1
|
Chyb M, Ferra BT, Kawka M, Skwarecka M, Dziadek B, Gatkowska J. Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of Toxoplasma gondii. Front Immunol 2024; 15:1480349. [PMID: 39726608 PMCID: PMC11670819 DOI: 10.3389/fimmu.2024.1480349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming. These problems lead to the implementation of new, safe solutions for the development of effective toxoplasmosis immunoprophylaxis. Methods In this work, newly produced recombinant trivalent chimeric proteins of T. gondii, based on SAG1-SAG2 recombinant chimeric antigen that differ in one terminal antigenic component, were tested in terms of their ability to induce an effective post-vaccination response. Antigens were tested in vitro to assess their ability to elicit APC cells response and further mice of the C3H/HeOuJ strain were immunized using those antigens, to evaluate their immunogenicity and immunoprotective effect in vivo. Two weeks after the last dose mice were either sacrificed to assess selected parameters of the immune response or infected with T. gondii DX strain to determine the degree of protection one month later. Results The results of serological tests revealed a high level of serum IgG antibodies specific for the native T. gondii TLA antigens. TLA-stimulated splenocytes produced cytokines that are important in inhibiting protozoal invasion. Additionally, CD3+ CD4+ and CD3+ CD8+ T cell subpopulations of splenocytes were analysed by flow cytometry. One month after experimental infection mice were sacrificed, and their brains were isolated to count T. gondii tissue cyst. Immunization of mice with recombinant trivalent chimeric proteins of T. gondii resulted in reduction of tissue cyst burden rates reaching even 74%. Discussion The obtained results demonstrate strong immunogenicity of the studied proteins and will allow to select candidates for further research aimed at increasing the immunoprotective properties of experimental vaccines against toxoplasmosis based on T. gondii chimeric antigens.
Collapse
Affiliation(s)
- Maciej Chyb
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bartłomiej Tomasz Ferra
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Gdynia, Poland
| | - Malwina Kawka
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Bożena Dziadek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Chyb M, Dziadek B, Dzitko K, Ferra BT, Kawka M, Holec-Gąsior L, Gatkowska J. Evaluation of long-term immunity and protection against T. gondii after immunization with multivalent recombinant chimeric T. gondii proteins. Sci Rep 2023; 13:12976. [PMID: 37563166 PMCID: PMC10415312 DOI: 10.1038/s41598-023-40147-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Toxoplasmosis caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. Although it may prove dangerous or even fatal for immunocompromised individuals, immunoprophylaxis for humans is still nonexistent. Thus, the aim of the current work was to assess the ability of two immunogenic recombinant chimeric T. gondii proteins, SAG2-GRA1-ROP1 (SGR) and SAG1-MIC1-MAG1-GRA2 (SMMG), selected in previous experiments to induce long-lasting immunity when administered with a safe adjuvant. Thus, the determination of immunological parameters and parasite challenge were performed both two weeks after the last boost injection and 6 months postvaccination. Both experimental vaccines triggered specific humoral and cellular responses in immunized C3H/HeOuJ male mice, characterized by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and the synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although the levels of specific antibodies and cytokine release were in most cases lower six months postimmunization, the protection rates conferred by the vaccination were comparable regardless of the time after the administration of the last vaccine dose. The results indicate that both preparations induce long-lasting immunity, which makes them attractive candidates for further research aimed at boosting their immunogenicity and immunoprotective capacity.
Collapse
Affiliation(s)
- Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Bartłomiej Tomasz Ferra
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Malwina Kawka
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
3
|
Zhang X, Yuan H, Mahmmod YS, Yang Z, Zhao M, Song Y, Luo S, Zhang XX, Yuan ZG. Insight into the current Toxoplasma gondii DNA vaccine: a review article. Expert Rev Vaccines 2023; 22:66-89. [PMID: 36508550 DOI: 10.1080/14760584.2023.2157818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Toxoplasma gondii (T.gondii) is a widespread protozoan with significant economic losses and public health importance. But so far, the protective effect of reported DNA-based vaccines fluctuates widely, and no study has demonstrated complete protection. AREAS COVERED This review provides an inclusive summary of T. gondii DNA vaccine antigens, adjuvants, and some other parameters. A total of 140 articles from 2000 to 2021 were collected from five databases. By contrasting the outcomes of acute and chronic challenges, we aimed to investigate and identify viable immunological strategies for optimum protection. Furthermore, we evaluated and discussed the impact of several parameters on challenge outcomes in the hopes of developing some recommendations to assist better future horizontal comparisons among research. EXPERT OPINION In the coming five years of research, the exploration of vaccine cocktails combining invasion antigens and metabolic antigens with genetic adjuvants or novel DNA delivery methods may offer us desirable protection against this multiple stage of life parasite. In addition to finding a better immune strategy, developing better in silico prediction methods, solving problems posed by variables in practical applications, and gaining a more profound knowledge of T.gondii-host molecular interaction is also crucial towards a successful vaccine.
Collapse
Affiliation(s)
- Xirui Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yasser S Mahmmod
- Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, 17155, Abu Dhabi, United Arab Emirates
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, PR China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
4
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|
5
|
Bekier A, Brzostek A, Paneth A, Dziadek B, Dziadek J, Gatkowska J, Dzitko K. 4-Arylthiosemicarbazide Derivatives as Toxoplasmic Aromatic Amino Acid Hydroxylase Inhibitors and Anti-inflammatory Agents. Int J Mol Sci 2022; 23:ijms23063213. [PMID: 35328634 PMCID: PMC8955734 DOI: 10.3390/ijms23063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan Toxoplasma gondii (Tg), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of Tg to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds. Thiosemicarbazide derivatives are biologically active organic compounds. Previous studies on the initial preselection of 58 new 4-arylthiosemicarbazide derivatives in terms of their anti-Tg activity and selectivity made it possible to select two promising derivatives for further research. One of the important amino acids involved in the proliferation of Tg and the formation of parasitophorous vacuoles is tyrosine, which is converted by two unique aromatic amino acid hydroxylases to levodopa. Enzymatic studies with two derivatives (R: para-nitro and meta-iodo) and recombinant aromatic amino acid hydroxylase (AAHs) obtained in the E. coli expression system were performed, and the results indicated that toxoplasmic AAHs are a molecular target for 4-arylthiosemicarbazide derivatives. Moreover, the drug affinity responsive target stability assay also confirmed that the selected compounds bind to AAHs. Additionally, the anti-inflammatory activity of these derivatives was tested using THP1-Blue™ NF-κB reporter cells due to the similarity of the thiosemicarbazide scaffold to thiosemicarbazone, both of which are known NF-κB pathway inhibitors.
Collapse
Affiliation(s)
- Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.B.); (J.D.)
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.B.); (J.D.)
