1
|
Su J, Xue J, Wang X, Zhang R, Zhang X, Yang Y, Chu X. Modulation of cyclophosphamide-induced immunosuppression and intestinal flora in broiler by deep eutectic solvent extracted polysaccharides of Acanthopanax senticosus. Front Vet Sci 2024; 11:1415716. [PMID: 38863455 PMCID: PMC11165361 DOI: 10.3389/fvets.2024.1415716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction The aim of this experiment was to investigate the modulation effect of Acanthopanax senticosus polysaccharide (ASPS-PD) extracted with deep eutectic solvent on cyclophosphamide-induced immunosuppression in broilers and its modulation of the gut microbiota of broilers. Methods The 108 one-day-old broilers were divided into six groups, including the control group, the Cyclophosphamide (CY) model group, the ASPS-PD control group, the ASPA-PD high and low dose groups and the Astragalus polysaccharide group. Body weight, feed intake, feed conversion ratio, and immune organ index of broilers at 7, 14, and 21 days were determined; IL-2, IFN-γ, and lgG1 levels were determined by enzyme-linked immunosorbent assay (ELISA); Broiler caeca feces were analyzed by amplification and 16S rRNA sequencing. Results The results showed that ASPS-PD can restore growth performance, increase immune organ index and improve serum cytokine levels of IL-2 and IFN-γ and immunoglobulin lgG1 levels in CY-treated broilers. The analysis of cecum flora showed that ASPS-PD can promote the proliferation of beneficial bacteria and reduce the number of harmful bacteria, regulating intestinal flora. Discussion Therefore, ASPA-PD may be a potential novel immunomodulator to ameliorate CY-induced immunosuppression and intestinal flora dysregulation in broiler.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Zhou G, Liu H, Yuan Y, Wang Q, Wang L, Wu J. Lentinan progress in inflammatory diseases and tumor diseases. Eur J Med Res 2024; 29:8. [PMID: 38172925 PMCID: PMC10763102 DOI: 10.1186/s40001-023-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Shiitake mushrooms are a fungal food that has been recorded in Chinese medicine to nourish the blood and qi. Lentinan (lLNT) is an active substance extracted from shiitake mushrooms with powerful antioxidant, anti-inflammatory, anti-tumor functions. Inflammatory diseases and cancers are the leading causes of death worldwide, posing a serious threat to human life and health and posing enormous challenges to global health systems. There is still a lack of effective treatments for inflammatory diseases and cancer. LNT has been approved as an adjunct to chemotherapy in China and Japan. Studies have shown that LNT plays an important role in the treatment of inflammatory diseases as well as oncological diseases. Moreover, clinical experiments have confirmed that LNT combined with chemotherapy drugs has a significant effect in improving the prognosis of patients, enhancing their immune function and reducing the side effects of chemotherapy in lung cancer, colorectal cancer and gastric cancer. However, the relevant mechanism of action of the LNT signaling pathway in inflammatory diseases and cancer. Therefore, this article reviews the mechanism and clinical research of LNT in inflammatory diseases and tumor diseases in recent years.
Collapse
Affiliation(s)
- Guangda Zhou
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, 250062, China
| | - Haiyan Liu
- Department of Ultrasound, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Yuan
- Department of Neurology, Xingtai Third Hospital, Xingtai, 054000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Lanping Wang
- Department of Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Jianghua Wu
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| |
Collapse
|
3
|
Zhou X, Wang H, Zhang J, Guan Y, Zhang Y. Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol 2024; 254:128118. [PMID: 37977452 DOI: 10.1016/j.ijbiomac.2023.128118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Current rabies vaccines require 5 doses to provide full protection from the deadly virus, which significantly reduce the compliance of recipients. To minimize the number of immunizations herein single injection vaccines were developed. First a single injection vaccine was designed using rabies virus glycoprotein (G protein) as antigen. A time-controlled release system which uses dynamic layer-by-layer films as erodible coating was employed to accomplish multiply pulsatile releases of G protein. The single-injection vaccine elicits potent humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of G protein. To further improve its performance, a second single injection vaccine, in which lentinan was added as adjuvant, was designed. This single-injection vaccine again elicits humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of antigen and adjuvant. In addition, the second single-injection vaccine elicits higher level immune response and provides higher efficiency on virus inhibition than the first one because lentinan can booster immune response.
