1
|
Montero DA, Garcia-Betancourt R, Vidal RM, Velasco J, Palacios PA, Schneider D, Vega C, Gómez L, Montecinos H, Soto-Shara R, Oñate Á, Carreño LJ. A chimeric protein-based vaccine elicits a strong IgG antibody response and confers partial protection against Shiga toxin-producing Escherichia coli in mice. Front Immunol 2023; 14:1186368. [PMID: 37575242 PMCID: PMC10413102 DOI: 10.3389/fimmu.2023.1186368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that causes gastrointestinal infections, ranging from acute diarrhea and dysentery to life-threatening diseases such as Hemolytic Uremic Syndrome. Currently, a vaccine to prevent STEC infection is an unmet medical need. Results We developed a chimeric protein-based vaccine targeting seven virulence factors of STEC, including the Stx2B subunit, Tir, Intimin, EspA, Cah, OmpT, and AggA proteins. Immunization of mice with this vaccine candidate elicited significant humoral and cellular immune responses against STEC. High levels of specific IgG antibodies were found in the serum and feces of immunized mice. However, specific IgA antibodies were not detected in either serum or feces. Furthermore, a significantly higher percentage of antigen-specific CD4+ T cells producing IFN-γ, IL-4, and IL-17 was observed in the spleens of immunized mice. Notably, the immunized mice showed decreased shedding of STEC O157:H7 and STEC O91:H21 strains and were protected against weight loss during experimental infection. Additionally, infection with the STEC O91:H21 strain resulted in kidney damage in control unimmunized mice; however, the extent of damage was slightly lower in immunized mice. Our findings suggest that IgG antibodies induced by this vaccine candidate may have a role in inhibiting bacterial adhesion and complement-mediated killing. Conclusion This study provides evidence that IgG responses are involved in the host defense against STEC. However, our results do not rule out that other classes of antibodies also participate in the protection against this pathogen. Additional work is needed to improve the protection conferred by our vaccine candidate and to elucidate the relevant immune responses that lead to complete protection against this pathogen.
Collapse
Affiliation(s)
- David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Richard Garcia-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. Palacios
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Schneider
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Vega
- Plataforma Experimental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Leonardo Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Hernán Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Soto-Shara
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
3
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Oral Administration with Live Attenuated Citrobacter rodentium Protects Immunocompromised Mice from Lethal Infection. Infect Immun 2022; 90:e0019822. [PMID: 35861565 PMCID: PMC9302154 DOI: 10.1128/iai.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important causative agents for foodborne diseases worldwide. Besides antibiotic treatment, vaccination has been deemed as the most effective strategy for preventing EPEC- and EHEC-caused foodborne illnesses. Despite substantial progress made in identifying promising antigens and efficacious vaccines, no vaccines against EPEC or EHEC have yet been licensed. Mice are inherently resistant to EPEC and EHEC infections; infection with Citrobacter rodentium (CR), the murine equivalent of EPEC and EHEC, in mice has been widely used as a model to study bacterial pathogenesis and develop novel vaccine strategies. Mirroring the severe outcomes of EPEC and EHEC infections in immunocompromised populations, immunocompromised mouse strains such as interleukin-22 knockout (Il22-/-) are susceptible to CR infection with severe clinical symptoms and mortality. Live attenuated bacterial vaccine strategies have been scarcely investigated for EPEC and EHEC infections, in particular in immunocompromised populations associated with severe outcomes. Here we examined whether live attenuated CR strain with rational genetic manipulation generates protective immunity against lethal CR infection in the susceptible Il22-/- mice. Our results demonstrate that oral administration of live ΔespFΔushA strain promotes efficient systemic and humoral immunity against a wide range of CR virulence determinants, thus protecting otherwise lethal CR infection, even in immunocompromised Il22-/- mice. This provides a proof of concept of live attenuated vaccination strategy for preventing CR infection in immunocompromised hosts associated with more severe symptoms and lethality.
