1
|
Mandaric S, Friberg H, Saez-Llorens X, Borja-Tabora C, Biswal S, Escudero I, Faccin A, Gottardo R, Brose M, Roubinis N, Fladager D, DeAntonio R, Dimero JAL, Montenegro N, Folschweiller N, Currier JR, Sharma M, Tricou V. Long term T cell response and safety of a tetravalent dengue vaccine in healthy children. NPJ Vaccines 2024; 9:192. [PMID: 39420169 PMCID: PMC11487277 DOI: 10.1038/s41541-024-00967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
As robust cellular responses are important for protection against dengue, this phase 2 study evaluated the kinetics and phenotype of T cell responses induced by TAK-003, a live-attenuated tetravalent dengue vaccine, in 4-16-year-old living in dengue-endemic countries (NCT02948829). Two hundred participants received TAK-003 on Days 1 and 90. Interferon-gamma (IFN-γ) enzyme-linked immunospot assay [ELISPOT] and intracellular cytokine staining were used to analyze T cell response and functionality, using peptide pools representing non-structural (NS) proteins NS3 and NS5 matching DENV-1, -2, -3, and -4 and DENV-2 NS1. One month after the second TAK-003 dose (Day 120), IFN-γ ELISPOT T cell response rates against any peptide pool were 97.1% (95% CI: 93.4% to 99.1%), and similar for baseline dengue seropositive (96.0%) and seronegative (98.6%) participants. IFN-γ ELISPOT T cell response rates at Day 120 were 79.8%, 90.2%, 77.3%, and 74.0%, against DENV-1, -2, -3, and -4, respectively, and remained elevated through 3 years post-vaccination. Multifunctional CD4 and CD8 T cell responses against DENV-2 NS peptides were observed, independent of baseline serostatus: CD8 T cells typically secreted IFN-γ and TNF-α whereas CD4 T cells secreted ≥ 2 of IFN-γ, IL-2 and TNF-α cytokines. NAb titers and seropositivity rates remained substantially elevated through 3 years post-vaccination. Overall, TAK-003 was well tolerated and elicited durable T cell responses against all four DENV serotypes irrespective of baseline serostatus in children and adolescents aged 4-16 years living in dengue-endemic countries. TAK-003-elicited CD4 and CD8 T cells were multifunctional and persisted up to 3 years post-vaccination.
Collapse
Affiliation(s)
- Sanja Mandaric
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xavier Saez-Llorens
- Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Centro de Vacunación Internacional Cevaxin, Panama City, Panama
- Sistema Nacional de Investigación SENACYT, Panama City, Panama
| | | | | | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Raphael Gottardo
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| |
Collapse
|
2
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
3
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
5
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Characterization of B-cell and T-cell responses to a tetravalent dengue purified inactivated vaccine in healthy adults. NPJ Vaccines 2022; 7:132. [PMID: 36316335 PMCID: PMC9622737 DOI: 10.1038/s41541-022-00537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
The increasing global impact of dengue underscores the need for a dengue virus (DENV) vaccine. We assessed B-cell and T-cell responses following vaccination with four formulations of a tetravalent dengue purified inactivated vaccine (DPIV) in dengue-primed and dengue-naive adults from two studies (NCT01666652, NCT01702857). Frequencies of DPIV-induced memory B cells specific to each DENV serotype remained high up to 12 months post-vaccination, and were higher in the dengue-primed than dengue-naive adults. A subsequent DPIV booster dose induced strong anamnestic B-cell responses. Multifunctional CD4+ T cells (predominantly expressing IL-2) were induced by DPIV, with higher frequencies in dengue-primed adults. DPIV-induced CD4+ T cells also demonstrated in vitro proliferative capacity and antigen-specific production of GM-CSF, IFN-γ, and IL-13. CD8+ T-cell responses were undetectable in dengue-naive adults and low in dengue-primed individuals. B- and T-cell responses persisted up to 12 months post-vaccination in both dengue-primed and dengue-naive adults.
Collapse
|
7
|
Odio CD, Katzelnick LC. 'Mix and Match' vaccination: Is dengue next? Vaccine 2022; 40:6455-6462. [PMID: 36195473 PMCID: PMC9526515 DOI: 10.1016/j.vaccine.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Camila D Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States.
| |
Collapse
|
8
|
Qi L, Sun Y, Juraska M, Moodie Z, Magaret CA, Heng F, Carpp LN, Gilbert PB. Neutralizing antibody correlates of sequence specific dengue disease in a tetravalent dengue vaccine efficacy trial in Asia. Vaccine 2022; 40:5912-5923. [PMID: 36068106 PMCID: PMC9881745 DOI: 10.1016/j.vaccine.2022.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 01/31/2023]
Abstract
In the CYD14 trial of the CYD-TDV dengue vaccine in 2-14 year-olds, neutralizing antibody (nAb) titers to the vaccine-insert dengue strains correlated inversely with symptomatic, virologically-confirmed dengue (VCD). Also, vaccine efficacy against VCD was higher against dengue prM/E amino acid sequences closer to the vaccine inserts. We integrated the nAb and sequence data types by assessing nAb titers as a correlate of sequence-specific VCD separately in the vaccine arm and in the placebo arm. In both vaccine and placebo recipients the correlation of nAb titer with sequence-specific VCD was stronger for dengue nAb contact site sequences closer to the vaccine (p = 0.005 and p = 0.012, respectively). The risk of VCD in vaccine (placebo) recipients was 6.7- (1.80)-fold lower at the 90th vs 10th percentile of nAb for viruses perfectly matched to CYD-TDV, compared to 2.1- (0.78)-fold lower at the 90th vs 10th percentile for viruses with five amino acid mismatches. The evidence for a stronger sequence-distance dependent correlate of risk for the vaccine arm indicates departure from the Prentice criteria for a valid sequence-distance specific surrogate endpoint and suggests that the nAb marker may affect dengue risk differently depending on whether nAbs arise from infection or also by vaccination. However, when restricting to baseline-seropositive 9-14 year-olds, the correlation pattern became more similar between the vaccine and placebo arms, supporting nAb titers as an approximate surrogate endpoint in this population. No sequence-specific nAb titer correlates of VCD were seen in baseline-seronegative participants. Integrated immune response/pathogen sequence data correlates analyses could help increase knowledge of correlates of risk and surrogate endpoints for other vaccines against genetically diverse pathogens. Trial registration: EU Clinical Trials Register 2014-001708-24; registration date 2014-05-26.
Collapse
Affiliation(s)
- Li Qi
- Biostatistics and Programming, Sanofi, 55 Corporate Drive, Bridgewater, NJ 08807, United States.
| | - Yanqing Sun
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, United States.
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, United States.
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, United States.
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, United States.
| | - Fei Heng
- Department of Mathematics and Statistics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States.
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, United States.