Collapse
Affiliation(s)
- Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haozheng Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
5
|
Wan X, Yin Y, Zhou C, Hou L, Cui Q, Zhang X, Cai X, Wang Y, Wang L, Tian J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr Polym 2022; 276:118739. [PMID: 34823775 DOI: 10.1016/j.carbpol.2021.118739] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023]
Abstract
Adjuvants have been used in vaccines for a long time to promote the body's immune response, reducing vaccine dosage and production costs. Although many vaccine adjuvants are developed, the use in human vaccines is limited because of either limited action or side effects. Therefore, the development of new vaccine adjuvants is required. Many studies have found that natural polysaccharides derived from Traditional Chinese medicine (TCM) possess good immune promoting effects and simultaneously improve humoral, cellular and mucosal immunity. Recently polysaccharide adjuvants have attracted much attention in vaccine preparation because of their intrinsic characteristics: immunomodulation, biocompatibility, biodegradability, low toxicity and safety. This review article systematically analysed the literature on polysaccharides possessing vaccine adjuvant activity from TCM plants, such as Astragalus polysaccharide (APS), Rehmannia glutinosa polysaccharide (RGP), Isatis indigotica root polysaccharides (IRPS), etc. and their derivatives. We believe that polysaccharide adjuvants can be used to prepare the vaccines for clinical use provided their mechanisms of action are studied in detail.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiming Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Qinghua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoping Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuliang Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jingzhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
6
|
Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, Zhao C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci 2022; 5:1330-1341. [PMID: 36082139 PMCID: PMC9445227 DOI: 10.1016/j.crfs.2022.08.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides are usually composed of more than ten monosaccharide units, which are connected by linear or branched glycosidic bonds. The immunomodulatory effect of natural polysaccharides is one of the most important bioactive function. In this review, molecular weight, monosaccharide (including galactose, mannose, rhamnogalacturonan-I arabinogalactan and uronic acid), functional groups (namely sulfate, selenium, and acetyl groups), types of glycoside bond connection (including β-1,3-D-glucosyl, α-1,4-D-glucosyl, β-1,4-D-glucosyl, α-1,6-D-glucosyl, β-1,4-D-mannosyl, and β-1,4-D-Xylopyranosyl), conformation and the branching degrees are systematically identified as their contribution to the immunostimulatory activity of polysaccharides. At present, studies on the structure-activity relationships of polysaccharides are limited due to their low purity and high heterogeneity. However, it is an important step in providing useful guidance for dietary supplements with polysaccharides. The chemical structures and the process of immune responses induced are necessary to be discussed. Polysaccharides may bind with the cell surface receptors to modulate immune responses. This review mainly discusses the structure-activity relationship of dietary polysaccharides. Structure - activity relationships of polysaccharides with immune-enhancing effect are proposed. Polysaccharides with the higher molecular weight are helpful to improve immunity. Higer galactose, mannose, rhamnogalacturonan-I, arabinogalacta,n and uronic acid contents have immunoregulation.
Collapse
Affiliation(s)
- Ruoxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Corresponding author.No.15 Shangxiadian Rd, Fuzhou, 350002, China
| |
Collapse
|
7
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Lu W, Yang Z, Chen J, Wang D, Zhang Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr Polym 2021; 272:118526. [PMID: 34420760 DOI: 10.1016/j.carbpol.2021.118526] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Natural polysaccharides derived from plants, fungi and animals are well known as ideal functional products with multiple biological activities and few side effects. Among them, natural occurring sulfated polysaccharides and those from synthetic origin are increasingly causing more attention worldwide, as they have been proved to possess broad-spectrum antiviral activities. The focus of this review is on analyzing the current state of knowledge about the origin of sulfated polysaccharides, more importantly, the potential connection between the structure and their antiviral mechanisms. Sulfated polysaccharide may interfere with a few steps in the virus life cycle (i.e. adsorption, invasion, transcription and replication) and/or improve the host antiviral immune response. Moreover, their antiviral activity was affected by degree of substitution, substitution position, molecular weight, and spatial conformation. This review may provide approach for the development of novel and potent therapeutic agents.
Collapse
Affiliation(s)
- Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| | - Zhifeng Yang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Di Wang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yu Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| |
Collapse
|
9
|
Sun W, Feng Y, Zhang M, Song X, Jia L. Protective effects of sulfated polysaccharides from Lentinula edodes on the lung and liver of MODS mice. Food Funct 2021; 12:6389-6402. [PMID: 34057170 DOI: 10.1039/d1fo00399b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the effects of sulfated polysaccharides from Lentinula edodes (SPLE) on zymosan (ZYM)-induced multiple organ dysfunction syndrome (MODS) mice were investigated. Using the MODS mice model, biochemical works have already shown that in mice treated with SPLE, the lung parameters of GGT, C3 and hs-CRP were down-regulated and the hepatic parameters of TC, TG, ALT and AST, HDLC, LDL-C and VLDL-C were improved, the serum levels of CK, Cr and Amy were decreased, and the levels of inflammatory factors such as TNF-α, IL-1β, IL-6 and IL-10 were also reduced, the activity of antioxidant enzymes SOD and CAT enhanced, and the content of MDA was reduced. In addition, histopathology of the lung and liver confirmed the beneficial effects of SPLE on MODS mice, indicating that SPLE played a role in protecting the organ function of MODS mice. In addition, SPLE was characterized as a sulfated β-glucan linked by β-type glycosidic bonds. These conclusions indicated that SPLE had effective antioxidant and anti-inflammatory activities, and could be used as a functional food and medicine to prevent MODS.