Collapse
|
5
|
Frequency and diversity of small plasmids in mesophilic Aeromonas isolates from fish, water and sediment. Plasmid 2021; 118:102607. [PMID: 34800545 DOI: 10.1016/j.plasmid.2021.102607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Plasmids are autonomous genetic elements ubiquitously present in bacteria. In addition to containing genetic determinants responsible for their replication and stability, some plasmids may carry genes that help bacteria adapt to different environments, while others without a known function are classified as cryptic. In this work we identified and characterized plasmids from a collection of mesophilic Aeromonas spp. (N = 90) isolated from water, sediments and fish. A total of 15 small plasmids ranging from 2287 to 10,558 bp, with an incidence of 16.7% (15/90) was found. Plasmids were detected in A. hydrophila (6), A. veronii (4), A. taiwanensis (2), A. jandaei (1), A. media (1) and Aeromonas sp. (1). There were no large or megaplasmids in the strains studied in this work. Analysis of coding sequences identified proteins associated to replication, mobilization, antibiotic resistance, virulence and stability. A considerable number of hypothetical proteins with unknown functions were also found. Some strains shared identical plasmid profiles, however, only two of them were clones. Small plasmids could be acting as a gene repositories as suggested by the presence of a gene encoding for a putative zonula occludens toxin (Zot) that causes diarrhea and the qnrB gene involved in quinolone resistance harbored in plasmids pAerXII and pAerXIII respectively.
Collapse
|
6
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Montero DA, Del Canto F, Salazar JC, Céspedes S, Cádiz L, Arenas-Salinas M, Reyes J, Oñate Á, Vidal RM. Immunization of mice with chimeric antigens displaying selected epitopes confers protection against intestinal colonization and renal damage caused by Shiga toxin-producing Escherichia coli. NPJ Vaccines 2020; 5:20. [PMID: 32194997 PMCID: PMC7067774 DOI: 10.1038/s41541-020-0168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.
Collapse
Affiliation(s)
- David A Montero
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,2Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Del Canto
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Céspedes
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leandro Cádiz
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Arenas-Salinas
- 3Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - José Reyes
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M Vidal
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,5Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Hosomi K, Hinenoya A, Suzuki H, Nagatake T, Nishino T, Tojima Y, Hirata SI, Matsunaga A, Kondoh M, Yamasaki S, Kunisawa J. Development of a bivalent food poisoning vaccine: augmented antigenicity of the C-terminus of Clostridium perfringens enterotoxin by fusion with the B subunit of Escherichia coli Shiga toxin 2. Int Immunol 2020; 31:91-100. [PMID: 30329068 DOI: 10.1093/intimm/dxy071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/11/2018] [Indexed: 11/14/2022] Open
Abstract
Food poisonings caused by Clostridium perfringens and Shiga toxin (Stx)-producing Escherichia coli (STEC) occur frequently worldwide; however, no vaccine is currently available. Therefore, we aimed to develop a bivalent vaccine against C. perfringens and STEC infections. Although it has been considered that the C-terminal region of C. perfringens enterotoxin (C-CPE) could be a good vaccine antigen to block the binding to its receptor, it was insufficient for induction of a protective immune response because of the low antigenicity. However, the fusion of C-CPE with Stx2 B subunit (Stx2B) augmented the antigenicity of C-CPE without affecting the antigenicity of Stx2B. Indeed, high levels of C-CPE-specific neutralizing IgG were found in the serum of mice immunized with the fusion protein Stx2B-C-CPE. Additionally, comparable and substantial levels of Stx2B-specific neutralizing IgG were induced in mice receiving Stx2B-C-CPE or Stx2B alone. These antibody responses against C-CPE and Stx2B lasted for at least 48 weeks, which were sufficient for protective immunity in vitro and in vivo, indicating that Stx2B-C-CPE could induce long-term protective immunity. As an underlying mechanism, ex vivo stimulation with Stx2B, but not with C-CPE, induced cytokine production from splenic T cells collected from mice immunized with Stx2B-C-CPE, suggesting that Stx2B-specific, but not C-CPE-specific, T cells were induced by the immunization with Stx2B-C-CPE and plausibly promoted immunoglobulin class switching of both Stx2B- and C-CPE-specific B cells from IgM to IgG. These findings collectively indicate that Stx2B-C-CPE is a T-cell-antigen-supplement-type bivalent vaccine, which could be an efficient against C. perfringens and STEC infections.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Atsushi Hinenoya