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, United States; Department of Biostatistics, University of Washington, 3980 15th Avenue NE, Seattle, WA 98109, United States.
| |
Collapse
|
9
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
10
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
11
|
Tricou V, Gottardo R, Egan MA, Clement F, Leroux-Roels G, Sáez-Llorens X, Borkowski A, Wallace D, Dean HJ. Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine 2022; 40:1143-1151. [DOI: 10.1016/j.vaccine.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022]
|
12
|
Park J, Archuleta S, Oh MLH, Shek LPC, Wang H, Bonaparte M, Frago C, Bouckenooghe A, Jantet-Blaudez F, Begue S, Gimenez-Fourage S, Pagnon A. Humoral and cellular immunogenicity and safety following a booster dose of a tetravalent dengue vaccine 5+ years after completion of the primary series in Singapore: 2-year follow-up of a randomized phase II, placebo-controlled trial. Hum Vaccin Immunother 2021; 17:2107-2116. [PMID: 33626291 PMCID: PMC8189141 DOI: 10.1080/21645515.2020.1861875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The tetravalent dengue vaccine (CYD-TDV) is approved for use as a 3-dose series for the prevention of dengue in seropositive individuals ≥9 years. A randomized, placebo-controlled, phase II study of a booster dose of CYD-TDV in individuals who completed the 3-dose schedule >5 years previously (NCT02824198), demonstrated that a booster restored neutralizing antibody titers to post-dose 3 levels. We present additional immunogenicity assessments up to 24 months post-booster, and B- and T-cell responses in a participant subset. Participants aged 9-45 years that had received all three doses of CYD-TDV were randomized 3:1 to receive a booster dose of CYD-TDV (n = 89) or placebo (n = 29). Neutralizing antibody levels at Months 1, 6, 12, and 24 post-booster were assessed by plaque reduction neutralization test. In a subset, B-cell responses were assessed by a fluorescent immunospot assay, and T-cells analyzed by flow cytometry at Days 0, 7, 12, Months 1 and 12. We observed an increase of antibody titers Month 1 post-booster, then a gradual decline to Month 24. In the CYD-TDV booster group, an increase in plasmablasts was seen at Day 7 declining by Day 14, an increase in memory B-cells was observed at Day 28 with no persistence at Month 12. CYD-TDV booster recalled a CD8+ T-cell response, dominated by IFN-γ secretion, which decreased 12 months post-booster. This study showed a short-term increase in antibody titers and then gradual decrease following CYD-TDV booster injection >5 years after primary immunization, and the presence of memory B-cells activated following the booster, but with low persistence.
Collapse
Affiliation(s)
- Juliana Park
- Global Clinical Sciences, Sanofi Pasteur, Singapore, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - May-Lin Helen Oh
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hao Wang
- Biostatistics, Sanofi, Beijing, China
| | | | - Carina Frago
- Global Clinical Sciences, Sanofi Pasteur, Singapore, Singapore
| | | | | | - Sarah Begue
- Research and External Innovation Department, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Anke Pagnon
- Research and External Innovation Department, Sanofi Pasteur, Marcy l'Etoile, France
| |
Collapse
|
13
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2021. [DOI: 10.1080/17460441.2020.1811675
expr 880867630 + 907120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Identification of Novel Yellow Fever Class II Epitopes in YF-17D Vaccinees. Viruses 2020; 12:v12111300. [PMID: 33198381 PMCID: PMC7697718 DOI: 10.3390/v12111300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Yellow fever virus (YFV) is a mosquito-borne member of the genus flavivirus, including other important human-pathogenic viruses, such as dengue, Japanese encephalitis, and Zika. Herein, we report identifying 129 YFV Class II epitopes in donors vaccinated with the live attenuated YFV vaccine (YFV-17D). A total of 1156 peptides predicted to bind 17 different common HLA-DRB1 allelic variants were tested using IFNγ ELISPOT assays in vitro re-stimulated peripheral blood mononuclear cells from twenty-six vaccinees. Overall, we detected responses against 215 YFV epitopes. We found that the capsid and envelope proteins, as well as the non-structural (NS) proteins NS3 and NS5, were the most targeted proteins by CD4+ T cells from YF-VAX vaccinated donors. In addition, we designed and validated by flow cytometry a CD4+ mega pool (MP) composed of structural and non-structural epitopes in an independent cohort of vaccinated donors. Overall, this study provides a comprehensive prediction and validation of YFV epitopes in a cohort of YF-17D vaccinated individuals. With the design of a CD4 epitope MP, we further provide a useful tool to detect ex vivo responses of YFV-specific CD4 T cells in small sample volumes.
Collapse
|
15
|
Zhan Y, Pang Z, Du Y, Wang W, Yang Y, Wang W, Gao GF, Huang B, Deng Y, Tan W. NS1-based DNA vaccination confers mouse protective immunity against ZIKV challenge. INFECTION GENETICS AND EVOLUTION 2020; 85:104521. [DOI: 10.1016/j.meegid.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
|
16
|
Combine two different dengue vaccines could efficiently target dengue-naive subjects. Comment to Macias A, Ruiz-Palacios G, Ramos-Castaneda J. Combine dengue vaccines to optimize effectiveness. Vaccine. 2020 Jun 26;38(31):4801-4804. Vaccine 2020; 39:779. [PMID: 32928589 DOI: 10.1016/j.vaccine.2020.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022]
|
17
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
18
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2020; 16:47-58. [PMID: 32838577 DOI: 10.1080/17460441.2020.1811675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION From both a public health and economic perspective, vaccination is arguably the most effective approach to combat endemic and pandemic infectious diseases. Dengue affects more than 100 countries in the tropical and subtropical world, with 100-400 million infections every year. In the wake of the recent setback faced by Dengvaxia, the only FDA-approved dengue vaccine, safer and more effective dengue vaccines candidates are moving along the clinical pipeline. AREA COVERED This review provides an update of the latest outcomes of dengue vaccine clinical trials. In the light of recent progress made in our understanding of dengue pathogenesis and immune correlates of protection, novel vaccine strategies have emerged with promising second-generation dengue vaccine candidates. Finally, the authors discuss the dengue-specific challenges that remain to be addressed and overcome. EXPERT OPINION The authors propose to explore various adjuvants and delivery systems that may help improve the design of safe, effective, and affordable vaccines against dengue. They also challenge the concept of a 'universal' dengue vaccine as increasing evidence support that DENV strains have evolved different virulence mechanisms.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
19
|
Pereira Neto TA, Gonçalves-Pereira MH, de Queiroz CP, Ramos MF, de Oliveira FDFS, Oliveira-Prado R, do Nascimento VA, Abdalla LF, Santos JHA, Martins-Filho OA, Naveca FG, Teixeira-Carvalho A, Santiago HDC. Multifunctional T cell response in convalescent patients two years after ZIKV infection. J Leukoc Biol 2020; 108:1265-1277. [PMID: 32726884 DOI: 10.1002/jlb.4ma0520-708r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/16/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zika is an important emerging infectious disease in which the role of T cells remains elusive. This study aimed to evaluate the phenotype of multifunctional T cells in individuals 2 yr after exposure to Zika virus (ZIKV). We used a library of 671 synthetic peptides covering the whole polyprotein of ZIKV in pools corresponding to each viral protein (i.e., capsid, membrane precursor or prM, envelope, NS1 [nonstructural protein], NS2A + NS2B, NS3, NS4A + NS4B, and NS5) to stimulate PBMCs from individuals previously exposed to ZIKV. We observed an increased frequency of ZIKV-specific IFNγ, IL-17A, TNF, and IL-10 production by T cell populations. IFNγ and TNF production were especially stimulated by prM, capsid, or NS1 in CD8+ T cells and by capsid or prM in CD4+ T cells. In addition, there was an increase in the frequency of IL-10+ CD8+ T cells after stimulation with prM, capsid, NS1, NS3, or NS5. Multifunctional properties were observed in ZIKV-specific T cells responding especially to prM, capsid, NS1 or, to a smaller extent, NS3 antigens. For example, we found a consistent IFNγ + TNF+ CD8+ T cell population in response to most virus antigens and CD4+ and CD8+ T cells that were IFNγ + IL-17A+ and IL-17A+IL-10+, which could also produce TNF, in response to capsid, prM, NS1, or NS3 stimulation. Interestingly, CD8+ T cells were more prone to a multifunctional phenotype than CD4+ T cells, and multifunctional T cells were more efficient at producing cytokines than single-function cells. This work provides relevant insights into the quality of ZIKV-specific T cell responses and ZIKV immunity.
