactive antibody responses. However, without selective activation of B-cells and T-cells, the ability of NA to induce strong cell mediated immune responses is limited, thus NA based vaccines cannot singularly address the risk of virus escape from host defence. To this end, the highly conserved ectodomain of influenza matrix protein-2 (M2e) has emerged as an attractive cross-protective vaccine target. The present study describes the potential of recombinant Lactococcus lactis (rL. lactis) in expressing functional influenza NA or M2e proteins and conferring effective mucosal and systemic immune responses in the intestine as well as in the upper respiratory airways (trachea) of chickens. In addition, lavages collected from trachea and intestine of birds administered with rL. lactis expressing influenza NA or M2e protein were found to protect MDCK cells against avian influenza type A/PR/8/34 (H1N1) virus challenge. Although minor, the differences in the expression of pro-inflammatory cytokines gene transcripts targeted in this study among the birds administered with either empty or rL. lactis could be attributed to the activation of innate response by L. lactis.
Collapse
|
49
|
Elaish M, Xia M, Ngunjiri JM, Ghorbani A, Jang H, Kc M, Abundo MC, Dhakal S, Gourapura R, Jiang X, Lee CW. Protective immunity against influenza virus challenge by norovirus P particle-M2e and HA2-AtCYN vaccines in chickens. Vaccine 2019; 37:6454-6462. [PMID: 31506195 DOI: 10.1016/j.vaccine.2019.08.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/28/2019] [Accepted: 08/31/2019] [Indexed: 01/12/2023]
Abstract
Development of a broadly reactive influenza vaccine that can provide protection against emerging type A influenza viruses is a big challenge. We previously demonstrated that a vaccine displaying the extracellular domain of the matrix protein 2 (M2e) on the surface loops of norovirus P-particle (M2eP) can partially protect chickens against several subtypes of avian influenza viruses. In the current study, a chimeric vaccine containing a conserved peptide from the subunit 2 of hemagglutinin (HA) glycoprotein (HA2) and Arabidopsis thaliana cyanase protein (AtCYN) (HA2-AtCYN vaccine) was evaluated in 2-weeks-old chickens. Depending on the route of administration, the HA2-AtCYN vaccine was shown to induce various levels of HA2-specific IgA in tears as well as serum IgG, which were associated with partial protection of chickens against tracheal shedding of a low pathogenicity H5N2 challenge virus. Furthermore, intranasal administration with a combination of HA2-AtCYN and M2eP vaccines resulted in enhanced protection compared to each vaccine alone. Simultaneous intranasal administration of the vaccines did not interfere with secretory IgA induction by each vaccine. Additionally, significantly higher M2eP-specific proliferative responses were observed in peripheral blood mononuclear cells of all M2eP-vaccinated groups when compared with the mock-vaccinated group. Although tripling the number of M2e copies did not enhance the protective efficacy of the chimeric vaccine, it significantly reduced immunodominance of P-particle epitopes without affecting the robustness of M2e-specific immune responses. Taken together, our data suggests that mucosal immunization of chickens with combinations of mechanistically different cross-subtype-conserved vaccines has the potential to enhance the protective efficacy against influenza virus challenge.
Collapse
Affiliation(s)
- Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Renukaradhya Gourapura
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
50
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|