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Tomomi Nishino
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shinji Yamasaki
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan.,Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Khanifar J, Salmanian AH, Haji Hosseini R, Amani J, Kazemi R. Chitosan nano-structure loaded with recombinant E. coli O157:H7 antigens as a vaccine candidate can effectively increase immunization capacity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2593-2604. [DOI: 10.1080/21691401.2019.1629947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jaleh Khanifar
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rohoallah Kazemi
- Department of Molecular Biology, Green Gene Company, Tehran, Iran
| |
Collapse
|
10
|
Ghaffari Marandi BH, Zolfaghari MR, Kazemi R, Motamedi MJ, Amani J. Immunization against Vibrio cholerae, ETEC, and EHEC with chitosan nanoparticle containing LSC chimeric protein. Microb Pathog 2019; 134:103600. [PMID: 31202906 DOI: 10.1016/j.micpath.2019.103600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Severe intestinal infections caused by V. cholerae, ETEC and EHEC have contributed to the mortality rate in developing countries. Vibrio Cholera, ETEC and EHEC bacterium with the production of CT, LT and Stx2 toxins respectively lead to severe watery and bloody diarrhea. This study aimed to investigate a trimeric vaccine candidate containing recombinant chimeric protein, encapsulate the protein in chitosan nanoparticles and assess its immunogenicity. METHODS The LSC recombinant gene was used. It is composed of LTB (L), STXB (S) and CTXB (C) subunits respectively. The LSC recombinant protein was expressed and purified and confirmed by western blotting. The purified protein was encapsulated in chitosan nanoparticles, and its size was measured. BalB/c mice were immunized in four groups through oral and injection methods by LSC protein. The antibody titer was then evaluated by ELISA, and finally, the challenge test of the toxins from all three bacteria was done on the immunized mouse. RESULTS After expression and purification LSC protein size of nanoparticles containing protein was measured at 104.6 nm. Nanoparticles were able to induce systemic and mucosal immune responses by generating a useful titer of IgG and IgA. The challenge results with LT, CT and Stx toxins showed that the LSC protein might partially neutralize the effect of toxins. CONCLUSION LSC chimeric protein with the simultaneous three essential antigens have a protective effect against the toxins produced by ETEC, EHEC and Vibrio cholera bacteria and it can be used in vaccines to prevent Diarrhea caused by these three bacteria.
Collapse
Affiliation(s)
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal immunization of cocktail/fusion protein containing Tir along with ΔG active fragment of Zot as mucosal adjuvant confers enhanced immunogenicity and reduces E. coli O157:H7 shedding in mice. Int Immunopharmacol 2018; 63:211-219. [PMID: 30103196 DOI: 10.1016/j.intimp.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
Ruminants are the major reservoirs of Escherichia coli O157:H7 and its fecal shedding mainly act as a source of entry of this pathogen into the human food chain. In humans, E. coli O157:H7 infection causes diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. Intimate adherence of E. coli O157:H7 is mediated by Translocated intimin receptor (Tir) to which intimin binds in the host cell. Since E. coli O157:H7 colonizes intestinal epithelium, the mucosal vaccine has a potential to prevent its colonization. Zonula occludens toxin (Zot) of Vibrio cholerae transiently, reversibly alters epithelial tight junction structure to increase mucosal permeability of macromolecules via paracellular route. The C-terminal region of Zot (ΔG) responsible for this function could be used for mucosal antigen delivery. Therefore, we employed individual (Tir), cocktail (ΔG + Tir), fusion protein (ΔG-Tir) and assessed the efficacy of its intranasal immunization on immunogenicity and fecal shedding of E. coli O157:H7 in streptomycin treated mouse model. Compared to control, ΔG + Tir, ΔG-Tir immunized mice elicited significant antigen specific antibody titers in serum (IgG, IgA) and feces (IgA), whereas Tir immunized mice induced only serum IgG titer. Cytokine analysis revealed mixed Th1/Th2 type immune response in case of ΔG + Tir, ΔG-Tir group while that of Tir group was solely Th2 type. Tir, ΔG + Tir and ΔG-Tir immunized mice showed reduction in shedding of E. coli O157:H7 compared to control group. However, ΔG-Tir immunized group performed better than ΔG + Tir, Tir group in reducing fecal shedding. Overall, our results demonstrate that intranasal immunization of ΔG-Tir induces effective systemic, mucosal, cellular immune responses and represents a promising mucosal subunit vaccine to prevent E. coli O157:H7 colonization.