Collapse
Affiliation(s)
| | | | - Camila Pereira de Queiroz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Faria Ramos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | - Felipe Gomes Naveca
- Leonidas e Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | | | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
Kallas EG, Precioso AR, Palacios R, Thomé B, Braga PE, Vanni T, Campos LMA, Ferrari L, Mondini G, da Graça Salomão M, da Silva A, Espinola HM, do Prado Santos J, Santos CLS, Timenetsky MDCST, Miraglia JL, Gallina NMF, Weiskopf D, Sette A, Goulart R, Salles RT, Maestri A, Sallum AME, Farhat SCL, Sakita NK, Ferreira JCOA, Silveira CGT, Costa PR, Raw I, Whitehead SS, Durbin AP, Kalil J. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: a two-step, double-blind, randomised placebo-controlled phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:839-850. [PMID: 32220283 DOI: 10.1016/s1473-3099(20)30023-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Butantan Institute has manufactured a lyophilised tetravalent live-attenuated dengue vaccine Butantan-DV, which is analogous to the US National Institutes of Health (NIH) TV003 admixture. We aimed to assess the safety and immunogenicity of Butantan-DV. METHODS We did a two-step, double-blind, randomised placebo-controlled phase 2 trial at two clinical sites in São Paulo, Brazil. We recruited healthy volunteers aged 18-59 years; pregnant women, individuals with a history of neurological, heart, lung, liver or kidney disease, diabetes, cancer, or autoimmune diseases, and individuals with HIV or hepatitis C were excluded. Step A was designed as a small bridge-study between Butantan-DV and TV003 in DENV-naive participants. In step A, we planned to randomly assign 50 dengue virus (DENV)-naive individuals to receive two doses of Butantan-DV, TV003, or placebo, given 6 months apart. In step B, we planned to randomly assign 250 participants (DENV-naive and DENV-exposed) to receive one dose of Butantan-DV or placebo. Participants were randomly assigned, by computer-generated block randomisation (block sizes of five); participants in step A were randomly assigned (2:2:1) to receive Butantan-DV, TV003, or placebo and participants in step B were randomly assigned (4:1) to receive Butantan-DV or placebo. Participants and study staff were unaware of treatment allocation. The primary safety outcome was the frequency of solicited and unsolicited local and systemic adverse reactions within 21 days of the first vaccination, analysed by intention to treat. The primary immunogenicity outcome was seroconversion rates of the DENV-1-4 serotypes measured 91 days after the first vaccination, analysed in the per-protocol population, which included all participants in step A, and all participants included in step B who completed all study visits with serology sample collection. This trial is registered with ClinicalTrials.gov, NCT01696422. FINDINGS Between Nov 5, 2013, and Sept 21, 2015, 300 individuals were enrolled and randomly assigned: 155 (52%) DENV-naive participants and 145 (48%) DENV-exposed participants. Of the 155 DENV-naive participants, 97 (63%) received Butantan-DV, 17 (11%) received TV003, and 41 (27%) received placebo. Of the 145 DENV-exposed participants, 113 (78%) received Butantan-DV, three (2%) received TV003, and 29 (20%) received placebo. Butantan-DV and TV003 were both immunogenic, well-tolerated, and no serious adverse reactions were observed. In step A, rash was the most frequent adverse event (16 [845] of 19 participants in the Butantan-DV group and 13 [76%] of 17 participants in the TV003 group). Viraemia was similar between the Butantan-DV and TV003 groups. Of the 85 DENV-naive participants in the Butantan-DV group who attended all visits for sample collection for seroconversion analysis and thus were included in the per-protocol analysis population, 74 (87%) achieved seroconversion to DENV-1, 78 (92%) to DENV-2, 65 (76%) to DENV-3, and 76 (89%) to DENV-4. Of the 101 DENV-exposed participants in the Butantan-DV group who attended all visits for sample collection for seroconversion analysis, 82 (81%) achieved seroconversion to DENV-1, 79 (78%) to DENV-2, 83 (82%) to DENV-3, and 78 (77%) to DENV-4. INTERPRETATION Butantan-DV and TV003 were safe and induced robust, balanced neutralising antibody responses against the four DENV serotypes. Efficacy evaluation of the Butantan-DV vaccine is ongoing. FUNDING Intramural Research Program US NIH National Institute of Allergy and Infectious Diseases, Brazilian National Bank for Economic and Social Development, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Fundação Butantan.
Collapse
Affiliation(s)
- Esper G Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexander Roberto Precioso
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil; Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil.
| | - Ricardo Palacios
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Beatriz Thomé
- Preventive Medicine Department, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia Emília Braga
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Tazio Vanni
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Lúcia M A Campos
- Department of Pediatrics, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Ferrari
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gabriella Mondini
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Maria da Graça Salomão
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Anderson da Silva
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Heloisa M Espinola
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Joane do Prado Santos
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | | | | | - João Luiz Miraglia
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Neuza M F Gallina
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | - Raphaella Goulart
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael Tavares Salles
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alvino Maestri
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Neusa K Sakita
- Department of Pediatrics, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Juliana C O A Ferreira
- Department of Pediatrics, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Priscilla R Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Isaias Raw
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Pinheiro-Michelsen JR, Souza RDSO, Santana IVR, da Silva PDS, Mendez EC, Luiz WB, Amorim JH. Anti-dengue Vaccines: From Development to Clinical Trials. Front Immunol 2020; 11:1252. [PMID: 32655561 PMCID: PMC7325986 DOI: 10.3389/fimmu.2020.01252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue Virus (DENV) is an arbovirus (arthropod-borne virus). Four serotypes of DENV are responsible for the infectious disease called dengue that annually affects nearly 400 million people worldwide. Although there is only one vaccine formulation licensed for use in humans, there are other vaccine formulations under development that apply different strategies. In this review, we present information about anti-dengue vaccine formulations regarding development, pre-clinical tests, and clinical trials. The improvement in vaccine development against dengue is much needed, but it should be considered that the correlate of protection is still uncertain. Neutralizing antibodies have been proposed as a correlate of protection, but this ignores the key role of T-cell mediated immunity in controlling DENV infection. It is important to confirm the accurate correlate of protection against DENV infection, and also to have other anti-dengue vaccine formulations licensed for use.