Collapse
Affiliation(s)
- Wenxue Sun
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China. :
| | | | | | | | | |
Collapse
|
10
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
11
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
12
|
Li Y, Wang X, Ma X, Liu C, Wu J, Sun C. Natural Polysaccharides and Their Derivates: A Promising Natural Adjuvant for Tumor Immunotherapy. Front Pharmacol 2021; 12:621813. [PMID: 33935714 PMCID: PMC8080043 DOI: 10.3389/fphar.2021.621813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The treatment process of tumor is advanced with the development of immunotherapy. In clinical experience, immunotherapy has achieved very significant results. However, the application of immunotherapy is limited by a variety of immune microenvironment. For a long time in the past, polysaccharides such as lentinan and Ganoderma lucidum glycopeptide have been used in clinic as adjuvant drugs to widely improve the immunity of the body. However, their mechanism in tumor immunotherapy has not been deeply discussed. Studies have shown that natural polysaccharides can stimulate innate immunity by activating upstream immune cells so as to regulate adaptive immune pathways such as T cells and improve the effect of immunotherapy, suggesting that polysaccharides also have a promising future in cancer therapy. This review systematically discusses that polysaccharides can directly or indirectly activate macrophages, dendritic cells, natural killer cells etc., binding to their surface receptors, inducing PI3K/Akt, mitogen-activated protein kinase, Notch and other pathways, promote their proliferation and differentiation, increasing the secretion of cytokines, and improve the state of immune suppression. These results provide relevant basis for guiding polysaccharide to be used as adjuvants of cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
13
|
Immunomodulatory effect of Acanthopanax senticosus polysaccharide on immunosuppressed chickens. Poult Sci 2020; 100:623-630. [PMID: 33518115 PMCID: PMC7858182 DOI: 10.1016/j.psj.2020.11.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022] Open
Abstract
The immunomodulatory effect of Acanthopanax senticosus polysaccharide (ASPS) on immunosuppressed chickens induced by cyclophosphamide (Cy) was observed in this study. Four hundred 7-day-old chickens were randomly divided into 4 groups: vaccinated control group (VC group), Cy-challenged control group (Cy group), Cy-challenged + low-dose ASPS group (ASPSL + Cy group), and Cy-challenged + high-dose ASPS group (ASPSH + Cy group). All groups except the VC group were injected with Cy at a dose of 80 mg/kg/day of BW for 3 successive days to induce immunosuppression. At the age of 10 d, the ASPSL + Cy group and ASPSH + Cy group were intramuscularly injected with 0.2 mL of ASPS at the dose of 100 and 200 mg/mL/day, respectively, once a day for 3 successive days. The Cy group was injected with saline solution in the same way as the 2 ASPS groups. At the age of 14 d, the chickens were vaccinated with Newcastle disease (ND) vaccine in all groups. On day 7, 14, 21, and 28 after the vaccination, BW, lymphocyte proliferation, the serum antibody titers of the ND vaccine, the proportion of CD4+ and CD8+ T lymphocytes, and the concentrations of interferon gamma and IL-2 were determined. The results showed that chickens were injected with Cy at a dose of 80 mg/kg of BW for 3 d displayed lower immune responses than the control group, indicating that the immunosuppressive model was successfully established. At most time points, both high and low doses of ASPS could significantly promote lymphocyte proliferation; enhance BW, antibody titers, and the proportion of CD4+ and CD8+ T lymphocytes; and raised the concentrations of interferon gamma and IL-2 in Cy-treated chickens compared with those in the Cy control group (P < 0.05). These results indicated that ASPS could resist immunosuppression induced by Cy and may be a new-type immune adjuvant to improve vaccination in normal and immunosuppressed chickens.
Collapse
|
14
|
Jin X, Liu X, Ding J, Zhang L, Yang Y, Wang X, Yang Y, Liu M. Lentinan improved the efficacy of vaccine against Trichinella spiralis in an NLRP3 dependent manner. PLoS Negl Trop Dis 2020; 14:e0008632. [PMID: 32976511 PMCID: PMC7518624 DOI: 10.1371/journal.pntd.0008632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for the development of new, improved vaccine adjuvants against T. spiralis infection. Polysaccharides are effective, safe, and biodegradable as adjuvant. In our study, we first observed the protective efficacy of lentinan as adjuvant against helminth T. spiralis infection. Recombinant T. spiralis Serpin (rTs-Serpin) immunoscreened from a cDNA library of T. spiralis, as a vaccine, protect host against Trichinella infection. The reduction rate of helminth burden of rTs-Serpin+lentinan–immunized mice was significantly increased compared with rTs-Serpin+FCA -immunized mice. rTs-Serpin+lentinan induced IgG1-dominant immune response and higher levels of IFN-γ and IL-4. rTs-Serpin+lentinan displayed a lower reduction rate of parasite burden in NLRP3-/- mice than that in WT mice and lower level of IgG1 than that in WT mice. The level of IL-4, but not IFN-γ, from NLRP3-/- mice immunized by rTs-Serpin+lentinan was significantly lower than that from WT mice, suggesting that NLRP3 is associated with rTs-Serpin+lentinan -triggering Th2 protective immunity against T. spiralis infection. In summary, we revealed that lentinan was a novel