Collapse
|
12
|
Zhang B, Sun X, Fan H, He K, Zhang X. The Fimbrial Gene z3276 in Enterohemorrhagic Escherichia coli O157:H7 Contributes to Bacterial Pathogenicity. Front Microbiol 2018; 9:1628. [PMID: 30072979 PMCID: PMC6060243 DOI: 10.3389/fmicb.2018.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance that causes foodborne infections in humans. It is not capable of expressing type I fimbrial because of base deletion in the fim operon. BLAST analysis shows that the open reading frame z3276, a specific genetic marker of EHEC O157:H7, encodes a sequence with high amino acid identity to other E. coli type I fimbrial, but its definitive function in EHEC O157:H7 remains unclear. We are here to report that a z3276 mutant (Δz3276) was constructed using the reference EHEC O157:H7, the mutant Δz3276 was biologically characterized, and the pathogenicity of Δz3276 was assessed in mice in comparison with the wild-type (WT) strain. Motility and biofilm formation assays revealed a smaller twitching motility zone for Δz3276 on the agar surface and significantly decreased biofilm formation by Δz3276 compared with the parental strain. The adhesion and invasion ability of Δz3276 to HEp-2 cells showed no significant change, but the invasion ability of Δz3276 to IPEC-J2 cells was attenuated. Furthermore, in the animal study, we observed shortened and lower fecal shedding among the Δz3276 mutant-infected animals compared with those infected WT strain. The data in this study indicate that this unique gene of z3276 in EHEC O157:H7 seems to play an important role in bacterial pathogenicity.
Collapse
Affiliation(s)
- Bicheng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaohan Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Anvari S, Najar-Peerayeh S, Behmanesh M, Bakhshi B. Cumulative protective efficacy of rZot and rAce combination in challenge experiments with wild type Vibrio cholerae in mouse model. Hum Vaccin Immunother 2018; 14:2323-2328. [PMID: 29852089 DOI: 10.1080/21645515.2018.1469593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The aim of this study was to assess the cumulative immunogenicity properties of rZot and rAce combination and their potential ability to increase the clearance rate of pathogenic standard Vibrio cholerae strain in challenge experiments in mice model. The recombinant Zot and Ace proteins were produced and used to raise polyclonal antibodies of anti-Zot and anti-Ace recombinant proteins in rabbit. Six-week female BALB/c mice were immunized with different antigens via oral route. Blood samples were collected, and the total amount of IgG and IgA antibodies against rZot and rAce were measured in blood and stool samples of each immunized mouse. Challenge experiments were done with toxigenic V. cholerae strain. The anti-Zot and anti-Ace IgG titers were significantly higher in immunized mice in comparison with control group. The IgG and IgA titers were higher in the sera of mice immunized by recombinant Ace than in group immunized by rZot, indicating the higher immunogenicity of rAce than rZot. The use of rAce and rZot mixture led to synergistic activities in increasing the level of IgG and IgA in comparison with the use of each protein separately. The clearance rate was significantly higher in different challenge groups than in the control group, and the coherence between rZot and rAce reduced the bacterial shedding significantly. In conclusion, the use of recombinant Zot and Ace mixture can produce the proper amount of IgA and IgG against to toxigenic V. cholerae, reduce bacterial shedding in immunized mice significantly, and be used as a potent candidate in cholera vaccine research.
