1
|
Fang Q, Lu X, Zhu Y, Lv X, Yu F, Ma X, Liu B, Zhang H. Development of a PCSK9-targeted nanoparticle vaccine to effectively decrease the hypercholesterolemia. Cell Rep Med 2024; 5:101614. [PMID: 38897173 PMCID: PMC11228807 DOI: 10.1016/j.xcrm.2024.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Qiannan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinyu Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University·Zhaoqing Hospital, Zhaoqing, Guangdong 510630, China
| | - Xi Lv
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
2
|
Park SC, Jeong DE, Han SW, Chae JS, Lee JY, Kim HS, Kim B, Kang JG. Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs. J Microbiol 2024; 62:327-335. [PMID: 38635002 DOI: 10.1007/s12275-024-00119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
Collapse
Affiliation(s)
- Seok-Chan Park
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Da-Eun Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | - Bumseok Kim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
3
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
4
|
Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine 2020; 38:5123-5130. [PMID: 32563608 PMCID: PMC7284272 DOI: 10.1016/j.vaccine.2020.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The current pandemic of COVID-19 has set off an urgent search for an effective vaccine. This search may well benefit from the experiences of the animal health profession in the development and use of coronavirus vaccines in domestic animal species. These animal vaccines will in no way protect humans against COVID-19 but knowledge of the difficulties encountered in vaccinating animals may help avoid or minimize similar problems arising in humans. Diverse coronaviruses can infect the domestic species from dogs and cats, to cattle and pigs to poultry. Many of these infections are controlled by routine vaccination. Thus, canine coronavirus vaccines are protective in puppies but the disease itself is mild and self-limiting. Feline coronavirus infections may be mild or may result in a lethal immune-mediated disease – feline infectious peritonitis. As a result, vaccination of domestic cats must seek to generate- protective immunity without causing immune-mediated disease. Vaccines against bovine coronavirus are widely employed in cattle where they protect against enteric and respiratory disease in young calves. Two major livestock species suffer from economically significant and severe coronavirus diseases. Thus, pigs may be infected with six different coronaviruses, one of which, porcine epidemic diarrhea, has proven difficult to control despite the development of several innovative vaccines. Porcine epidemic diarrhea virus undergoes frequent genetic changes. Likewise, infectious bronchitis coronavirus causes an economically devastating disease of chickens. It too undergoes frequent genetic shifts and as a result, can only be controlled by extensive and repeated vaccination. Other issues that have been encountered in developing these animal vaccines include a relatively short duration of protective immunity, and a lack of effectiveness of inactivated vaccines. On the other hand, they have been relatively cheap to make and lend themselves to mass vaccination procedures.
Collapse
Affiliation(s)
- Ian R Tizard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
5
|
Decaro N, Martella V, Saif LJ, Buonavoglia C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res Vet Sci 2020; 131:21-23. [PMID: 32278960 PMCID: PMC7138383 DOI: 10.1016/j.rvsc.2020.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| | - Linda J Saif
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, 1680 Madison Ave, Wooster, OH 44691, USA; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, CFAES, Department of Veterinary Preventive Medicine, The Ohio State, 1680 Madison Ave, Wooster, OH 44691, USA.
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| |
Collapse
|
6
|
Jin XH, Zheng LL, Song MR, Xu WS, Kou YN, Zhou Y, Zhang LW, Zhu YN, Wan B, Wei ZY, Zhang GP. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1201-1212. [PMID: 29501635 DOI: 10.1016/j.nano.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023]
Abstract
Inactivated transmissible gastroenteritis virus (TGEV) vaccines are widely used in swine herds in China. These are limited, however, by the need to elicit both humoral and cellular immunity, as well as the efficiency of adjuvants. In this study, a 70-nm nano silicon particle was applied with inactivated TGEV vaccine in mice, and its immune-enhancing effects and mechanism of action investigated. We found that nano silicon applied with inactivated TGEV vaccine induced high antibody titers, increase IL-6, TNF-α and IFN-γ expression, and stimulate CD3+ T cell proliferation with a high CD4+/CD8+ T lymphocyte ratio. Nano silicon could quickly activate innate and adaptive immunity by stimulating Toll-like receptor signaling pathways, indicating that the nano silicon adjuvant enhanced long-term humoral and early cellular immune responses when combined with inactivated TGEV vaccine. Nano silicon could be considered for use as an antigen- carrier and adjuvant for veterinary vaccines.
Collapse
Affiliation(s)
- Xiao-Hui Jin
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Lan-Lan Zheng
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Mei-Rong Song
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Wei-Song Xu
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, P. R. China
| | - Ya-Nan Kou
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, P. R. China
| | - Yong Zhou
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Li-Wei Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Yan-Ning Zhu
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, P. R. China
| | - Bo Wan
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Zhan-Yong Wei
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, P. R. China.
| | - Gai-Ping Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
7
|
Decaro N, Mari V, von Reitzenstein M, Lucente MS, Cirone F, Elia G, Martella V, King VL, Di Bello A, Varello K, Zhang S, Caramelli M, Buonavoglia C. A pantropic canine coronavirus genetically related to the prototype isolate CB/05. Vet Microbiol 2012; 159:239-44. [PMID: 22542271 PMCID: PMC7117425 DOI: 10.1016/j.vetmic.2012.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/28/2022]
Abstract
We report the genetic and biological characterisation of a novel pantropic canine coronavirus (CCoV), strain 450/07, which caused the death of a 60-day-old miniature pinscher. At the genetic level, this virus was strictly related to the prototype strain CB/05, but displayed some unique features. After experimental infection with the new pantropic isolate, most inoculated dogs showed diarrhoea and acute lymphopenia. Gross lesions and histological changes were mainly evident in the gut and lymphoid tissues, although some animals showed remarkable changed also in parenchymatous organs. The viral RNA was detected in the faeces and/or internal organs of most pups. These findings seem to indicate that strain 450/07 is able to spread to internal organs (mainly lymphoid tissues), causing lymphopenia but inducing a mild disease.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Public Health, Faculty of Veterinary Medicine of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | | |
Collapse
|