adjuvant against T. spiralis infection via NLRP3. NLRP3 therefore represents an important target for adjuvant discovery and the control of T. spiralis infection. Trichinella spp., pathogenic agents of trichinellosis, is foodborne zoonotic nematodes cause huge economic burden to the livestock industry. The potential of new adjuvants for improving veterinary vaccines remains largely unexploited to trigger safe and long-lasting immunity in large animals, including livestock. Polysaccharides are effective, safe, and biodegradable as adjuvant. We first observed the protective efficacy of lentinan as a novel adjuvant against helminth T. spiralis infection. NLRP3 is associated with lentinan -triggering Th2 protective immunity against T. spiralis infection. NLRP3 therefore represents an important target for adjuvant discovery and the control of T. spiralis infection.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Helminth
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Immunization
- Lentinan/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Serpins/genetics
- Serpins/immunology
- Trichinella spiralis/drug effects
- Trichinella spiralis/genetics
- Trichinella spiralis/immunology
- Trichinellosis/immunology
- Trichinellosis/prevention & control
- Vaccines/immunology
Collapse
Affiliation(s)
- Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer, Yunnan, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (YY); (ML)
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
- * E-mail: (YY); (ML)
| |
Collapse
|
15
|
Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E823. [PMID: 32357402 PMCID: PMC7712447 DOI: 10.3390/nano10050823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Wanli Jin
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Jazmina Gonzalez Cruz
- Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia;
| | - Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
16
|
The enhanced immunological activity of Paulownia tomentosa flower polysaccharide on Newcastle disease vaccine in chicken. Biosci Rep 2019; 39:BSR20190224. [PMID: 30971500 PMCID: PMC6500895 DOI: 10.1042/bsr20190224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
The extracts of Paulownia tomentosa (P. tomentosa) exhibit multiple pharmacological activities. In the present study, P. tomentosa flower polysaccharides (PTFP) were extracted by water decoction and ethanol precipitation, and the immunologic modulations of PTFP against Newcastle disease (ND) vaccine was investigated in chickens. The results showed that in a certain range of concentrations, PTFP treatment can dose-dependently enhance lymphocyte proliferation. Then, 280 14-days-old chickens were randomly divided into seven groups, and vaccinated with ND vaccine except blank control (BC) group. At the first vaccination, chickens were orally administrated with PTFP at concentration ranging from 0 to 50 mg/kg once a day for 3 successive days, and the BC group was treated with physiological saline. The lymphocyte proliferation rate, serum antibody titer, and levels of interferon-γ (IFN-γ) were respectively measured on 7, 14, 21, and 28 days after the first vaccination. The results showed that PTFP at the suitable doses could significantly promote lymphocyte proliferation, enhance serum antibody titer, and improve serum IFN-γ concentrations. Taken together, these data indicated that PTFP could improve the immune efficacy against ND vaccine in chickens, and could be as the candidate of a new-type immune adjuvant.
Collapse
|
17
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Barbosa JDS, Costa MSSP, Melo LFMD, Medeiros MJCD, Pontes DDL, Scortecci KC, Rocha HAO. Caulerpa Cupressoides Var. Flabellata. Mar Drugs 2019; 17:E105. [PMID: 30744130 PMCID: PMC6410129 DOI: 10.3390/md17020105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Green seaweeds are rich sources of sulfated polysaccharides (SPs) with potential biomedical and nutraceutical applications. The aim of this work was to evaluate the immunostimulatory activity of SPs from the seaweed, Caulerpa cupressoides var. flabellata on murine RAW 264.7 macrophages. SPs were evaluated for their ability to modify cell viability and to stimulate the production of inflammatory mediators, such as nitric oxide (NO), intracellular reactive oxygen species (ROS), and cytokines. Additionally, their effect on inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) gene expression was investigated. The results showed that SPs were not cytotoxic and were able to increase in the production of NO, ROS and the cytokines, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). It was also observed that treatment with SPs increased iNOS and COX-2 gene expression. Together, these results indicate that C. cupressoides var. flabellata SPs have strong immunostimulatory activity, with potential biomedical applications.
Collapse
Affiliation(s)
- Jefferson Da Silva Barbosa
- Laboratório de Biotecnologia de Polímeros Naturais , Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Gonçalo do Amarante, Rio Grande do Norte, 59291-727, Brazil.
| | | | - Luciana Fentanes Moura De Melo
- Laboratório de Biotecnologia de Polímeros Naturais , Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
| | - Mayara Jane Campos De Medeiros
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
| | - Daniel De Lima Pontes
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais , Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59078-970, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59012-570, Brazil.