Collapse
Affiliation(s)
- Shaghayegh Anvari
- a Department of Bacteriology , Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Shahin Najar-Peerayeh
- a Department of Bacteriology , Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mehrdad Behmanesh
- b Department of Genetic , Faculty of Basic Science, Tarbiat Modares University , Tehran , Iran
| | - Bita Bakhshi
- a Department of Bacteriology , Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
14
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
15
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
16
|
Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian S, Amani J. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb Pathog 2017; 103:186-195. [PMID: 28062285 DOI: 10.1016/j.micpath.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/25/2016] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that younger children are most prone to this microorganism. Hemolytic Uremic Syndrome (HUS) caused by EHEC, leads to the destruction of red blood cells and kidney failure. The virulence of E.coli O157:H7 is attributed to fimbriae, that facilitate colonization of bacteria within the colon and verotoxins (VT) or Shiga toxins (Stx) that are released into the blood. Although, in most cases, the infection is self-limitedin young children and aged population, it may cause HUS. Therefore, several investigations are performed in order to offer effective therapies and vaccines, which can prevent and treat the infection in appropriate time. As the pathogenesis of this infection is complicated, a multi-targeted strategy is required. Since cattle are the most important reservoir of EHEC and the root of contamination, reducing E. coli O157:H7 at the farm level should decrease the risk of human illness. Several vaccine approaches have been employed with different proper outcomes in animal models, including recombinant proteins (virulence factors such as; Stx1/2, intimin, EspA, fusion proteins of A and B Stx subunits), avirulent ghost cells of EHEC O157:H7, live attenuated bacteria expressing recombinant proteins, recombinant fimbrial proteins. In addition to protein-based vaccines, DNA vaccines have provided proper prevention in the laboratory animal model. This review paper summarizes the previous studies, current status and future perspective of different immunization strategies for eradicating Enterohemorrhagic Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdanparast
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Elham Behzadi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hatef Salmanian
- Plant Bioproducts Department, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Zhang X, Li M, Zhang B, Chen K, He K. Development of a Sandwich ELISA for EHEC O157:H7 Intimin γ1. PLoS One 2016; 11:e0162274. [PMID: 27603508 PMCID: PMC5014315 DOI: 10.1371/journal.pone.0162274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance that causes foodborne infections in humans. Intimin gamma 1 (intimin γ1) is one of the most important outer membrane proteins required for EHEC’s intimate adhesion to epithelial cells. Here, we generated a polyclonal antibody (pAb) and a monoclonal antibody (mAb) against intimin γ1 to develop a double antibody sandwich ELISA (DAS-ELISA) with increased sensitivity and specificity for measuring EHEC O157:H7. To achieve this goal, a rabbit pAb was used as a capture antibody, and a mouse mAb was a detection antibody. No cross-reactivity was observed with the other genera of pathogenic bacteria tested with the DAS-ELISA, which included Salmonella enteritidis, Shigella flexneri type 2, Listeria monocytogenes, Streptococcus suis type 2, and other 18 serotype E. coli. Detection limits of the DAS-ELISA were 1 × 103 CFU/mL for EHEC O157:H7 cultures, 1 × 104 CFU/g before enrichment, and 1 × 102 CFU/g after enrichment of contaminated samples. Field samples (n = 498) were tested using a previously established duplex-PCR method and compared to our DAS-ELISA. The DAS-ELISA had a specificity of 94.4%, a sensitivity of 91.5% and accuracy of 94.0% compared with duplex-PCR. The DAS-ELISA developed here can be applied to EHEC O157:H7 quantification in food, animal, and environmental samples.
Collapse
Affiliation(s)
- Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China
- * E-mail: (XZ); (KH)
| | - Meng Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Bicheng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Kangming Chen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China
- * E-mail: (XZ); (KH)
| |
Collapse
|
18
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
20
|
Doavi T, Mousavi SL, Kamali M, Amani J, Fasihi Ramandi M. Chitosan-Based Intranasal Vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2016; 20:97-108. [PMID: 26724233 PMCID: PMC4726890 DOI: 10.7508/ibj.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: EnterohemorrhagicEscherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein A, acting as Tir conduit, are highly immunogenic proteins for vaccine development against E. coli O157:H7. Methods: A chimeric trivalent recombinant protein was previously found to be a suitable strategy for developing vaccines against E. coli O157:H7. In this study, the recombinant EIT (rEIT) was used to design a protective EHEC nasal nanovaccine. Chitosan and its water-soluble derivative, trimethylated chitosan (TMC), as muco-adhesive biopolymers, are good candidates for preparation of nanovaccines. Using the electrospraying technique, as a novel method, we could obtain particles of rEIT loaded with chitosan and TMC on a nanometer scale. Mice were immunized with intranasal administration or intrapretoneal injection of rEIT. Results: The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. Only nasal administration of chitosan electrospray and TMC formulation produced significant secretion IgA. Intranasal administration of nanovaccine reduced the duration of bacterial fecal shedding on mice challenged with E. coli O157:H7. Conclusion: Since development of mucosal vaccines for the prevention of infectious diseases requires efficient antigen delivery; therefore, this research could be a new strategy for developing vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Tahere Doavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehdi Kamali
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
21
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
22
|
Desin TS, Townsend HG, Potter AA. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells. PLoS One 2015; 10:e0139803. [PMID: 26451946 PMCID: PMC4599963 DOI: 10.1371/journal.pone.0139803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.