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
- Correspondence:
| |
Collapse
|
6
|
Yoon KW, Chu KB, Kang HJ, Kim MJ, Eom GD, Lee SH, Moon EK, Quan FS. Mucosal Administration of Recombinant Baculovirus Displaying Toxoplasma gondii ROP4 Confers Protection Against T. gondii Challenge Infection in Mice. Front Cell Infect Microbiol 2021; 11:735191. [PMID: 34660343 PMCID: PMC8512701 DOI: 10.3389/fcimb.2021.735191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogens require physical contact with the mucosal surface of the host organism to initiate infection and as such, vaccines eliciting both mucosal and systemic immune responses would be promising. Studies involving the use of recombinant baculoviruses (rBVs) as mucosal vaccines are severely lacking despite their inherently safe nature, especially against pathogens of global importance such as Toxoplasma gondii. Here, we generated rBVs displaying T. gondii rhoptry protein 4 (ROP4) and evaluated their protective efficacy in BALB/c mice following immunization via intranasal (IN) and oral routes. IN immunization with the ROP4-expressing rBVs elicited higher levels of parasite-specific IgA antibody responses compared to oral immunization. Upon challenge infection with a lethal dose of T. gondii ME49, IN immunization elicited significantly higher parasite-specific antibody responses in the mucosal tissues such as intestines, feces, vaginal samples, and brain than oral immunization. Marked increases in IgG and IgA antibody-secreting cell (ASC) responses were observed from intranasally immunized mice. IN immunization elicited significantly enhanced induction of CD4+, CD8+ T cells, and germinal center B (GC B) cell responses from secondary lymphoid organs while limiting the production of the inflammatory cytokines IFN-γ and IL-6 in the brain, all of which contributed to protecting mice against T. gondii lethal challenge infection. Our findings suggest that IN delivery of ROP4 rBVs induced better mucosal and systemic immunity against the lethal T. gondii challenge infection compared to oral immunization.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice. Acta Trop 2021; 216:105836. [PMID: 33485872 DOI: 10.1016/j.actatropica.2021.105836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The causative agent of toxoplasmosis, Toxoplasma gondii (T. gondii), is able to influence the health of humans and other vertebrates. Toxoplasma may cause severe illness in the fetus and immunocompromised individuals. The high incidence and intense damages of Toxoplasma infection clearly shows the need to achieve the safe and suitable vaccine. In this study, an immunoinformatics approach was employed to design a multi-epitope DNA vaccine encoding the T. gondii SAG1, SAG3 and SAG5. The bioinformatic outputs supported the immunogenic and non-allergic natures of multi-epitope vaccine. Thereafter, the protective efficacy of the vaccine was evaluated with/without CpG-ODN adjuvant in a laboratory animal model. BALB/c mice were immunized subcutaneously with multi-epitope DNA vaccine. The in vivo findings indicated that the multi-epitope DNA vaccine elicited significant production of IgG antibodies (472.90 ± 2.74 ng/ml) as well as IFN-γ (173.71 ± 26.39 pg/ml) (p < 0.001). Moreover, a significant reduced parasite-burden (17,470 per mg of spleen) and prolonged survival time (9 days) were observed in the immunized groups compared to the controls (p < 0.05). The low values of IL-4 (22.5 ± 0.16 pg/ml) were detected in vaccinated mice compared to the control (PBS) (p > 0.05). In addition, CpG-ODN as an adjuvant increased the immune efficacy of the multi-epitope DNA vaccine. In multi-epitope vaccine+CpG-ODN group, the values of IgG antibodies (535.90 ±7.29 ng/ml) and IFN-γ (358.21 ± 32.70 pg/ml) were significanly higher than the multi-epitope vaccine group. Meanwhile, an increased survival time (10 days) and fewer parasite load (15,485 per mg of spleen) were observed in multi-epitope vaccine+CpG-ODN group. The results revealed that the DNA vaccine containing epitopes of SAG1, SAG3 and SAG5 adjuvanted with CpG-ODN might be a new model for further investigations against acute T. gondii infection.
Collapse
|
8
|
The Immunogenic and Immunoprotective Activities of Recombinant Chimeric T. gondii Proteins Containing AMA1 Antigen Fragments. Vaccines (Basel) 2020; 8:vaccines8040724. [PMID: 33276579 PMCID: PMC7761622 DOI: 10.3390/vaccines8040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Toxoplasmosis, one of the most common parasitoses worldwide, is potentially dangerous for individuals with a weakened immune system, but specific immunoprophylaxis intended for humans is still lacking. Thus, efforts have been made to create an efficient universal vaccine for both animals and humans to overcome the shortcomings of currently used treatment methods and protect all hosts against toxoplasmosis. The current work represents a relatively new approach to vaccine development based on recombinant chimeric Toxoplasma gondii antigens. In the present research, three tetravalent chimeric proteins containing different portions of the parasite’s AMA1 antigen—AMA1domainI-SAG2-GRA1-ROP1L (ANSGR), AMA1domainsII,III-SAG2-GRA1-ROP1L (ACSGR) and AMA1fullprotein-SAG2-GRA1-ROP1L (AFSGR)—were tested for their immunogenic and immunoprotective capacities. All tested proteins were immunogenic, as evidenced by the triggering of specific humoral and cellular immune responses in vaccinated C3H/HeOuJ mice, defined by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although all tested preparations provided partial protection against chronic toxoplasmosis in immunized and T. gondii-challenged mice, the intensity of the generated immunoprotection depended on the fragment of the AMA1 antigen incorporated into the chimeric antigen’s structure.
Collapse
|
9
|
Şahar EA, Can H, İz SG, Döşkaya AD, Kalantari-Dehaghi M, Deveci R, Gürüz AY, Döşkaya M. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis. BMC Infect Dis 2020; 20:493. [PMID: 32650739 PMCID: PMC7348124 DOI: 10.1186/s12879-020-05220-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals, avian species and humans. Toxoplasmosis is asymptomatic in healthy individuals, whereas it may lead to death in immune suppressed or deficient patients. A vaccine against T. gondii is required to prevent consequences of the infection. The aim of this study is to generate a multivalent recombinant protein vaccine against T. gondii. Methods 49 previously discovered antigenic proteins of T gondii were evaluated by their expression level in E. coli and by comprehensive bioinformatics analyses to determine antigenic epitopes. Based on these analyses, six vaccine candidate proteins were selected to generate a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V. Humoral and cellular immune responses were determined by flow cytometry and ELISA. Vaccinated mice were challenged with T. gondii Ankara strain tachyzoites. Results In mice vaccinated with hexavalent vaccine, strong total IgG (P < 0.0001) and IgG2a (P < 0.001) responses were induced compared to controls, the ratio of CD4+ and CD8+ T lymphocytes secreting IFN-γ increased, and significantly higher extracellular IFN-γ secretion was achieved compared to the controls (P < 0.001). The survival time of the vaccinated mice increased to 8.38 ± 2.13 days which was significantly higher than controls (P < 0.01). Conclusions Altogether, these results show that the hexavalent vaccine which is developed for the first time against T. gondii induced strong and balanced Th1 and Th2 immune responses as well as conferred significant protection against challenge with lethal toxoplasmosis in murine model.