Collapse
Affiliation(s)
- Josilene Ramos Pinheiro-Michelsen
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Rayane da Silva Oliveira Souza
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Itana Vivian Rocha Santana
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Patrícia de Souza da Silva
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Erick Carvalho Mendez
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| |
Collapse
|
22
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
23
|
Guy B, Ooi EE, Ramos-Castañeda J, Thomas SJ. When Can One Vaccinate with a Live Vaccine after Wild-Type Dengue Infection? Vaccines (Basel) 2020; 8:vaccines8020174. [PMID: 32283639 PMCID: PMC7349415 DOI: 10.3390/vaccines8020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Recommendations have been issued for vaccinating with the Sanofi Pasteur tetravalent dengue vaccine (CYD-TDV, Dengvaxia®) individuals aged from 9 to 45/60 years old with a prior dengue virus (DENV) infection and living in endemic countries/areas. One question linked to these recommendations is to determine when it is possible to start vaccination after laboratory confirmed wild-type DENV infection, and this question can be relevant to any live vaccine to be used in endemic areas. To address it, we reviewed and discussed the immunological and practical considerations of live vaccination in this context. Firstly, the nature and kinetics of immune responses triggered by primary or secondary DENV infection may positively or negatively impact subsequent live vaccine take and associated clinical benefit, depending on when vaccination is performed after infection. Secondly, regarding practical aspects, the “easiest” situation would correspond to a confirmed acute dengue fever, only requiring knowing when the patient should come back for vaccination. However, in most cases, it will not be possible to firmly establish the actual date of infection and vaccination may have to take place during well-defined periods, regardless of when prior infection occurred. Evidence that informs health authorities and medical practitioners in formulating vaccine policies and implementing vaccine programs is thus needed. The present work reviewed the different elements of the guidance and proposes some key conclusions and recommendations.
Collapse
Affiliation(s)
- Bruno Guy
- Consultant, 69000 Lyon, France
- Correspondence:
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Jose Ramos-Castañeda
- Instituto Nacional de Ciencias Medicas y de la Nutrcion “Salvador Zubiran”, (INCMNSZ), Departamento de Infectologia, Ciudad de Mexico 14080, Mexico;
- Departamento de Inmunidad, Instituto Nacional de Salud Publica, Cuernavaca, Morelos 62100, Mexico
| | - Stephen J. Thomas
- Institute for Global Health and Translational Sciences, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA;
| |
Collapse
|
24
|
A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. mBio 2020; 11:mBio.02494-19. [PMID: 32265332 PMCID: PMC7157777 DOI: 10.1128/mbio.02494-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.
Collapse
|
25
|
Kum DB, Boudewijns R, Ma J, Mishra N, Schols D, Neyts J, Dallmeier K. A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerg Microbes Infect 2020; 9:520-533. [PMID: 32116148 PMCID: PMC7067203 DOI: 10.1080/22221751.2020.1730709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas, followed by the yellow fever virus (YFV) outbreaks in Angola and Brazil highlight the urgent need for safe and efficient vaccines against the ZIKV as well as much greater production capacity for the YFV-17D vaccine. Given that the ZIKV and the YFV are largely prevalent in the same geographical areas, vaccines that would provide dual protection against both pathogens may obviously offer a significant benefit. We have recently engineered a chimeric vaccine candidate (YF-ZIKprM/E) by swapping the sequences encoding the YFV-17D surface glycoproteins prM/E by the corresponding sequences of the ZIKV. A single vaccine dose of YF-ZIKprM/E conferred complete protection against a lethal challenge with wild-type ZIKV strains. Surprisingly, this vaccine candidate also efficiently protected against lethal YFV challenge in various mouse models. We demonstrate that CD8+ but not CD4+ T cells, nor ZIKV neutralizing antibodies are required to confer protection against YFV. The chimeric YF-ZIKprM/E vaccine may thus be considered as a dual vaccine candidate efficiently protecting mice against both the ZIKV and the YFV, and this following a single dose immunization. Our finding may be particularly important in the rational design of vaccination strategies against flaviviruses, in particular in areas where YFV and ZIKV co-circulate.
Collapse
Affiliation(s)
- Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
26
|
pUC18-CpG Is an Effective Adjuvant for a Duck Tembusu Virus Inactivated Vaccine. Viruses 2020; 12:v12020238. [PMID: 32093377 PMCID: PMC7077240 DOI: 10.3390/v12020238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus responsible for massive economic losses in the duck industry. However, commercially inactivated DTMUV vaccines have been ineffective at inducing protective immunity in ducks. The widely used adjuvant cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) reportedly improve humoral and cellular immunities in animal models. However, its effectiveness in DTMUV vaccines requires validation. Here, we assessed the protective efficacy of pUC18-CpG as an adjuvant in an inactivated live DTMUV vaccine in ducks. Our results revealed that the serum hemagglutination inhibition (HI) antibody titers, positive rates of anti-DTMUV antibodies, the concentration of serum cytokines, and protection efficacy were significantly increased in ducks immunized with pUC18-CpG compared to that in the control group. Moreover, ducks immunized with a full vaccine dose containing a half dose of antigen supplemented with 40 μg of pUC18-CpG exhibited the most potent responses. This study suggests that pUC18-CpG is a promising adjuvant against DTMUV, which might prove effective in treating other viral diseases in waterfowl.