Collapse
Affiliation(s)
- Taseen S. Desin
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Hugh G. Townsend
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew A. Potter
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Choi KS, Kim SH, Kim ED, Lee SH, Han SJ, Yoon S, Chang KT, Seo KY. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles. PLoS One 2014; 9:e100229. [PMID: 25032703 PMCID: PMC4102476 DOI: 10.1371/journal.pone.0100229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 05/24/2014] [Indexed: 01/08/2023] Open
Abstract
We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs) is effective for protecting against hemolytic uremic syndrome (HUS) caused by enterohemorrhagic E. coli (EHEC) O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA)-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB). Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs) at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN)/Creatinin (Cr) were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB) subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.
Collapse
Affiliation(s)
- Kyoung Sub Choi
- The Graduate School of Yonsei University, Seoul, South Korea
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang city, South Korea
| | - Sang-Hyun Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eun-Do Kim
- The Graduate School of Yonsei University, Seoul, South Korea
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sang-Ho Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyu-Tae Chang
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Chungbuk, South Korea
- * E-mail: (KYS); (KTC)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail: (KYS); (KTC)
| |
Collapse
|
24
|
Zhang X, Yu Z, Zhang S, He K. Immunization with H7-HCP-tir-intimin significantly reduces colonization and shedding of Escherichia coli O157:H7 in goats. PLoS One 2014; 9:e91632. [PMID: 24632795 PMCID: PMC3954762 DOI: 10.1371/journal.pone.0091632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the causative agent of hemorrhagic colitis and hemolytic uremic syndrome in humans. However, the bacterium can colonize the intestines of ruminants without causing clinical signs. EHEC O157:H7 needs flagella (H7) and hemorrhagic coli pili (HCP) to adhere to epithelial cells. Then the bacterium uses the translocated intimin receptor (Tir) and an outer membrane adhesion (Intimin) protein to colonize hosts. This leads to the attachment and effacement of (A/E) lesions. A tetravalent recombinant vaccine (H7-HCP-Tir-Intimin) composed of immunologically important portions of H7, HCP, Tir and Intimin proteins was constructed and its efficacy was evaluated using a caprine model. The results showed that the recombinant vaccine induced strong humoral and mucosal immune responses and protected the subjects from live challenges with EHEC O157:H7 86-24 stain. After a second immunization, the average IgG titer peaked at 7.2 × 10(5). Five days after challenge, E. coli O157:H7 was no longer detectable in the feces of vaccinated goats, but naïve goats shed the bacterium throughout the course of the challenge. Cultures of intestinal tissues showed that vaccination of goats with H7-HCP-Tir-Intimin reduced the amount of intestinal colonization by EHEC O157:H7 effectively. Recombinant H7-HCP-Tir-Intimin protein is an excellent vaccine candidate. Data from the present study warrant further efficacy studies aimed at reducing EHEC O157:H7 load on farms and the contamination of carcasses by this zoonotic pathogen.
Collapse
Affiliation(s)
- Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| |
Collapse
|
25
|
Comparative genomics and immunoinformatics approach for the identification of vaccine candidates for enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2014; 82:2016-26. [PMID: 24595137 DOI: 10.1128/iai.01437-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains are major human food-borne pathogens, responsible for bloody diarrhea and hemolytic-uremic syndrome worldwide. Thus far, there is no vaccine for humans against EHEC infections. In this study, a comparative genomics analysis was performed to identify EHEC-specific antigens useful as potential vaccines. The genes present in both EHEC EDL933 and Sakai strains but absent in nonpathogenic E. coli K-12 and HS strains were subjected to an in silico analysis to identify secreted or surface-expressed proteins. We obtained a total of 65 gene-encoding protein candidates, which were subjected to immunoinformatics analysis. Our criteria of selection aided in categorizing the candidates as high, medium, and low priority. Three members of each group were randomly selected and cloned into pVAX-1. Candidates were pooled accordingly to their priority group and tested for immunogenicity against EHEC O157:H7 using a murine model of gastrointestinal infection. The high-priority (HP) pool, containing genes encoding a Lom-like protein (pVAX-31), a putative pilin subunit (pVAX-12), and a fragment of the type III secretion structural protein EscC (pVAX-56.2), was able to induce the production of EHEC IgG and sIgA in sera and feces. HP candidate-immunized mice displayed elevated levels of Th2 cytokines and diminished cecum colonization after wild-type challenge. Individually tested HP vaccine candidates showed that pVAX-12 and pVAX-56.2 significantly induced Th2 cytokines and production of fecal EHEC sIgA, with pVAX-56.2 reducing EHEC cecum colonization. We describe here a bioinformatics approach able to identify novel vaccine candidates potentially useful for preventing EHEC O157:H7 infections.