| |
Collapse
|
19
|
Jin JW, Tang SQ, Rong MZ, Zhang MQ. Synergistic effect of dual targeting vaccine adjuvant with aminated β-glucan and CpG-oligodeoxynucleotides for both humoral and cellular immune responses. Acta Biomater 2018; 78:211-223. [PMID: 30098441 DOI: 10.1016/j.actbio.2018.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Presently, clinically approved adjuvants (such as aluminum salts) fail to induce cellular immune responses, which is crucial to defend against intracellular pathogens (including HIV, malaria, tuberculosis and Ebola) and cancer. However, Freund's complete adjuvant potently stimulates both humoral and cellular immune responses, accompanying by high toxicity and severe side reactions. Here in this work, a CpG-oligodeoxynucleotides (CpG-OND) crosslinked aminated β-glucan-Ovalbumin dual targeting nanoparticle (CpG-OND-AG-OVA) is prepared through a simple and mild ionic complexation method. The aminated β-glucan plays dual roles as antigen presenting cells (APCs) targeted carrier and immunopotentiator (targeting and activating dectin-1 on APCs). Meanwhile, CpG-OND also plays dual roles as ionic crosslinker and immunopotentiator (targeting and activating Toll-like receptor 9 in APCs). The adjuvant activity of the particles is evaluated through in vitro and in vivo experiments. The particles significantly enhance uptake and sustained proteolytic processing of antigens, and result in APCs maturation, inducing robust Th1 and Th2-type immune responses comparable to Freund's adjuvant without obvious toxicity. The potent adjuvant activity of the nanoparticles may originate from dual targeting synergistic effects between aminated β-glucan and CpG-OND. Accordingly, the dual targeting nanoparticles may be a promising vaccine adjuvant for inducing robust humoral and cellular immune responses against infectious diseases and cancers. STATEMENT OF SIGNIFICANCE An ideal adjuvant for subunit vaccine should act as both a carrier to enhance the uptake, sustained processing and cytosolic delivery of antigens, and an immunopotentiator to stimulate antigen presenting cells (APCs) for activation of naive T cells. Additionally, it should be easy to obtain and safe with negligible toxicity. Unfortunately, both synthetic and natural polymers that have been developed into antigen delivery system cannot completely fulfill the requirements. In the present study, the authors design nanoparticles with aminated β-glucan and CpG-oligodeoxynucleotides (CpG-OND) through a simple and mild method. β-Glucan (a dectin-1 and TLR2 targeted PAMP) and CpG-OND (a TLR9 targeted PAMP) are readily accessible. Aminated β-glucan plays dual roles in the nanoparticle as APCs targeted carrier and immunopotentiator. Meanwhile, CpG-OND also plays dual roles as crosslinker and APCs targeted immunopotentiator. By making use of synergistic effect of the dual targeting vaccine adjuvant with aminated β-glucan and CpG-OND, the nanoparticles induce robust antigen specific immune responses comparable to Freund's adjuvant without obvious toxicity.
Collapse
Affiliation(s)
- Jing Wei Jin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun Qing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Jin Y, Li P, Wang F. β-glucans as potential immunoadjuvants: A review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine 2018; 36:5235-5244. [PMID: 30049632 DOI: 10.1016/j.vaccine.2018.07.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
β-glucans, a group of polysaccharides exist in many organism species such as mushrooms, yeasts, oats, barley, seaweed, but not mammalians, have a variety of biological activities and applications in drugs and other healthcare products. In recent years, β-glucans have been studied as adjuvants in anti-infection vaccines as well as immunomodulators in anti-cancer immunotherapy. β-glucans can regulate immune responses when administered alone and can connect innate and adaptive immunity to improve immunogenicity of vaccines. When β-glucans act as immunostimulants or adjuvants, a set of receptors have been revealed to recognize β-glucans, including dectin-1, complement receptor 3 (CR3), CD5, lactosylceramide, and so on. Therefore, this review is mainly focused on the application of β-glucans as immune adjuvants, the receptors of β-glucans, as well as their structure and activity relationship which will benefit future research of β-glucans.
Collapse
Affiliation(s)
- Yiming Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
21
|
Chen F, Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol 2018; 112:211-216. [DOI: 10.1016/j.ijbiomac.2018.01.169] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
|
22
|
Pandya U, Dhuldhaj U, Sahay NS. Bioactive mushroom polysaccharides as antitumor: an overview. Nat Prod Res 2018; 33:2668-2680. [DOI: 10.1080/14786419.2018.1466129] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urja Pandya
- Department of Microbiology, Samarpan Science and Commerce College, Gandhinagar, India
| | - Umesh Dhuldhaj
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Nirmal S. Sahay
- Sadbhav SRISTI Sanshodhan Natural Products Laboratory, SRISTI, AES Boys Hostel Campus, Navrangpura, Ahmedabad, India
| |
Collapse
|
23
|
Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.010] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Fan W, Zheng P, Wang Y, Hao P, Liu J, Zhao X. Analysis of immunostimulatory activity of polysaccharide extracted from Yu-Ping-Feng in vitro and in vivo. Biomed Pharmacother 2017; 93:146-155. [PMID: 28628831 DOI: 10.1016/j.biopha.2017.05.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/28/2017] [Indexed: 01/03/2023] Open
Abstract
As a traditional Chinese multiherbal formula, Yu-Ping-Feng (YPF) is frequently used to treat cold, flu and inflammation-associated diseases. We aimed to evaluate the immunostimulatory effects of polysaccharide isolated from YPF (YPF-PS) in vitro and in vivo. In in vitro experiment, macrophage cell proliferation, phagocytosis rate, cytokine and costimulatory molecule release, T lymphocyte proliferation, cell cycle distribution, CD4+ and CD8+ T cell percentages were determined. To investigate the in vivo effects of YPF-PS treatment, different doses YPF-PS were administered to chicken vaccinated against Newcastle disease. The immune organ index, lymphocyte proliferation, antibody titer, cell cycle distribution, and the cell percentage of CD4+ and CD8+ were assessed. In vitro results indicated that YPF-PS at 15.62μgmL-1 could increase the LPS-induced macrophage cell proliferation and phagocytosis rate significantly. The levels of cytokine (nitric oxide, tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, and interferon beta) and costimulatory molecules (CD80 and CD86) were also considerably enhanced. Moreover, YPF-PS could significantly enhance T lymphocyte proliferation individually or synergistically with phytohemagglutinin. It promoted lymphocyte entry into S and G2/M phases and increased the percentages of CD4+ and CD8+ T cells effectively. In addition, in vivo experiments showed that YPF-PS could enhance serum HI antibody titer. The results about T lymphocyte proliferation, cell cycle distribution, CD4+ and CD8+ cell percentages in chickens were also confirmed. YPF-PS has efficacious immunomodulatory properties and could be used as a new potential immune stimulator for food and medical purposes.