Collapse
|
27
|
Cell-Mediated Immunity Generated in Response to a Purified Inactivated Vaccine for Dengue Virus Type 1. mSphere 2020; 5:5/1/e00671-19. [PMID: 31969476 PMCID: PMC6977178 DOI: 10.1128/msphere.00671-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dengue is a tropical disease transmitted by mosquitoes, and nearly half of the world’s population lives in areas where individuals are at risk of infection. Several vaccines for dengue are in development, including one which was recently licensed in several countries, although its utility is limited to people who have already been infected with one of the four dengue viruses. One major hurdle to understanding whether a dengue vaccine will work for everyone—before exposure—is the necessity of knowing which marker can be measured in the blood to signal that the individual has protective immunity. This report describes an approach measuring multiple different parts of immunity in order to characterize which signals one candidate vaccine imparted to a small number of human volunteers. This approach was designed to be able to be applied to any dengue vaccine study so that the data can be compared and used to inform future vaccine design and/or optimization strategies. Dengue is the most prevalent arboviral disease afflicting humans, and a vaccine appears to be the most rational means of control. Dengue vaccine development is in a critical phase, with the first vaccine licensed in some countries where dengue is endemic but demonstrating insufficient efficacy in immunologically naive populations. Since virus-neutralizing antibodies do not invariably correlate with vaccine efficacy, other markers that may predict protection, including cell-mediated immunity, are urgently needed. Previously, the Walter Reed Army Institute of Research developed a monovalent purified inactivated virus (PIV) vaccine candidate against dengue virus serotype 1 (DENV-1) adjuvanted with alum. The PIV vaccine was safe and immunogenic in a phase I dose escalation trial in healthy, flavivirus-naive adults in the United States. From that trial, peripheral blood mononuclear cells obtained at various time points pre- and postvaccination were used to measure DENV-1-specific T cell responses. After vaccination, a predominant CD4+ T cell-mediated response to peptide pools covering the DENV-1 structural proteins was observed. Over half (13/20) of the subjects produced interleukin-2 (IL-2) in response to DENV peptides, and the majority (17/20) demonstrated peptide-specific CD4+ T cell proliferation. In addition, analysis of postvaccination cell culture supernatants demonstrated an increased rate of production of cytokines, including gamma interferon (IFN-γ), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Overall, the vaccine was found to have elicited DENV-specific CD4+ T cell responses as measured by enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining (ICS), lymphocyte proliferation, and cytokine production assays. Thus, together with antibody readouts, the use of a multifaceted measurement of cell-mediated immune responses after vaccination is a useful strategy for more comprehensively characterizing immunity generated by dengue vaccines. IMPORTANCE Dengue is a tropical disease transmitted by mosquitoes, and nearly half of the world’s population lives in areas where individuals are at risk of infection. Several vaccines for dengue are in development, including one which was recently licensed in several countries, although its utility is limited to people who have already been infected with one of the four dengue viruses. One major hurdle to understanding whether a dengue vaccine will work for everyone—before exposure—is the necessity of knowing which marker can be measured in the blood to signal that the individual has protective immunity. This report describes an approach measuring multiple different parts of immunity in order to characterize which signals one candidate vaccine imparted to a small number of human volunteers. This approach was designed to be able to be applied to any dengue vaccine study so that the data can be compared and used to inform future vaccine design and/or optimization strategies.
Collapse
|
28
|
Abstract
Dengue is the world's most prevalent and important arboviral disease. More than 50% of the world's population lives at daily risk of infection and it is estimated more than 95 million people a year seek medical care following infection. Severe disease can manifest as plasma leakage and potential for clinically significant hemorrhage, shock, and death. Treatment is supportive and there is currently no licensed anti-dengue virus prophylactic or therapeutic compound. A single dengue vaccine, Sanofi Pasteur's Dengvaxia®, has been licensed in 20 countries but uptake has been poor. A safety signal in dengue seronegative vaccine recipients stimulated an international re-look at the vaccine performance profile, new World Health Organization recommendations for use, and controversy in the Philippines involving the government, regulatory agencies, Sanofi Pasteur, clinicians responsible for testing and administering the vaccine, and the parents of vaccinated children. In this review, we provide an overview of Dengvaxia's® development and discuss what has been learned about product performance since its licensure.
Collapse
Affiliation(s)
- Stephen J Thomas
- State University of New York, Upstate Medical University, Division of Infectious Diseases, Institute for Global Health and Translational Sciences , Syracuse , NY , USA
| | - In-Kyu Yoon
- Global Dengue & Aedes-Transmitted Diseases Consortium, International Vaccine Institute, SNU Research Park , Gwanak-gu , Republic of Korea
| |
Collapse
|
29
|
Tian Y, Grifoni A, Sette A, Weiskopf D. Human T Cell Response to Dengue Virus Infection. Front Immunol 2019; 10:2125. [PMID: 31552052 PMCID: PMC6737489 DOI: 10.3389/fimmu.2019.02125] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
DENV is a major public health problem worldwide, thus underlining the overall significance of the proposed Program. The four dengue virus (DENV) serotypes (1-4) cause the most common mosquito-borne viral disease of humans, with 3 billion people at risk for infection and up to 100 million cases each year, most often affecting children. The protective role of T cells during viral infection is well-established. Generally, CD8 T cells can control viral infection through several mechanisms, including direct cytotoxicity, and production of pro-inflammatory cytokines such as IFN-γ and TNF-α. Similarly, CD4 T cells are thought to control viral infection through multiple mechanisms, including enhancement of B and CD8 T cell responses, production of inflammatory and anti-viral cytokines, cytotoxicity, and promotion of memory responses. To probe the phenotype of virus-specific T cells, epitopes derived from viral sequences need to be known. Here we discuss the identification of CD4 and CD8 T cell epitopes derived from DENV and how these epitopes have been used by researchers to interrogate the phenotype and function of DENV-specific T cell populations.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
30
|
Valdés I, Lazo L, Hermida L, Guillén G, Gil L. Can Complementary Prime-Boost Immunization Strategies Be an Alternative and Promising Vaccine Approach Against Dengue Virus? Front Immunol 2019; 10:1956. [PMID: 31507591 PMCID: PMC6718459 DOI: 10.3389/fimmu.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022] Open
Abstract