Collapse
Affiliation(s)
- Esra Atalay Şahar
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey.,Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey.,Department of Biotechnology, Ege University Faculty of Science, Bornova, 35100, İzmir, Turkey
| | - Hüseyin Can
- Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Ege University Faculty of Engineering, Bornova, 35100, İzmir, Turkey
| | - Aysu Değirmenci Döşkaya
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey
| | | | - Remziye Deveci
- Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey
| | - Adnan Yüksel Gürüz
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey
| | - Mert Döşkaya
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey.
| |
Collapse
|
10
|
Allahyari M, Mohabati R, Vatanara A, Golkar M. In-vitro and in-vivo comparison of rSAG1-loaded PLGA prepared by encapsulation and adsorption methods as an efficient vaccine against Toxoplasma gondii”. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
12
|
Gatkowska J, Dzitko K, Ferra BT, Holec-Gąsior L, Kawka M, Dziadek B. The Impact of the Antigenic Composition of Chimeric Proteins on Their Immunoprotective Activity against Chronic Toxoplasmosis in Mice. Vaccines (Basel) 2019; 7:vaccines7040154. [PMID: 31635267 PMCID: PMC6963210 DOI: 10.3390/vaccines7040154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasmosis may pose a serious threat for individuals with weakened or undeveloped immune systems. However, to date, there is no specific immunoprophylaxis for humans. Thus, the aim of this study was to evaluate the immunogenicity of three trivalent—SAG2-GRA1-ROP1L (SGR), SAG1L-MIC1-MAG1 (SMM), and GRA1-GRA2-GRA6 (GGG)—and two tetravalent—SAG2-GRA1-ROP1-GRA2 (SGRG) and SAG1-MIC1-MAG1-GRA2 (SMMG)—chimeric T. gondii proteins, as well as their protective potential against chronic toxoplasmosis in laboratory mice. All three trivalent recombinant proteins possessed immunogenic properties, as defined by specific humoral and cellular responses in vaccinated mice characterized by the synthesis of specific IgG (IgG1/IgG2a) antibodies in vivo and the release of Th1/Th2 cytokines by stimulated splenocytes in vitro. Immunization with all three recombinant proteins provided partial protection against toxoplasmosis, although the protective capacity strongly depended on the individual antigenic composition of each preparation. The antigens providing the highest (86%) and lowest (45%) protection, SGR and SMM, respectively, were supplemented with GRA2 antigen fragment, to form the tetravalent chimeric proteins SGRG and SMMG. Further study revealed that the tetravalent preparations exhibited high immunogenic potential; however, the addition of another antigen to the recombinant protein structure had distinct effects on the protection generated, compared to that of the trivalent counterparts, depending on the antigen tested.
Collapse
Affiliation(s)
- Justyna Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland.
| | - Bartłomiej Tomasz Ferra
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Malwina Kawka
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland.
| |
Collapse
|
13
|
TLR-5 agonist Salmonella abortus equi flagellin FliC enhances FliC-gD-based DNA vaccination against equine herpesvirus 1 infection. Arch Virol 2019; 164:1371-1382. [PMID: 30888564 DOI: 10.1007/s00705-019-04201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
Equine herpesvirus 1 (EHV-1) induces serious respiratory infections, viral abortion, neurological signs, and neonatal mortality in horses. Despite the use of vaccines, EHV-1 infection also causes a high annual economic burden to the equine industry. The poor immunogenicity of and protection conferred by EHV-1 vaccines are the major factors responsible for the spread of EHV-1 infection. The present study examined the immunogenicity of a novel DNA vaccine co-expressing FliC, a flagellin protein, in Salmonella abortus equi and the gD protein of EHV-1. Mice and horses were immunized intramuscularly with the vaccine, and mice were challenged with EHV-1. Immunofluorescence and western blotting revealed that FliC and gD can be efficiently expressed in cells. This novel vaccine significantly increased gD-specific antibody and interferon gamma (IFN-γ) levels in immunized mice and horses. Compared with controls, the viral load and morbidity were markedly reduced in FliC-gD-immunized mice after they were challenged with EHV-1. Furthermore, the immunogenicity of FliC-gD in a natural host was tested. Our results indicate that vaccinated mice and horses exhibit increased humoral and improved cellular immune responses.
Collapse
|
14
|
Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A, Jorjani O. Rhoptry antigens as Toxoplasma gondii vaccine target. Clin Exp Vaccine Res 2019; 8:4-26. [PMID: 30775347 PMCID: PMC6369123 DOI: 10.7774/cevr.2019.8.1.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 01/14/2023] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
Collapse
Affiliation(s)
- Masoud Foroutan
- Abadan School of Medical Sciences, Abadan, Iran.,Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Abdolhosein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ogholniaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
15
|
Lee SH, Kang HJ, Lee DH, Quan FS. Protective Immunity Induced by Incorporating Multiple Antigenic Proteins of Toxoplasma gondii Into Influenza Virus-Like Particles. Front Immunol 2019; 9:3073. [PMID: 30666253 PMCID: PMC6330307 DOI: 10.3389/fimmu.2018.03073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Virus-like particle (VLP) as a highly efficient vaccine platform has been used to present single or multiple antigenic proteins. In this study, we generated VLPs (multi-antigen VLPs, TG146) in insect cells co-infected with recombinant baculoviruses presenting IMC, ROP18, and MIC8 of Toxoplasma gondii together with influenza matrix protein 1 (M1) as a core protein. We also generated three VLPs expressing IMC, ROP18, or MIC8 together with M1 for combination VLPs (TG1/TG4/TG6). A total of four kinds of VLPs generated were characterized by TEM. Higher number of VLPs particles per μm2 were observed in multi-antigen VLPs compared to combination VLPs. Mice (BALB/c) were intranasually immunized with multi-antigen VLPs or combination VLPs and challenged with T. gondii tachyzoites (GT1) intraperitoneally. Compared to combination VLPs, multi-antigen VLPs showed significantly higher levels of CD4+ T cell, and germinal center B cell responses with reduced apoptosis responses, resulting in significant reduction on parasite burden. These results indicate that higher efficacy of VLPs generated by multi-antigen VLPs can induce significant reduction of parasite burden and better survival of mice than that by combination VLPs, providing important insights into vaccine design strategy for VLPs vaccine expressing multiple antigenic proteins.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, South Korea.,Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Watson GF, Davis PH. Systematic review and meta-analysis of variation in Toxoplasma gondii cyst burden in the murine model. Exp Parasitol 2019; 196:55-62. [PMID: 30562481 PMCID: PMC6447088 DOI: 10.1016/j.exppara.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that infects approximately 30% of the population of the United States, with worldwide distribution. The chronic (latent) infection, mediated by the bradyzoite parasite life stage, has attracted attention due to possible links to host behavioral alteration and psychomotor effects. Mice are a common model organism for studying the chronic stage, as they are natural hosts of infection. Notably, published studies demonstrate vast ranges of measured cyst burden within the murine brain tissue. The inconsistency of measured cyst burden within and between experiments makes interpretation of statistical significance difficult, potentially confounding studies of experimental anti-parasitic approaches. This review analyzes variation in measured cyst burden in a wide array of experimental mouse infections across published literature. Factors such as parasite infection strain, mouse strain, mode of infection, and infectious dose were all examined. The lowest variation in measured cyst burden occurred with the commonly available Balb/c and CBA mice undergoing infection by the ME49 strain of T. gondii. A summary of cyst variation and average cyst counts in T. gondii mouse models is presented, which may be useful for designing future experiments.