Collapse
|
26
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 895] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
27
|
Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. mBio 2013; 4:mBio.00430-13. [PMID: 23820397 PMCID: PMC3705454 DOI: 10.1128/mbio.00430-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Treatment with streptomycin enhances the growth of human commensal Escherichia coli isolates in the mouse intestine, suggesting that the resident microbial community (microbiota) can inhibit the growth of invading microbes, a phenomenon known as “colonization resistance.” However, the precise mechanisms by which streptomycin treatment lowers colonization resistance remain obscure. Here we show that streptomycin treatment rendered mice more susceptible to the development of chemically induced colitis, raising the possibility that the antibiotic might lower colonization resistance by changing mucosal immune responses rather than by preventing microbe-microbe interactions. Investigation of the underlying mechanism revealed a mild inflammatory infiltrate in the cecal mucosa of streptomycin-treated mice, which was accompanied by elevated expression of Nos2, the gene that encodes inducible nitric oxide synthase. In turn, this inflammatory response enhanced the luminal growth of E. coli by nitrate respiration in a Nos2-dependent fashion. These data identify low-level intestinal inflammation as one of the factors responsible for the loss of resistance to E. coli colonization after streptomycin treatment. Our intestine is host to a complex microbial community that confers benefits by educating the immune system and providing niche protection. Perturbation of intestinal communities by streptomycin treatment lowers “colonization resistance” through unknown mechanisms. Here we show that streptomycin increases the inflammatory tone of the intestinal mucosa, thereby making the bowel more susceptible to dextran sulfate sodium treatment and boosting the Nos2-dependent growth of commensal Escherichia coli by nitrate respiration. These data point to the generation of alternative electron acceptors as a by-product of the inflammatory host response as an important factor responsible for lowering resistance to colonization by facultative anaerobic bacteria such as E. coli.
Collapse
|
28
|
Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection. Vaccine 2013; 31:3229-35. [PMID: 23707170 DOI: 10.1016/j.vaccine.2013.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model.
Collapse
|
29
|
Nataro JP, Barry EM. Diarrhea caused by bacteria. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Pacheco AR, Sperandio V. Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2012; 2:81. [PMID: 22919672 PMCID: PMC3417539 DOI: 10.3389/fcimb.2012.00081] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/23/2012] [Indexed: 01/09/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are responsible for major outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) throughout the world. The mortality associated with EHEC infections stems from the production and release of a potent Shiga toxin (Stx) by these bacteria. Stx induces cell death in endothelial cells, primarily in the urinary tract, causing HUS. Stx was first described in Shigella dysenteriae serotype I by Kiyoshi Shiga and was discovered later in EHEC. Multiple environmental cues regulate the expression of Stx, including temperature, growth phase, antibiotics, reactive oxygen species (ROS), and quorum sensing. Currently, there is no effective treatment or prophylaxis for HUS. Because antibiotics trigger Stx production and their use to treat EHEC infections is controversial, alternative therapeutic strategies have become the focus of intense research. One such strategy explores quorum sensing inhibitors as therapeutics. These inhibitors target quorum sensing regulation of Stx expression without interfering with bacterial growth, leading to the hypothesis that these inhibitors impose less selective pressure for bacteria to develop drug resistance. In this review, we discuss factors that regulate Stx production in EHEC, as well as novel strategies to prevent and/or minimize the development of HUS in infected subjects.
Collapse
Affiliation(s)
- Alline R Pacheco
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | | |
Collapse
|
31
|
Zhang XH, He KW, Zhao PD, Ye Q, Luan XT, Yu ZY, Wen LB, Ni YX, Li B, Wang XM, Guo RL, Zhou JM, Mao AH. Intranasal immunisation with Stx2B-Tir-Stx1B-Zot protein leads to decreased shedding in goats after challenge with Escherichia coli
O157:H7. Vet Rec 2012; 170:178. [DOI: 10.1136/vr.100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - A-H. Mao
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry; Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; National Center for Engineering Research of Veterinary Bio-products; Zhongling St 50# Nanjing 210014 China
| |
Collapse
|