Dengue is one of the most important diseases transmitted by mosquitoes. Dengvaxia®, a vaccine registered in several countries, cannot be administered to non-immune individuals and children younger than 9 years old, due to safety reasons. There are two vaccine candidates in phase 3 efficacy trials, but their registration date is completely unknown at this moment. So, the development of new vaccines or vaccine strategies continues to be a priority for the WHO. This work reviews some complementary prime-boost immunization studies against important human pathogens. Additionally, it reviews the results obtained using this regimen of immunization against dengue virus as a potential alternative approach for finding a safe and efficient vaccine. Finally, the main elements associated with this strategy are also discussed. The generation of new strategies of vaccination against dengue virus, must be directed to reduce the risk of increasing viral load through sub-neutralizing antibodies and it must be also directed to induce a polyfunctional T cell response. Complementary prime-boost immunization strategies could emerge as an interesting approach to induce solid immunity or at least to reduce viral load after natural infection, avoiding severe dengue. Subunit vaccine could be safe and attractive antigens for this strategy, especially proteins including B, and T-cells epitopes for inducing humoral and cellular immune responses, which can play an important role controlling the disease.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Laura Lazo
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisset Hermida
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lázaro Gil
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
31
|
Elong Ngono A, Shresta S. Cross-Reactive T Cell Immunity to Dengue and Zika Viruses: New Insights Into Vaccine Development. Front Immunol 2019; 10:1316. [PMID: 31244855 PMCID: PMC6579874 DOI: 10.3389/fimmu.2019.01316] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Dengue virus (DENV) is a member of the Flavivirus family that includes Zika virus (ZIKV), West Nile virus, Japanese encephalitis virus, and yellow fever virus. As the most prevalent of the flaviviruses, DENV is responsible for tens of millions of infections each year. The clinical manifestations of infection with one of the four DENV serotypes (DENV1–4) range from no symptoms to hemorrhagic fever and shock (“severe dengue”), which is fatal in ~25,000 patients annually. Many factors contribute to the development of severe dengue, including the DENV serotype and host expression of certain HLA alleles; however, it now seems clear that pre-existing immunity to DENV—and possibly other flaviviruses—is a major precipitating factor. While primary infection with one DENV serotype elicits strong cellular and humoral immune responses that likely confer long-lived protection against the same serotype, subsequent infection with a different serotype carries an increased risk of developing severe dengue. Thus, primary DENV infection elicits cross-reactive immunity that may be protective or pathogenic, depending on the context of the subsequent infection. Many flaviviruses share high sequence homology, raising the possibility that cross-reactive immunity to one virus may contribute to protection against or pathogenesis of a second virus in a similar manner. In addition, several flaviviruses are now endemic in overlapping geographic regions, underscoring the need to gain more knowledge about the mechanisms underlying cross-reactive immunity to different DENV serotypes and flaviviruses. Here, we review our current understanding of T cell immunity to DENV, focusing on cross-reactivity with other serotypes and flaviviruses such as ZIKV, and the role of DENV-elicited CD4+ and CD8+ T cells in protection. Recent work in this area supports a beneficial role for cross-reactive T cells and provides new insights into the design of safe and efficient flavivirus/pan-flavivirus vaccines.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
32
|
Moris P, Bauer KM, Currier JR, Friberg H, Eckels KH, Esquilin IO, Gibbons RV, Innis BL, Jarman RG, Simasathien S, Sun P, Thomas SJ, Watanaveeradej V. Cell-mediated immune responses to different formulations of a live-attenuated tetravalent dengue vaccine candidate in subjects living in dengue endemic and non-endemic regions. Hum Vaccin Immunother 2019; 15:2090-2105. [PMID: 30829100 PMCID: PMC6773406 DOI: 10.1080/21645515.2019.1581536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three phase II randomized trials evaluated the safety/immunogenicity of two formulations of live-attenuated tetravalent dengue virus (TDEN) vaccine in dengue-endemic (Puerto Rico, Thailand) and non-endemic (US) regions (NCT00350337/NCT00370682/NCT00468858). We describe cell-mediated immune (CMI) responses; safety and humoral responses were reported previously. Participants received two doses of vaccine or control (placebo or the precursor live-attenuated TDEN vaccine) 6 months apart. Selected US participants received a booster 5–12 months post-dose 2. Evaluated subsets of the per-protocol cohorts included 75 primarily dengue virus (DENV)-unprimed US adults, 69 primarily flavivirus-primed Thai adults, and 100 DENV-primed or DENV-unprimed Puerto Rican adults/adolescents/children. T-cell responses were quantified using intracellular cytokine staining (ICS; DENV-infected cell-lysate or DENV-1/DENV-2 peptide-pool stimulation) or IFN-γ ELISPOT (DENV-2 peptide-pool stimulation). Memory B-cell responses were quantified using B-cell ELISPOT. Across populations and age strata, DENV serotype-specific CD4+ T-cell responses were slightly to moderately increased (medians ≤0.18% [ICS]), DENV-2–biased, and variable for both formulations. Responses in unprimed subjects were primarily detected post-dose 1. Response magnitudes in primed subjects were similar between doses. Multifunctional CD8+ T-cell responses were detected after peptide-pool stimulation. T-cell responses were mostly directed to DENV nonstructural proteins 3 and 5. Memory B-cell responses were tetravalent, of low-to-moderate magnitudes (medians ≤0.25%), and mainly observed post-dose 2 in unprimed subjects and post-dose 1 in primed subjects. A third dose did not boost CMI responses. In conclusion, both formulations of the live-attenuated TDEN vaccine candidate were poorly to moderately immunogenic with respect to B-cell and T-cell responses, irrespective of the priming status of the participants. Abbreviation ATP: according-to-protocol; ICS: Intracellular Cytokine Staining; NS3: Nonstructural protein 3; ELISPOT: Enzyme-Linked ImmunoSpot; JEV: Japanese encephalitis virus; PBMC: peripheral blood mononuclear cells
Collapse
Affiliation(s)
| | | | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Ines O Esquilin
- Department of Pediatrics, University of Puerto Rico School of Medicine , San Juan , Puerto Rico
| | - Robert V Gibbons
- Battlefield Pain Management Task Area, U.S. Army Institute for Surgical Research , Fort Sam Houston , TX , USA
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | | | - Peifang Sun
- Henry Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Veerachai Watanaveeradej
- Department of Pediatrics, Phramongkutklao Hospital , Bangkok , Thailand.,Department of Microbiology, Phramongkutklao College of Medicine , Bangkok , Thailand
| |
Collapse
|
33
|
Wen J, Shresta S. Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr Opin Immunol 2019; 59:1-8. [PMID: 30884384 DOI: 10.1016/j.coi.2019.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Zika and the four serotypes of dengue are closely related flaviviruses that share a high degree of structural and sequence homology and co-circulate in many regions of the world. Here, we review recent studies investigating antigenic cross-reactivity between the two viruses. We discuss the pathogenic and protective roles of cross-reactive anti-viral antibody and T cell responses, respectively, in modulating the outcome of secondary dengue or Zika infection. Based on recent findings and increased incidence of severe disease in seronegative recipients of the first dengue vaccine to be licensed, we propose that the time has come to focus on developing pan-flavivirus vaccines that protect against Zika and four dengue serotypes by eliciting protective cross-reactive T cell responses while concomitantly reducing production of cross-reactive antibodies that can exacerbate disease.