Collapse
Affiliation(s)
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
17
|
Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dziadek J, Długońska H. Assessment of the antigenic and neuroprotective activity of the subunit anti-Toxoplasma vaccine in T. gondii experimentally infected mice. Vet Parasitol 2018; 254:82-94. [PMID: 29657017 DOI: 10.1016/j.vetpar.2018.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the immunogenic and immunoprotective activities and to determine the neuroprotective capacity of the tetravalent vaccine containing selected recombinant T. gondii antigens (ROP2 + ROP4 + SAG1 + MAG1) administered with safe adjuvants (MPL and alum) using male and female inbred mice. The tested antigenic combination provided partial protection against brain cyst formation, especially in males (reduction in cyst burden by 72%). The decrease in cyst burden was observed for the whole brain as well as for specified brain regions associated with natural defensive behaviors, emotion processing and integration of motor and sensory stimuli. The vaccine triggered a strong, specific immune response, regardless of sex, which was characterized by the antigen-specific in vitro synthesis of cytokines (IL-2, IFN-γ and IL-10) and in vivo production of systemic IgG1 and IgG2a immunoglobulins. Immunization prior to the parasite challenge seemed to influence T. gondii - associated behavioral and neurochemical changes, although the impact of vaccination strongly depended on sex and time post-infection. Interestingly, in the vaccinated and T. gondii infected mice there was a significant delay in the parasite-induced loss of aversion toward cat smell (cats are the definitive hosts of the parasite). The regained attraction toward feline scent in vaccinated males, observed during chronic parasite invasion, correlated with the increase in the dopamine metabolism.
Collapse
Affiliation(s)
- Justyna Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Pomorska 141/143, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland.
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| |
Collapse
|
18
|
Picchio MS, Sánchez VR, Arcon N, Soto AS, Perrone Sibilia M, Aldirico MDLA, Urrutia M, Moretta R, Fenoy IM, Goldman A, Martin V. Vaccine potential of antigen cocktails composed of recombinant Toxoplasma gondii TgPI-1, ROP2 and GRA4 proteins against chronic toxoplasmosis in C3H mice. Exp Parasitol 2018; 185:62-70. [DOI: 10.1016/j.exppara.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
|
19
|
Zheng B, Ding J, Chen X, Yu H, Lou D, Tong Q, Kong Q, Lu S. Immuno-Efficacy of a T. gondii Secreted Protein with an Altered Thrombospondin Repeat (TgSPATR) As a Novel DNA Vaccine Candidate against Acute Toxoplasmosis in BALB/c Mice. Front Microbiol 2017; 8:216. [PMID: 28261175 PMCID: PMC5313532 DOI: 10.3389/fmicb.2017.00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/31/2017] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii (T.gondii) is distributed worldwide and infects most species of warm-blooded animals, including humans. Toxoplasmosis has serious consequences, especially in people with an impaired or immature immune system. Thus, an effective vaccine is urgently required. Secretory microneme proteins are essential for the adhesion and invasion of T. gondii. The gene encoding the microneme protein, T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR), we constructed a recombinant eukaryotic plasmid, pVAX1-TgSPATR, as a DNA vaccine, injected it intramuscularly into BALB/c mice and evaluated the induced immune response. Lymphocyte proliferation assays, cytokine (IFN-γ, IL-2, IL-4, IL-10), and antibody determinations showed that mice immunized with pVAX1-TgSPATR produced humoral and mixed Th1/Th2 type cellular immune responses. The survival times of mice immunized with pVAX1-TgSPATR were also significantly prolonged (15.7 ± 1.42 days) compared with control groups, which died within 7 days of challenge (p < 0.05). The current study indicated that pVAX1-TgSPATR induce a T. gondii specific immune response and might be a promising vaccine candidate against toxoplasmosis. To the best of our knowledge, this is the first report to evaluate the immunoprotective value of TgSPATR against T. gondii.
Collapse
Affiliation(s)
- Bin Zheng
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Jianzu Ding
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Xiaoheng Chen
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational Technical College Jiaxing, China
| | - Di Lou
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Qunbo Tong
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Qingming Kong
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Shaohong Lu
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| |
Collapse
|
20
|
Synergistic effect of rSAG1 and rGRA2 antigens formulated in PLGA microspheres in eliciting immune protection against Toxoplasama gondii. Exp Parasitol 2016; 170:236-246. [PMID: 27663469 DOI: 10.1016/j.exppara.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
There is still no human vaccine against Toxoplasma gondii (T. gondii), as one of the most successful parasites. In present study, we designed a subunit vaccine composed of recombinant SAG1 (rSAG1) and recombinant GRA2 (rGRA2) proteins. In order to improve the induced immune responses, rSAG1 and rGRA2 were adsorbed on Poly (DL-lactide-co-glycolide) (PLGA) microspheres (MS) prepared by double emulsion solvent evaporation method. BALB/c mice were subcutaneously vaccinated by rSAG1-adsorbed PLGA MS (rSAG1-PLGA), rGRA2-adsorbed PLGA MS (rGRA2-PLGA), and the mixture of both formulations (rSAG1/rGRA2-PLGA), twice with a 3-week interval. PLGA MS characteristics, protein release, cellular and humoral immune responses, and protection against acute toxoplasmosis were evaluated. All vaccinated mice induced significantly partial protection and longer survival times associated with higher IFN-γ/IL-10 ratio and higher amount of Toxoplasma-specific IgG antibodies compared to control groups. Interestingly, the synergistic effect of rSAG1 and rGRA2 in eliciting more potent cellular and humoral responses and consequently higher protection in comparison to single antigen was confirmed. This study introduces the mixture of rSAG1 and rGRA2 (derived from different stages of Toxoplasma life-cycle) formulated in PLGA MS as a promising candidate in vaccine development against T. gondii.