Collapse
Affiliation(s)
- Wentao Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Pimiao Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Pan Hao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaona Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
25
|
Wang Y, Han X, Li YD, Wang Y, Zhao SY, Zhang DJ, Lu Y. Lentinan dose dependence between immunoprophylaxis and promotion of the murine liver cancer. Oncotarget 2017; 8:95152-95162. [PMID: 29221118 PMCID: PMC5707012 DOI: 10.18632/oncotarget.19808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022] Open
Abstract
Lentinan could exhibit significant biological activity favorable for human health and disease control such as the recovery of patients with liver cancer. In order to investigate the effect of lentinan dose dependence between immunoprophylaxis and promotion of cancer cell proliferation of the murine liver cancer, different concentrations of lentinan were prepared for the test in vitro (MTT assay) and in vivo (cumulative survival assay, spleen lymphocyte proliferation tests and peritoneal macrophage phagocytosis assays). New emerging proteins of the H22 cell incubated with lentinan was demonstrated by MS analysis and protein database searching. Lentinan was non-toxic for HL7702 cells but inhibited H22 cells proliferation obviously in a dose-dependent manner. In vivo, the proliferation of H22 hepatocarcinoma cells was inhibited by lentinan 0.4mg/kg body weight (L2, survival rate, 20%, PPP<0.01). Six proteins 60Sacidic ribosomal protein P2, Peroxiredoxin-2, Annexin A5, PDZ and LIM domain protein 1, Src substrate cortactin and Moesin were found as emerging proteins of the H22 cell incubated with high dose lentinan which related to cancer promotion closely. In conclusion, Thelentinan was relatively safe and could inhibit the proliferation of H22 cancer cells through immunity improvement when it's intake was in proper quantity.
Collapse
Affiliation(s)
- Ying Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.,National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Xue Han
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yan Dong Li
- Hebei Institute of Veterinary Drugs Control, Shijiazhuang 050000, PR China
| | - Yabing Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shi Yang Zhao
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Dong Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yu Lu
- Huabei Petroleum Administration Bureau, Huasheng Integrated Service, Tianjin 300000, PR China
| |
Collapse
|
26
|
Song X, Cao M, Yin Z, Jia R, Zou Y, Li L, Yue G, Liang X, Yin L, He C. Effects of polysaccharide from Ophiopogon japonicus on immune response to Newcastle disease vaccine in chicken. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016001200002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xu Song
- Sichuan Agricultural University, China
| | - Mei Cao
- Sichuan Provincial People’s Hospital, China
| | | | - Renyong Jia
- Sichuan Agricultural University, China; Sichuan Agricultural University, China
| | | | - Lixia Li
- Sichuan Agricultural University, China
| | | | | | - Lizi Yin
- Sichuan Agricultural University, China
| | | |
Collapse
|
27
|
Niu H, Song D, Sun Y, Zhang W, Mu H, Duan J. Preparation and sulfation of an α-glucan from Actinidia chinensis roots and their potential activities. Int J Biol Macromol 2016; 92:981-987. [DOI: 10.1016/j.ijbiomac.2016.07.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
|
28
|
Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 2016; 6:3205-17. [PMID: 26345165 DOI: 10.1039/c5fo00678c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | |
Collapse
|
29
|
Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 2016; 424:30-41. [DOI: 10.1016/j.carres.2016.02.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
|
30
|
Zhang L, Guo L, Ding J, Lu Y, Zhang Y, Chen Y. Folate-decorated Polysaccharide-doxorubicin Polymer: Synthesis, Characterization, and Activity in HeLa Cells. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Zhang
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Lulu Guo
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Jingna Ding
- Anqing Medical and Pharmaceutical College; Anqing 246052 PR China
| | - Yongming Lu
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Yaping Zhang
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| | - Yan Chen
- School of Life Sciences; Anhui University; Hefei 230601 PR China
| |
Collapse
|
31
|
Jing Y, Zhu J, Liu T, Bi S, Hu X, Chen Z, Song L, Lv W, Yu R. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3464-3471. [PMID: 25785351 DOI: 10.1021/jf505915t] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel polysaccharide (CMPA90-1; compound 1) was isolated from the cultured fruiting bodies of Cordyceps militaris. The chemical structure of compound 1 was elucidated by acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis, along with Fourier transform infrared spectroscopy, high-performance anion-exchange chromatography coupled with pulsed amperometric detection, gas chromatography-mass spectrometry, and one-dimensional [(1)H and (13)C nuclear magnetic resonance (NMR)] and two-dimensional NMR (heteronuclear single-quantum coherence and heteronuclear multiple-bond correlation). Sulfation of compound 1 by the chlorosulfonic acid-pyridine (CSA-Pyr) method led to synthesis of its sulfated analogue (CMPA90-M1; compound 2). The ultrastructures of both compounds 1 and 2 were further characterized by scanning electron microscopy and atomic force microscopy. The results of antioxidant assays showed that compounds 1 and 2 exhibited free-radical-scavenging effects, ferrous-ion-chelating ability, and reducing power. Also, in the cytotoxicity assay, compounds 1 and 2 showed inhibitory activity against A549 cells, with IC50 values of 39.08 and 17.33 μg/mL, respectively.