Collapse
Affiliation(s)
- Jinsheng Wen
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Microbiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
34
|
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC. T-Cell Response to Viral Hemorrhagic Fevers. Vaccines (Basel) 2019; 7:E11. [PMID: 30678246 PMCID: PMC6466054 DOI: 10.3390/vaccines7010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Kum DB, Mishra N, Boudewijns R, Gladwyn-Ng I, Alfano C, Ma J, Schmid MA, Marques RE, Schols D, Kaptein S, Nguyen L, Neyts J, Dallmeier K. A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. NPJ Vaccines 2018; 3:56. [PMID: 30564463 PMCID: PMC6292895 DOI: 10.1038/s41541-018-0092-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas led to an intense search for therapeutics and vaccines. Here we report the engineering of a chimeric virus vaccine candidate (YF-ZIKprM/E) by replacing the antigenic surface glycoproteins and the capsid anchor of YFV-17D with those of a prototypic Asian lineage ZIKV isolate. By intracellular passaging, a variant with adaptive mutations in the E protein was obtained. Unlike YFV-17D, YF-ZIKprM/E replicates poorly in mosquito cells. Also, YF-ZIKprM/E does not cause disease nor mortality in interferon α/β, and γ receptor KO AG129 mice nor following intracranial inoculation of BALB/c pups. A single dose as low as 1 × 102 PFU results, as early as 7 days post vaccination, in seroconversion to neutralizing antibodies and confers full protection in AG129 mice against stringent challenge with a lethal inoculum (105 LD50) of either homologous or heterologous ZIKV strains. Induction of multi-functional CD4+ and CD8+ T cell responses against ZIKV structural and YFV-17D non-structural proteins indicates that cellular immunity may also contribute to protection. Vaccine immunogenicity and protection was confirmed in other mouse strains, including after temporal blockade of interferon-receptors in wild-type mice to facilitate ZIKV replication. Vaccination of wild-type NMRI dams with YF-ZIKprM/E results in complete protection of foetuses against brain infections and malformations following a stringent intraplacental challenge with an epidemic ZIKV strain. The particular characteristic of YF-ZIKprM/E in terms of efficacy and its marked attenuation in mice warrants further exploration as a vaccine candidate. Zika virus (ZIKV) infection generally results in mild symptoms but can cause serious developmental abnormalities in infants born to ZIKV infected mothers. Kai Dallmeier and colleagues at the KU Leuven in Belgium, engineered a chimeric live-attenuated vaccine (YF-ZIKprM/E) by swapping the glycoprotein from the Yellow Fever vaccine YFV-17D with that of a pre-epidemic ZIKV strain. YF-ZIKprM/E is very well tolerated with no adverse effects even following high dose intracranial infection. Mice highly susceptible to ZIKV infection—including AG129 and type I interferon receptor deficient strains—vaccinated with a single dose of YF-ZIKprM/E are fully protected from lethal ZIKV challenge. Protection can be achieved within 7 days and by low doses of YF-ZIKprM/E, is durable and generally results in sterilizing immunity. YF-ZIKprM/E elicits both neutralizing antibodies and robust cellular immunity. Finally, YF-ZIKprM/E can also prevent vertical transmission of ZIKV and achieve efficient protection of pups from neurological defects following intraplacental challenge.
Collapse
Affiliation(s)
- Dieudonné B Kum
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ivan Gladwyn-Ng
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Christian Alfano
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Michael A Schmid
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rafael E Marques
- 3Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Dominique Schols
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne Kaptein
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- 2GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
36
|
Abstract
OBJECTIVES The objective of this study is to investigate immunogenicity and safety of the yellow fever vaccine (YFV) in HIV-infected (HIV+) patients with high CD4 T-cell counts. DESIGN In this prospective, comparative study of YFV-naive adults: 40 HIV+ under antiretroviral therapy (ART) with CD4 T-cell count above 350 cells/μl and plasma HIV-RNA less than 50 copies/ml for at least 6 months and 31 HIV-negative (HIV-) received one injection of the YF-17D strain vaccine. METHODS Serologic response was assessed by using a plaque reduction neutralizing test and YFV-specific T cells by using an INFγ-Elispot assay. RESULTS YFV was well tolerated in both groups. Most participants had asymptomatic YFV viremia at day (D) 7 after vaccination (77% of HIV- and 82% of HIV+, P = 0.58), with higher plasma level of YFV RNA in HIV+ than in HIV- (median 2.46 log10 copies/ml (range: 1.15-4.16) and 1.91 log10 copies/ml (1.15-3.19), respectively, P = 0.011). A significant but transient decrease in CD4 cell counts was seen at D7 in both groups, more pronounced in HIV- than in HIV+ patients (-261.5 versus -111.5 cells/μl, respectively, P = 0.0003), but no HIV breakthrough was observed in plasma. All participants developed protective neutralizing antibody levels from D28 and up to 1 year after injection. At D91, fewer HIV+ than HIV- participants exhibited YFV T-cell response (20 versus 54%, respectively, P = 0.037). CONCLUSION At 1 year, YFV was immunogenic and well tolerated in HIV-infected adults under ART with CD4 T-cell counts above 350 cells/μl. However, a lower immunity of YFV T cells in HIV-infected patients was observed as compared with HIV- participants. CLINICAL TRIALS REGISTRATION NCT01426243.
Collapse
|
37
|
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9:2147. [PMID: 30319615 PMCID: PMC6170629 DOI: 10.3389/fimmu.2018.02147] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
38
|
Guy B. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? Questions Raised by the Development and Implementation of Dengue Vaccines: Example of the Sanofi Pasteur Tetravalent Dengue Vaccine. Cold Spring Harb Perspect Biol 2018; 10:a029462. [PMID: 28716892 PMCID: PMC5983191 DOI: 10.1101/cshperspect.a029462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dengue is a still-growing public health concern in many tropical and subtropical regions of the world. The development and implementation of an effective dengue vaccine in these regions is a high priority. This insight focuses on the expected characteristics of a safe and efficacious vaccine, referring to the clinical experience obtained during the development of the first tetravalent dengue vaccine from Sanofi Pasteur, now licensed in several endemic countries. Safety and efficacy data from both short- and long-term follow-up of large-scale efficacy studies will be discussed, as well as the next steps following vaccine introduction.
Collapse
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France
| |
Collapse
|
39
|
Regulation and Function of NK and T Cells During Dengue Virus Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:251-264. [PMID: 29845538 PMCID: PMC7121313 DOI: 10.1007/978-981-10-8727-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The focus of this review is to discuss findings in the last 10 years that have advanced our understanding of human NK cell responses to dengue virus. We will review recently identified interactions of activating and inhibitory receptors on NK cells with dengue virus, human NK responses to natural dengue infection and highlight possible interactions by which NK cells may shape adaptive immune responses. T cell responses to natural dengue infection will be reviewed by Laura Rivino in Chap. 17 . With the advent of numerous dengue vaccine clinical trials, we will also review T and NK cell immune responses to dengue virus vaccination. As our understanding of the diverse functions of NK cell has advanced, it has become increasingly clear that human NK cell responses to viral infections are more complicated than initially recognized.
Collapse
|
40
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
41
|
Moodie Z, Juraska M, Huang Y, Zhuang Y, Fong Y, Carpp LN, Self SG, Chambonneau L, Small R, Jackson N, Noriega F, Gilbert PB. Neutralizing Antibody Correlates Analysis of Tetravalent Dengue Vaccine Efficacy Trials in Asia and Latin America. J Infect Dis 2018; 217:742-753. [PMID: 29194547 PMCID: PMC5854020 DOI: 10.1093/infdis/jix609] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Background In the CYD14 and CYD15 Phase 3 trials of the CYD-TDV dengue vaccine, estimated vaccine efficacy (VE) against symptomatic, virologically confirmed dengue (VCD) occurring between months 13 and 25 was 56.5% and 60.8%, respectively. Methods Neutralizing antibody titers to the 4 dengue serotypes in the CYD-TDV vaccine insert were measured at month 13 in a randomly sampled immunogenicity subcohort and in all VCD cases through month 25 (2848 vaccine, 1574 placebo) and studied for their association with VCD and with the level of VE to prevent VCD. Results For each trial and serotype, vaccinees with higher month 13 titer to the serotype had significantly lower risk of VCD with that serotype (hazard ratios, 0.19-0.43 per 10-fold increase). Moreover, for each trial, vaccinees with higher month 13 average titer to the 4 serotypes had significantly higher VE against VCD of any serotype (P < .001). Conclusions Neutralizing antibody titers postdose 3 correlate with CYD-TDV VE to prevent dengue. High titers associate with high VE for all serotypes, baseline serostatus groups, age groups, and both trials. However, lowest titers do not fully correspond to zero VE, indicating that other factors influence VE.