Collapse
|
21
|
Zhou J, Lu G, He S. Analysis of structures and epitopes of a novel secreted protein MYR1 in Toxoplasma gondii. Folia Parasitol (Praha) 2016; 63. [DOI: 10.14411/fp.2016.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
|
22
|
Zhou J, Wang L, Lu G, Zhou A, Zhu M, Li Q, Wang Z, Arken M, Wang A, He S. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii. ACTA ACUST UNITED AC 2016; 23:17. [PMID: 27055564 PMCID: PMC4824872 DOI: 10.1051/parasite/2016017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 11/14/2022]
Abstract
We used bioinformatics approaches to identify B-cell and T-cell epitopes on the ROP19 protein of Toxoplasma gondii. Then, we constructed plasmids with ROP19 (pEGFP-C1-ROP19) and injected them into BALB/c mice to test the immunoprotection induced by this vaccine candidate. The results showed that immunization with pEGFP-C1-ROP19 induced effective cellular and humoral immune responses in mice; specifically, high serum levels of T. gondii-specific IgG and increased interferon-gamma production by splenocytes. Furthermore, the mice vaccinated with pROP19 had significantly fewer brain cysts (583 ± 160) than the mice injected with phosphate-buffered saline (1350 ± 243) or with the control plasmid, pEGFP-C1 (1300 ± 167). Compared with PBS-treated mice, those immunized with pROP19 had only 43% of the number of brain cysts. These results suggest that the DNA vaccine encoding ROP19 induced a significant immune response and provided protection against a challenge with T. gondii strain PRU cysts.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Lin Wang
- Department of Ji Nan Children's Hospital, 250022 Jinan, Shandong Province, PR China
| | - Gang Lu
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, 250021 Jinan, Shandong Province, PR China
| | - Meiyan Zhu
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Qihang Li
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Zhilin Wang
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Miradel Arken
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Ao Wang
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| | - Shenyi He
- Department of Parasitology, Shandong University School of Medicine,250012 Jinan, Shandong Province, PR China
| |
Collapse
|
23
|
Zhou J, Wang L, Zhou A, Lu G, Li Q, Wang Z, Zhu M, Zhou H, Cong H, He S. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii. Acta Parasitol 2016; 61:319-28. [PMID: 27078655 DOI: 10.1515/ap-2016-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite, and can infect warmblooded animals and humans all over the world. In the past years, ROP family genes encoding particular proteins of T. gondii had made a great contribution to toxoplasmosis. In this study, we used multiple bioinformatics approaches to predict the physical and chemical characteristics, transmembrane domain, epitope, and topological structure of the rhoptry protein 48 (ROP48). The results indicated that ROP48 protein was mainly located in the membrane and had several positive linear-B cell epitopes and Th-cell epitopes, which suggested that ROP48 is a potential DNA vaccine candidate against toxoplasmosis. Then the PCR product amplified from the ROP48 cDNA was inserted into a pEASY-T1 vector to build a recombinant cloning plasmid. After sequencing, ROP48 was subcloned into a eukaryotic expression plasmid pEGFP-C1 to obtain pEGFP-C1-ROP48 (pROP48). After identification by PCR and restriction enzyme digestion, the recombinant plasmid pROP48 was transfected into HEK 293-T cell and identified by RT-PCR. The results showed that the eukaryotic expression plasmid pROP48 was constructed and transfected to the cells of HEK 293-T successfully. Western blotting showed that the expressed proteins can be recognized by anti-STAg mouse sera.
Collapse
|
24
|
Grzybowski MM, Dziadek B, Gatkowska JM, Dzitko K, Długońska H. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins. Parasitol Res 2015; 114:4553-63. [PMID: 26337271 DOI: 10.1007/s00436-015-4701-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/24/2015] [Indexed: 02/01/2023]
Abstract
Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Marcin M Grzybowski
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Justyna M Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
25
|
Song L, Xiong D, Kang X, Yang Y, Wang J, Guo Y, Xu H, Chen S, Peng D, Pan Z, Jiao X. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin. BMC Biotechnol 2015; 15:79. [PMID: 26286143 PMCID: PMC4544785 DOI: 10.1186/s12896-015-0195-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Background A novel influenza virus, subtype H7N9, circulated through China in 2013–2014. Its higher rates of human infection in a wide range of locations within China and the associated increased likelihood of human-to-human transmission have caused global concern. Recombinant subunit vaccines provide safe and targeted protection against viral infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than vaccines made from whole viruses. Studies have shown that bacterial flagellin has strong adjuvant activity and induces protective immune responses. Results In this study, we used overlap-PCR to generate an H7N9 influenza recombinant subunit vaccine that fused the globular head domain (HA1-2, aa 62–284) of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, Salmonella typhimurium flagellin (fliC). The resulting fusion protein, HA1-2-fliC, was efficiently expressed in an Escherichia coli prokaryotic expression system, and Western blotting and TLR5-stimulating activity analysis confirmed that the HA1-2-fliC moiety could be faithfully refolded to take on the native HA and fliC conformations. In a C3H/HeJ mouse model of intraperitoneal vaccination, the fusion protein elicited significant and robust HA1-2-specific serum IgG titers, maintaining high levels for at least 3 months in the vaccinated animals, and induced similar levels of HA1-2-specific IgG1 and IgG2a that were detectable 12 days after the third immunization. HA1-2-fliC was also found to be capable of triggering the production of neutralizing antibodies, as assessed by measuring hemagglutination inhibition titers. Conclusions We conclude that immunization with HA1-2-fliC induces potent HA1-2-specific responses, offering significant promise for the development of a successful recombinant subunit vaccine for avian influenza A (H7N9).
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yun Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jing Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Hui Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
26
|
Grzybowski MM, Gatkowska JM, Dziadek B, Dzitko K, Długońska H. Human toxoplasmosis: a comparative evaluation of the diagnostic potential of recombinant Toxoplasma gondii ROP5 and ROP18 antigens. J Med Microbiol 2015; 64:1201-1207. [PMID: 26242602 DOI: 10.1099/jmm.0.000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide and it poses a serious challenge regarding prevention, diagnosis and therapy. The commonly used diagnostic methods are mostly based on the detection of specific antibodies in sera. Since they are not always accurate enough and do not allow precise definition of the phase of the Toxoplasma gondii infection, there is an urgent need to find specific molecular markers of acute or chronic infection stages. This study provides a comparative assessment of recombinant ROP5 and ROP18 T. gondii proteins in the serodiagnosis of human toxoplasmosis. We found that both ROP5 and ROP18 proteins allowed the detection of specific IgM and IgG antibodies with a relatively low sensitivity; however, ROP18 IgM ELISA proved to be more sensitive than the SAG1 assay. This study also points to a relatively weak potential of the corresponding native ROP5 and ROP18 kinases in the generation of a strong antibody response in humans.
Collapse
Affiliation(s)
- Marcin M Grzybowski
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Justyna M Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
27
|
Lu G, Wang L, Zhou A, Han Y, Guo J, Song P, Zhou H, Cong H, Zhao Q, He S. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii. Acta Trop 2015; 146:66-72. [PMID: 25792417 DOI: 10.1016/j.actatropica.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/02/2023]
Abstract
Bioinformatics approaches were used to identify B-cell epitopes and T-cell epitopes on SAG5A protein. Compared to SAG1, SAG5A with good B-cell epitopes and T-cell epitopes had a potentiality to become a more successful vaccine against Toxoplasma gondii. Thereafter, SAG5A DNA vaccine was constructed successfully and was injected into mice with peptide to evaluate the immunoprotection. Compared to the control groups, the vaccine (DNA/peptide) could induce more effective cellular and humoral immune responses in immunized mice. Furthermore, a significant reduction of brain cyst was detected in the mice vaccinated with peptide (732±160), pSAG5A (815±197), or pSAG5A/peptide (436±174) compared by the mice injected by PBS (1260±241) or pEGFP-C1 (1350±268). The number of cysts in brains was 35% reduced in the mice immunized with DNA/peptide than in the control mice treated by PBS. The results indicated that the DNA vaccine encoding SAG5A significantly induced immune responses and enhanced protection against cysts of PRU strain, especially with the help of peptide.