Collapse
Affiliation(s)
- Yongshuai Jing
- ‡College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, Hebei 050018, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun Y, Sun W, Guo J, Hu X, Gong G, Huang L, Cao H, Wang Z. Sulphation pattern analysis of chemically sulphated polysaccharide LbGp1 from Lycium barbarum by GC–MS. Food Chem 2015; 170:22-9. [DOI: 10.1016/j.foodchem.2014.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
33
|
Fan Y, Ma X, Zhang J, Ma L, Gao Y, Zhang W, Song X, Hou W, Guo C, Tong D. Ophiopogon polysaccharide liposome can enhance the non-specific and specific immune response in chickens. Carbohydr Polym 2015; 119:219-27. [DOI: 10.1016/j.carbpol.2014.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
|
34
|
The anti-porcine parvovirus activity of nanometer propolis flavone and propolis flavone in vitro and in vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:472876. [PMID: 25815034 PMCID: PMC4357139 DOI: 10.1155/2015/472876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/29/2023]
Abstract
Objectives. The present study was conducted to evaluate the activity of nanometer propolis flavone (NPF) on inhibiting porcine parvovirus (PPV) in vitro and in vivo. Methods. In vitro, the effect of NPF on cellular infectivity of PPV was carried out before and after adding drug and simultaneous adding and PPV after being mixed. In vivo, the anti-PPV effect of NPF in guinea pigs was performed. Results. The results showed that NPF could significantly inhibit PPV infecting porcine kidney- (PK-) 15 cells compared with propolis flavone (PF), and the activity of NPF was the best in preadding drug pattern. NPF at high and medium doses was able to observably restrain PPV copying in lung, gonad, blood, and spleen, decrease the impact of PPV on weight of guinea pigs, and improve hemagglutination inhibition (HI) of PPV in serum. In addition, it could also increase the contents of IL-2 and IL-6 in serum after PPV challenge. Conclusion. These results indicated that NPF could significantly improve the anti-PPV activity of PF, and its high concentration possessed the best efficacy. Therefore, NPF would be expected to be exploited into a new-style antiviral drug.
Collapse
|
35
|
Liu C, Chen J, Li E, Fan Q, Wang D, Zhang C, Li P, Li X, Chen X, Qiu S, Gao Z, Li H, Hu Y. Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist Newcastle disease virus. PLoS One 2015; 10:e0117916. [PMID: 25692886 PMCID: PMC4333568 DOI: 10.1371/journal.pone.0117916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/04/2015] [Indexed: 11/28/2022] Open
Abstract
Five combinations of three ratios (PS9-sPS1, PS7-sPS3 and PS6-sPS4) were prepared with polysaccharide (PS) and sulfated polysaccharide (sPS). The antiviral activities of these compounds were subsequently compared in vitro using the MTT assay, observation of the virus structure and immunofluorescence. The results demonstrated that SP9-sCP1, CP7-sCA3, EP7-sAP3, CA9-sEP1 and EP7-sCA3 presented higher activities, and SP9-sCP1 displayed the highest virus inhibition rate and clearly killed the virus and inhibited viral antigen expression. In an in vivo test, 28-day-old chickens were challenged with Newcastle disease virus (NDV) and were administered the five drug combinations. On day 14 after the challenge, the morbidity, mortality and cure rate in each group were calculated. The results indicated that SP9-sCP1 presented the lowest morbidity and mortality and the highest cure rate. These results indicate that Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist NDV. Moreover, SP9-sCP1 had the highest efficacy and may be used as a new antiviral drug.