Collapse
Affiliation(s)
- Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| | - Yingying Zhuang
- Department of Biostatistics, University of Washington, Seattle
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven G Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| | | | | | | | | | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| |
Collapse
|
42
|
Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat Commun 2018; 9:673. [PMID: 29445153 PMCID: PMC5813210 DOI: 10.1038/s41467-018-02975-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.
Collapse
|
43
|
Danko JR, Kochel T, Teneza-Mora N, Luke TC, Raviprakash K, Sun P, Simmons M, Moon JE, De La Barrera R, Martinez LJ, Thomas SJ, Kenney RT, Smith L, Porter KR. Safety and Immunogenicity of a Tetravalent Dengue DNA Vaccine Administered with a Cationic Lipid-Based Adjuvant in a Phase 1 Clinical Trial. Am J Trop Med Hyg 2018; 98:849-856. [PMID: 29363446 PMCID: PMC5930886 DOI: 10.4269/ajtmh.17-0416] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We conducted an open label, dose escalation Phase 1 clinical trial of a tetravalent dengue DNA vaccine (TVDV) formulated in Vaxfectin® to assess safety and immunogenicity. A total of 40 dengue- and flavivirus-naive volunteers received either low-dose (1 mg) TVDV alone (N = 10, group 1), low-dose TVDV (1 mg) formulated in Vaxfectin (N = 10, group 2), or high-dose TVDV (2 mg, group 3) formulated in Vaxfectin® (N = 20). Subjects were immunized intramuscularly with three doses on a 0-, 30-, 90-day schedule and monitored. Blood samples were obtained after each immunization and various time points thereafter to assess anti-dengue antibody and interferon gamma (IFNγ) T-cell immune responses. The most common adverse events (AEs) across all groups included mild to moderate pain and tenderness at the injection site, which typically resolved within 7 days. Common solicited signs and symptoms included fatigue (42.5%), headache (45%), and myalgias (47.5%). There were no serious AEs related to the vaccine or study procedures. No anti-dengue antibody responses were detected in group 1 subjects who received all three immunizations. There were minimal enzyme-linked immunosorbent assay and neutralizing antibody responses among groups 2 and 3 subjects who completed the immunization schedule. By contrast, IFNγ T-cell responses, regardless of serotype specificity, occurred in 70%, 50%, and 79% of subjects in groups 1, 2, and 3, respectively. The largest IFNγ T-cell responses were among group 3 subjects. We conclude that TVDV was safe and well-tolerated and elicited predominately anti-dengue T-cell IFNγ responses in a dose-related fashion.
Collapse
Affiliation(s)
- Janine R Danko
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Tadeusz Kochel
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Nimfa Teneza-Mora
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Thomas C Luke
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Kanakatte Raviprakash
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Peifang Sun
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - Monika Simmons
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - James E Moon
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | - Kevin R Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
44
|
Torresi J, Richmond PC, Heron LG, Qiao M, Marjason J, Starr-Spires L, van der Vliet D, Jin J, Wartel TA, Bouckenooghe A. Replication and Excretion of the Live Attenuated Tetravalent Dengue Vaccine CYD-TDV in a Flavivirus-Naive Adult Population: Assessment of Vaccine Viremia and Virus Shedding. J Infect Dis 2017; 216:834-841. [PMID: 28968794 DOI: 10.1093/infdis/jix314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
Background We assessed replication and excretion of the live attenuated tetravalent dengue vaccine (CYD-TDV) into biological fluids following vaccination in dengue-naive adults in Australia. Methods Vaccinal viremia/shedding was assessed in a subset of participants enrolled in a lot-to-lot consistency study; 95 participants received 3 subcutaneous doses of CYD-TDV from phase 2/3 lots of the vaccine, and 8 received placebo; doses were administered 6 months apart. Quantitative reverse-transcription polymerase chain reaction (qR-PCR) analysis was used to initially detect the yellow fever virus (YFV) core protein gene in the backbone of CYD-TDV in serum, saliva and urine, followed by serotype-specific qRT-PCR analysis of samples positive for YFV by qRT-PCR (lower limit of detection, 5.16 GEq/mL). Results YFV viremia was detected by qRT-PCR in 69.5% of participants (66 of 95) who received CYD-TDV, mainly 6-14 days after injection 1. The serotypes detected were serotype 4 (in 68.2% of participants [45 of 95]), serotype 3 (in 19.7% [13 of 95]), and serotype 1 (in 12.1% [8 of 95]); serotype 2 was not detected. None of the placebo recipients had vaccinal viremia/shedding. No participants had detectable viral shedding into saliva at levels above the lower limit of quantitation. Two participants had low-level viral shedding (serotype 3) in urine (5.47 and 5.77 GEq/mL). None of the participants with viremia or shedding experienced concomitant fever. Conclusions Low-level vaccinal viremia may occur following vaccination with CYD-TDV, but this is not associated with any symptom or adverse event. Clinical Trials Registration NCT01134263.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne.,Department of Infectious Diseases, Austin Hospital, Heidelberg
| | - Peter C Richmond
- University of Western Australia School of Paediatrics and Child Health.,Vaccine Trials Group, Telethon Kids Institute, Subiaco
| | - Leon G Heron
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, Children's Hospital at Westmead, Westmead
| | - Ming Qiao
- Royal Adelaide Hospital.,SA Pathology, Adelaide
| | | | | | | | - Jing Jin
- Clinical Sciences and Operations, Sanofi, Beijing, China
| | | | | |
Collapse
|
45
|
Katzelnick LC, Harris E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017; 35:4659-4669. [PMID: 28757058 PMCID: PMC5924688 DOI: 10.1016/j.vaccine.2017.07.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
46
|
T Cell Immunity and Zika Virus Vaccine Development. Trends Immunol 2017; 38:594-605. [DOI: 10.1016/j.it.2017.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
|
47
|
Guy B, Noriega F, Ochiai RL, L’azou M, Delore V, Skipetrova A, Verdier F, Coudeville L, Savarino S, Jackson N. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1335201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bruno Guy
- Research & Development, Sanofi Pasteur, Lyon, France
| | | | | | - Maïna L’azou
- Global Epidemiology, Sanofi Pasteur, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother 2017; 13:1059-1072. [PMID: 28281864 DOI: 10.1080/21645515.2016.1261770] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.
Collapse
Affiliation(s)
- J Torresi
- a Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity, University of Melbourne , Parkville , Victoria , Australia
| | - G Ebert
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia
| | - M Pellegrini
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia.,c Department of Medical Biology , The University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
49
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
50
|
Abstract
Denvaxia is the first licensed vaccine for the prevention of dengue. It is a live vaccine developed using recombinant DNA technology. The vaccine is given as three doses over the course of a year and has the potential to prevent hundreds of thousands of hospitalizations each year.
Collapse
Affiliation(s)
- Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|