Collapse
|
28
|
Abdollahi SH, Ayoobi F, Khorramdelazad H, Nasiri Ahmadabadi B, Rezayati M, Kazemi Arababadi M, Zare-Bidaki M. Levels of Transforming Growth Factor-Beta After Immunization of Mice With in vivo prepared Toxoplasma gondii Excretory/Secretory Proteins. Jundishapur J Microbiol 2015; 8:e17802. [PMID: 26060564 PMCID: PMC4458350 DOI: 10.5812/jjm.8(5)2015.17802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Zoonotic parasite Toxoplasma gondii has a high prevalence in human populations. A suitable vaccine for animals can stop the transmission of infection between animal and human. OBJECTIVES The aim of this study was to evaluate in vivo prepared excretory/secretory antigens (E/SA) as a potential candidate for immunization against the parasite and its effect on the production of transforming growth factor-beta (TGF-β). MATERIALS AND METHODS Toxoplasma gondii tachyzoites were inoculated in the peritoneal cavity of mice and E/SA was harvested and used in animal immunization with and without adjuvant. Serum levels of anti-E/SA antibodies and TGF-β were measured in days 0, 3, 7, 14, 28 and 56 after immunization using ELISA technique. The measurements were statistically analyzed. RESULTS Our results showed that the serum levels of anti-E/SA immunoglobulins significantly increased in all of the immunized groups. The differences of the serum levels of TGF-β between the groups were statistically significant at days 28 and 56 after immunization with E/SA. CONCLUSIONS Based on our study, in vivo prepared E/SA may be considered as a good candidate for animal immunization.
Collapse
Affiliation(s)
- Seyed Hossein Abdollahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Fateme Ayoobi
- Physiology and Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Behzad Nasiri Ahmadabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammadtaghi Rezayati
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
- Corresponding author: Mohammad Zare-Bidaki, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran. Tel: +98-3915234003, Fax: +98-3915225209, E-mail:
| |
Collapse
|
29
|
Prime-boost vaccination with toxoplasma lysate antigen, but not with a mixture of recombinant protein antigens, leads to reduction of brain cyst formation in BALB/c mice. PLoS One 2015; 10:e0126334. [PMID: 26010355 PMCID: PMC4444244 DOI: 10.1371/journal.pone.0126334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023] Open
Abstract
Introduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Results Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. Conclusion In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection.
Collapse
|
30
|
Albarracín RM, Becher ML, Farran I, Sander VA, Corigliano MG, Yácono ML, Pariani S, López ES, Veramendi J, Clemente M. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts. Biotechnol J 2015; 10:748-59. [PMID: 25823559 DOI: 10.1002/biot.201400742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 11/12/2022]
Abstract
Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.
Collapse
Affiliation(s)
- Romina M Albarracín
- Laboratorio de Biotecnología Vegetal, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grzybowski MM, Dziadek B, Dziadek J, Gatkowska J, Dzitko K, Długońska H. Toxoplasma gondii: cloning, expression and immunoreactivity of recombinant ROP5 and ROP18 antigens. Exp Parasitol 2015; 150:1-6. [PMID: 25592730 DOI: 10.1016/j.exppara.2015.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022]
Abstract
Early diagnosis and determining the infective stage are critical for effective therapy of toxoplasmosis. Owing to the progress in biotechnology, commonly used native, non-standardized diagnostic antigens should be replaced by genetically engineered antigens. The recombinant proteins are also promising components of subunit vaccines against Toxoplasma gondii infections. A strategic biological role of rhoptry proteins (ROP) in parasitophorous vacuole biogenesis and virulence of the parasite creates a necessity for an intensive study on the serological activity and immunogenicity of newly developed recombinant ROP antigens. Our findings indicate that all generated preparations of recombinant ROP5 and ROP18 antigens, expressed in Escherichia coli bacteria, are recognized by specific antibodies produced during acute and chronic infections in inbred laboratory mice. We noticed, for the first time, that ROP5 IgM antibodies are an early and sensitive marker of T. gondii infection. The proven immunoreactivity of the obtained preparations has become a premise for a further study on their utility in routine diagnosis of human and animal toxoplasmosis as well as in the immunoprevention of T. gondii infection (as the main or supplementary component of the vaccine).
Collapse
Affiliation(s)
- Marcin M Grzybowski
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Justyna Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
32
|
A vaccine formulation combining rhoptry proteins NcROP40 and NcROP2 improves pup survival in a pregnant mouse model of neosporosis. Vet Parasitol 2015; 207:203-15. [DOI: 10.1016/j.vetpar.2014.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/23/2022]
|
33
|
Lim SSY, Othman RY. Recent advances in Toxoplasma gondii immunotherapeutics. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:581-93. [PMID: 25548409 PMCID: PMC4277020 DOI: 10.3347/kjp.2014.52.6.581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
Collapse
Affiliation(s)
- Sherene Swee-Yin Lim
- Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. ; Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Wang HL, Zhang TE, Yin LT, Pang M, Guan L, Liu HL, Zhang JH, Meng XL, Bai JZ, Zheng GP, Yin GR. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PLoS One 2014; 9:e108377. [PMID: 25255141 PMCID: PMC4177930 DOI: 10.1371/journal.pone.0108377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li-Tian Yin
- Department of Physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Min Pang
- Department of Respiratory, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li Guan
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Li Liu
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Ping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
35
|
Yin LT, Hao HX, Wang HL, Zhang JH, Meng XL, Yin GR. Intranasal immunisation with recombinant Toxoplasma gondii actin partly protects mice against toxoplasmosis. PLoS One 2013; 8:e82765. [PMID: 24386114 PMCID: PMC3873923 DOI: 10.1371/journal.pone.0082765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis for which an effective vaccine is needed. Actin is a highly conserved microfilament protein that plays an important role in the invasion of host cells by T. gondii. This study investigated the immune responses elicited by BALB/c mice after nasal immunisation with a recombinant T. gondii actin (rTgACT) and the subsequent protection against chronic and lethal T. gondii infections. We evaluated the systemic response by proliferation, cytokine and antibody measurements, and we assessed the mucosal response by examining the levels of TgACT-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes. Parasite load was assessed in the liver and brain, and the survival of mice challenged with a virulent strain was determined. The results showed that the mice immunised with rTgACT developed high levels of specific anti-rTgACT IgG titres and a mixed IgG1/IgG2a response with a predominance of IgG2a. The systemic immune response was associated with increased production of Th1 (IFN-γ and IL-2), Th2 (IL-4) and Treg (IL-10) cytokines, indicating that not only Th1-type response was induced, but also Th2- and Treg-types responses were induced, and the splenocyte stimulation index (SI) was increased in the mice immunised with rTgACT. Nasal immunisation with rTgACT led to strong mucosal immune responses, as seen by the increased secretion of SIgA in nasal, vaginal and intestinal washes. The vaccinated mice displayed significant protection against lethal infection with the virulent RH strain (survival increased by 50%), while the mice chronically infected with RH exhibited lower liver and brain parasite loads (60.05% and 49.75%, respectively) than the controls. Our data demonstrate, for the first time, that actin triggers a strong systemic and mucosal response against T. gondii. Therefore, actin may be a promising vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hai-Xia Hao