Collapse
Affiliation(s)
- Cui Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jin Chen
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Entao Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiang Fan
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cunshuai Zhang
- China Institute of Veterinary Drug Control, Beijing, 100081, PR China
| | - Peng Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiuping Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xingying Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shulei Qiu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhenzhen Gao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
- * E-mail:
| |
Collapse
|
36
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-03751-6_26-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Uniform-sized water-in-oil vaccine formulations enhance immune response against Newcastle disease and avian influenza in chickens. Int Immunopharmacol 2014; 23:603-8. [DOI: 10.1016/j.intimp.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022]
|
39
|
Thompson IJ, Oyston PCF, Williamson DE. Potential of the β-glucans to enhance innate resistance to biological agents. Expert Rev Anti Infect Ther 2014; 8:339-52. [DOI: 10.1586/eri.10.10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Chen Y, Xiong W, Zeng L, Wang D, Liu J, Wu Y, Hu Y. Comparison of Bush Sophora Root polysaccharide and its sulfate's anti-duck hepatitis A virus activity and mechanism. Carbohydr Polym 2013; 102:333-40. [PMID: 24507289 DOI: 10.1016/j.carbpol.2013.11.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/03/2013] [Accepted: 11/27/2013] [Indexed: 11/26/2022]
Abstract
In order to research the sulfating modification in enhancing the anti-duck hepatitis A virus (DHAV) activity of Bush Sophora Root polysaccharide (BSRPS), sulfated Bush Sophora Root polysaccharide (sBSRPS) was prepared by chlorosulfonic acid-pyridine method. KBr pellets method was applied to analyze their different structures. Anti-DHAV activity was studied by duck embryonic hepatocytes culture in vitro and artificial inoculation method in vivo. Direct immunofluorescence method and Real-time PCR were applied to study the antiviral mechanism of adsorption, replication and release in vitro and the dynamic change of virus content of blood in vivo. The results showed at the most effective content, sBSRPS (7.813 μg/mL) could inhibit both replication and release of DHAV in vitro, BSRPS (500 μg/mL) only inhibit replication. The relative expression of DHAV gene at the 8thh and the mortality rate of sBSRPS group were significantly reduced. These results indicated sBSRPS performed more effectively in anti-DHAV activity than BSRPS.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
41
|
Zhang X, Cao F, Sun Z, Yu W, Zhao L, Wang T. Sulfation of Agrocybe chaxingu polysaccharides can enhance the immune response in broiler chicks. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Xu X, Yan H, Tang J, Chen J, Zhang X. Polysaccharides inLentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Crit Rev Food Sci Nutr 2013; 54:474-87. [DOI: 10.1080/10408398.2011.587616] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Zhao X, Hu Y, Wang D, Liu J, Guo L. The comparison of immune-enhancing activity of sulfated polysaccharidses from Tremella and Condonpsis pilosula. Carbohydr Polym 2013; 98:438-443. [PMID: 23987365 DOI: 10.1016/j.carbpol.2013.06.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/07/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Based on our previous research, four sulfated polysaccharide (sPSs) from Tremella and Condonpsis pilosula, sTPStp, sTPS70c, sCPPStp and sCPPS50c, were prepared and their effects on splenic lymphocytes proliferation in vitro and the immune response of ND vaccine in chicken were compared taking the unmodified polysaccharide (uPS) TPStp as control. The results showed that four sPSs could significantly or numerically stimulate splenic lymphocyte proliferation singly or synergistically with LPS in vitro, sTPS70c and sCPPStp demonstrated better effect; promote peripheral lymphocytes proliferation and enhance serum HI antibody titer in chickens vaccinated with ND vaccine, the actions of sPSs were stronger than that of uPS, and sTPS70c at medium dosage presented the best efficacy. These indicated that sulfation modification could improve the immune-enhancing activity of TPS and CPPS, sTPS70c possessed the strongest activity and would be expected as a component of new-type immunopotentiator.
Collapse
Affiliation(s)
- Xiaona Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|
44
|
Wang M, Meng X, Yang R, Qin T, Li Y, Zhang L, Fei C, Zhen W, Zhang K, Wang X, Hu Y, Xue F. Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. Int J Biol Macromol 2013; 59:178-83. [DOI: 10.1016/j.ijbiomac.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/07/2013] [Accepted: 04/07/2013] [Indexed: 10/27/2022]
|
45
|
Song X, Yin Z, Li L, Cheng A, Jia R, Xu J, Wang Y, Yao X, Lv C, Zhao X. Antiviral activity of sulfated Chuanminshen violaceum polysaccharide against duck enteritis virus in vitro. Antiviral Res 2013; 98:344-51. [DOI: 10.1016/j.antiviral.2013.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
|
46
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013; 10:20120536. [PMID: 23173193 PMCID: PMC3565688 DOI: 10.1098/rsif.2012.0536] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/01/2012] [Indexed: 12/18/2022] Open
Abstract
Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Immune-enhancing activity comparison of sulfated ophiopogonpolysaccharide and sulfated jujube polysaccharide. Int J Biol Macromol 2013; 52:212-7. [DOI: 10.1016/j.ijbiomac.2012.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 12/29/2022]
|
49
|
Li LJ, Li MY, Li YT, Feng JJ, Hao FQ, Zhang L. Adjuvant activity of Sargassum pallidum polysaccharides against combined Newcastle disease, infectious bronchitis and avian influenza inactivated vaccines. Mar Drugs 2012; 10:2648-60. [PMID: 23342387 PMCID: PMC3528116 DOI: 10.3390/md10122648] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/07/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022] Open
Abstract
This study evaluates the effects of Sargassum pallidum polysaccharides (SPP) on the immune responses in a chicken model. The adjuvanticity of Sargassum pallidum polysaccharides in Newcastle disease (ND), infectious bronchitis (IB) and avian influenza (AI) was investigated by examining the antibody titers and lymphocyte proliferation following immunization in chickens. The chickens were administrated combined ND, IB and AI inactivated vaccines containing SPP at 10, 30 and 50 mg/mL, using an oil adjuvant vaccine as a control. The ND, IB and AI antibody titers and the lymphocyte proliferation were enhanced at 30 mg/mL SPP. In conclusion, an appropriate dose of SPP may be a safe and efficacious immune stimulator candidate that is suitable for vaccines to produce early and persistent prophylaxis.
Collapse
Affiliation(s)
- Li-Jie Li
- School of Medicinal and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Ming-Yi Li
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Yan-Tuan Li
- School of Medicinal and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jing-Jing Feng
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Feng-Qiang Hao
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Lun Zhang
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| |
Collapse
|
50
|
Wang Y, Hong Q, Chen Y, Lian X, Xiong Y. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2012; 100:77-83. [DOI: 10.1016/j.colsurfb.2012.05.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|