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
- General Hospital of the Datong Coal Mine Co. Ltd., Datong, Shanxi, PR China
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
36
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
37
|
Wang HL, Li YQ, Yin LT, Meng XL, Guo M, Zhang JH, Liu HL, Liu JJ, Yin GR. Toxoplasma gondii protein disulfide isomerase (TgPDI) is a novel vaccine candidate against toxoplasmosis. PLoS One 2013; 8:e70884. [PMID: 23967128 PMCID: PMC3744524 DOI: 10.1371/journal.pone.0070884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can infect all warm-blooded animals, including both mammals and birds. Protein disulfide isomerase (PDI) localises to the surface of T. gondii tachyzoites and modulates the interactions between parasite and host cells. In this study, the protective efficacy of recombinant T. gondii PDI (rTgPDI) as a vaccine candidate against T. gondii infection in BALB/c mice was evaluated. rTgPDI was expressed and purified from Escherichia coli. Five groups of animals (10 animals/group) were immunised with 10, 20, 30, 40 μg of rTgPDI per mouse or with PBS as a control group. All immunisations were performed via the nasal route at 1, 14 and 21 days. Two weeks after the last immunisation, the immune responses were evaluated by lymphoproliferative assays and by cytokine and antibody measurements. The immunised mice were challenged with tachyzoites of the virulent T. gondii RH strain on the 14th day after the last immunisation. Following the challenge, the tachyzoite loads in tissues were assessed, and animal survival time was recorded. Our results showed that the group immunised with 30 μg rTgPDI showed significantly higher levels of specific antibodies against the recombinant protein, a strong lymphoproliferative response and significantly higher levels of IgG2a, IFN-gamma (IFN-γ), IL-2 and IL-4 production compared with other doses and control groups. While no changes in IL-10 levels were detected. After being challenged with T. gondii tachyzoites, the numbers of tachyzoites in brain and liver tissues from the rTgPDI group were significantly reduced compared with those of the control group, and the survival time of the mice in the rTgPDI group was longer than that of mice in the control group. Our results showed that immunisation with rTgPDI elicited a protective immune reaction and suggested that rTgPDI might represent a promising vaccine candidate for combating toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang M, Zhao L, Song J, Li Y, Zhao Q, He S, Cong H. DNA vaccine encoding the Toxoplasma gondii bradyzoite-specific surface antigens SAG2CDX protect BALB/c mice against type II parasite infection. Vaccine 2013; 31:4536-40. [PMID: 23933373 DOI: 10.1016/j.vaccine.2013.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/21/2013] [Accepted: 07/25/2013] [Indexed: 02/07/2023]
Abstract
The surface antigens SAG2C, SAG2D, and SAG2X, which expressed specifically on bradyzoite stage of Toxoplasma gondii, have been demonstrated to be important for persistence of cyst in the brain. In this study, DNA vaccines expressing SAG2C, SAG2D, and SAG2X of T. gondii were constructed and their protective efficacy were evaluated in BALB/c mice. Mice vaccinated with pVAX1-SAG2C (pSAG2C), pVAX1-2D (pSAG2D) or pVAX1-2X (pSAG2C) showed higher levels of serum IgG antibodies and lymphocyte proliferation response compared to PBS and pVAX1 treated mice (p<0.05). The immune response was characterized by a strong Th1 response and increased cytokine production of IL-2 and IFN-γ. Vaccinated mice displayed significant protection against the challenge with the cyst of T. gondii genotype II strain of PRU (cyst-forming in mouse). A significant reduction in the brain cyst burden was detected in the mice immunized with pSAG2C (72%), pSAG2D (23%), pSAG2X (69%) alone and even more reduction rate, 77%, was achieved in the combination group compared to PBS treated mice. The results implied that immunization with DNA vaccines expressing SAG2C, SAG2D, and SAG2X, and, in particular, a combination of all three DNA plasmids, could effectively protect the mice against T. gondii chronic infection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Human Parasitology, Shandong University School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 2013; 31:3135-9. [DOI: 10.1016/j.vaccine.2013.05.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 12/26/2022]
|
40
|
Abdollahi SH, Ayoobi F, Khorramdelazad H, Hassanshahi G, Ahmadabadi BN, Rezayati M, Ravary A, Shamsizadeh A, Arababadi MK. Interleukin-10 Serum Levels after Vaccination with In Vivo Prepared Toxoplasma gondii Excreted/Secreted Antigens. Oman Med J 2013; 28:112-5. [PMID: 23599879 DOI: 10.5001/omj.2013.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/14/2013] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Toxoplasma gondii is a worldwide prevalent zoonotic parasite which causes toxoplasmosis. An appropriate vaccine for animals could interrupt the circle between animals and humans. Our previous study showed that excreted/secreted antigens (E/SA), derived from the peritoneum of mice infected with T. gondii tachyzoites could be considered as a good candidate for animal vaccination. Interleukin-10 (IL-10) inhibits proliferation of B and T lymphocytes and induces homeostasis in immune system responses. However, since IL-10 has also been shown to suppress the killing of T. gondii by human macrophages, the aim of this study was to evaluate IL-10 serum levels after vaccination with T. gondii E/SA prepared in vivo. METHODS T. gondii tachyzoites were inoculated in the peritoneum of mice and harvested E/SA were used as a vaccine, with and without adjuvant, in T. gondii infected and un-infected mice. IL-10 serum levels were evaluated using the ELISA technique. RESULTS The data showed that although serum levels of IL-10 were not changed at the early phases, they were elevated at the end phases of vaccination with T. gondii E/SA. CONCLUSION Based on these and our previous results, it can be concluded that in vivo prepared T. gondii E/SA could be considered as a good candidate for animal vaccination.
Collapse
Affiliation(s)
- Seyed Hossein Abdollahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dzitko K, Dziadek B, Gatkowska J, Długońska H. Toxoplasma gondii binds sheep prolactin. Exp Parasitol 2013; 134:216-9. [PMID: 23499881 DOI: 10.1016/j.exppara.2013.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/05/2012] [Accepted: 02/19/2013] [Indexed: 01/08/2023]
Abstract
Taking into account the literature reports on the involvement of prolactin (PRL) in the regulation of immunity against Toxoplasma gondii, we decided to check whether this parasite has the ability to bind the lactotrophic hormone. We examined T. gondii binding of sheep fluoresceine- and biotine-labeled prolactin isolated from pituitary (shPRL). In this work we announced for the first time that shPRL was bound to live tachyzoites of RH (type I) and ME49 (type II) strains. Furthermore, by use of competitive inhibition analysis, we confirmed that this binding was specific for both tested T. gondii strains.
Collapse
Affiliation(s)
- K Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, ul. Banacha 12/16, 90-237 Łódź, Poland.
| | | | | | | |
Collapse
|
42
|
Feng S, Wu X, Wang X, Bai X, Shi H, Tang B, Liu X, Song Y, Boireau P, Wang F, Zhao Y, Liu M. Vaccination of mice with an antigenic serine protease-like protein elicits a protective immune response against Trichinella spiralis infection. J Parasitol 2012; 99:426-32. [PMID: 23252743 DOI: 10.1645/12-46.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trichinellosis has major economic impacts on animal husbandry and food safety, and the control and elimination of trichinellosis is a major objective of veterinary medicine. A gene encoding serine protease of Trichinella spiralis (Ts-Adsp) was identified by immunoscreening an adult T. spiralis cDNA library. In this study, the recombinant Ts-Adsp protein (rTs-Adsp) was cloned and expressed in a prokaryotic expression system and purified by Ni-affinity chromatography. To determine whether the purified rTs-Adsp is a potential vaccine candidate for the control of T. spiralis infection, we immunized BALB/c mice with this protein in combination with an alum adjuvant and subsequently challenged with T. spiralis larvae. The results showed that mice vaccinated with rTs-Adsp exhibited an average reduction in the muscle larvae burden of 46.5% relative to the control group. Immunization with the rTs-Adsp antigen induced both humoral and cellular immune responses, which manifested as elevated specific anti-rTs-Adsp IgG and IgE antibodies and a mixed Th1-Th2 response, as determined by Th1 (IFN-γ and IL-2) and Th2 (IL-4, IL-10, and IL-13) cytokine profiling, with the Th2 predominant. Thus, purified rTs-Adsp is able to limit the invasion of T. spiralis , and this protein could be an effective vaccine candidate for trichinellosis.
Collapse
Affiliation(s)
- Shuang Feng
- Key Lab of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hosseininejad M. Evaluation of an indirect ELISA using a tachyzoite surface antigen SAG1 for diagnosis of Toxoplasma gondii infection in cats. Exp Parasitol 2012; 132:556-60. [DOI: 10.1016/j.exppara.2012.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
44
|
Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Exp Parasitol 2012; 132:458-64. [PMID: 23026454 DOI: 10.1016/j.exppara.2012.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/08/2012] [Accepted: 09/20/2012] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite, infecting a large variety of animals and human beings. In recent years, the study of DNA vaccine against T. gondii has made a great progress; however, few vaccines have completely controlled toxoplasmosis. Thus people started to look for more effective antigenic proteins. Here we report a novel T. gondii protein termed immune mapped protein 1 (TgIMP1). We used multiple bioinformatics approaches to predict the physical and chemical characters, signal peptide, transmembrane domain, epitope, topological structure and function of the protein, and we theoretically determined that the TgIMP1 has multiple epitopes, and with immunogenicity, suggesting that the TgIMP1 may be a vaccine candidate against toxoplasmosis. Then the gene coding TgIMP1 was obtained by PCR and connected with cloning vector. Recombinant plasmid was identified by PCR, double digestion and sequencing analysis. Then the TgIMP1 gene was directly inserted into the eukaryotic expression vector pBudCE4.1, so that the recombinant eukaryotic expression plasmid pBudCE4.1-TgIMP1 was constructed. After identification by PCR and restriction enzyme digestion, the recombinant plasmid pBudCE4.1-TgIMP1 was transfected into cells of HFF, and then identified by RT-PCR. The results showed that the eukaryotic expression plasmid pBudCE4.1-TgIMP1 was constructed and was transfected to the HFF cells successfully.
Collapse
|
45
|
Dziadek B, Brzostek A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis: what's next? Bioengineered 2012; 3:358-64. [PMID: 22892593 DOI: 10.4161/bioe.21541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toxoplasmosis is a globally distributed foodborne zoonosis caused by a protozoan parasite Toxoplasma gondii. Usually asymptomatic in immunocompetent humans, toxoplasmosis is a serious clinical and veterinary problem often leading to lethal damage in an infected host. In order to overcome the exceptionally strong clinical and socio-economic impact of Toxoplasma infection, the construction of an effective vaccine inducing full immunoprotection against the parasite is an urgent issue. In the last two decades many live attenuated, subunit and DNA-based vaccines against toxoplasmosis have been studied, however only partial protection conferred by vaccination against chronic as well as acute infection has been achieved. Among various immunization strategies, no viable subunit vaccines based on recombinant secretory (ROP2, ROP4 and GRA4) and surface (SAG1) T. gondii proteins have been found as attractive tools for further studies. This is due to their high, but still partial, protective efficacy correlated with the induction of cellular and humoral immune responses.
Collapse
Affiliation(s)
- Bozena Dziadek
- Department of Immunoparasitology; University of Lodz, Lodz, Poland.
| | | |
Collapse
|
46
|
Toxoplasma gondii: the vaccine potential of three trivalent antigen-cocktails composed of recombinant ROP2, ROP4, GRA4 and SAG1 proteins against chronic toxoplasmosis in BALB/c mice. Exp Parasitol 2012; 131:133-8. [PMID: 22445587 DOI: 10.1016/j.exppara.2012.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 01/18/2023]
Abstract
Toxoplasmosis is one of the world's most widespread zoonoses caused by protozoan parasite Toxoplasma gondii. The development of an effective vaccine for controlling toxoplasmosis is an extremely important issue due to the serious clinical and veterinary outcomes of this parasitosis. The objective of this study was evaluation of vaccine potential of three trivalent subunit recombinant vaccines composed of rROP2+rGRA4+rSAG1, rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 against chronic toxoplasmosis in BALB/c (H-2(d)) mice. All tested vaccines provided a partial protection against challenge with tissue cysts of the low virulence DX T. gondii strain, but the strongest level of protection was induced by the mixtures of both rhoptry proteins (rROP2 and rROP4) administered with the dense granule rGRA4 antigen or the main surface rSAG1 protein. The average parasite burden in these groups of vaccinated BALB/c mice was reduced by 84% and 77%, respectively, compared to the control PBS-injected animals. The vaccine-induced protection was correlated with the development of cellular and humoral immune responses demonstrated by the antigen-specific in vitro proliferation of spleen cells, the specific antigen-induced in vitro synthesis of Th1-type cytokines, IFN-γ and IL-2, and the generation of the high titers of systemic antigen-specific IgG1 and IgG2a antibodies. This study completed and confirmed our earlier investigations in C3H/HeJ (H-2(k)) and C57BL/6 (H-2(b)) mouse strains on the utility of the tested trivalent recombinant antigen-cocktails as potential vaccines against chronic toxoplasmosis and showed that particularly rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 protein-combinations are very effective in the development of a high level of protection irrespective of the genetic backgrounds and innate resistance to toxoplasmosis of the laboratory mice. It makes these two mixtures of recombinant antigens very promising for further experiments.
Collapse
|