1
|
Ito H, Ito M. Recent trends in ginseng research. J Nat Med 2024; 78:455-466. [PMID: 38512649 DOI: 10.1007/s11418-024-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Ginseng, the dried root of Panax ginseng, contains ginsenosides and has long been used in Korea, China, and Japan to treat various symptoms. Many studies on the utility of ginseng have been conducted and in this paper we investigate recent trends in ginseng research. P. ginseng studies were collected from scientific databases (PubMed, Web of Science, and SciFindern) using the keywords "Panax ginseng C.A. Meyer", "ginsenosides", "genetic diversity", "biosynthesis", "cultivation", and "pharmacology". We identified 1208 studies up to and including September 2023: 549 studies on pharmacology, 262 studies on chemical components, 131 studies on molecular biology, 58 studies on cultivation, 71 studies on tissue culture, 28 studies on clinical trials, 123 reviews, and 49 studies in other fields. Many researchers focused on the characteristic ginseng component ginsenoside to elucidate the mechanism of ginseng's pharmacological action, the relationship between component patterns and cultivation areas and conditions, and gene expression.
Collapse
Affiliation(s)
- Honoka Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| |
Collapse
|
2
|
Shen L, Luo H, Fan L, Su Z, Yu S, Cao S, Wu X. Exploration of the immuno-adjuvant effect and mechanism of Anemoside B4 through network pharmacology and experiment verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155302. [PMID: 38176273 DOI: 10.1016/j.phymed.2023.155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hao Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhetong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Shen L, Luo H, Fan L, Tian X, Tang A, Wu X, Dong K, Su Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2023; 29:113. [PMID: 38202696 PMCID: PMC10780299 DOI: 10.3390/molecules29010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Saponins are extracted from different parts of plants such as seeds, roots, stems, and leaves and have a variety of biological activities including immunomodulatory, anti-inflammatory effects, and hypoglycemic properties. They demonstrate inherent low immunogenicity and possess the capacity to effectively regulate both the innate and adaptive immune responses. Plant saponins can promote the growth and development of the body's immune organs through a variety of signaling pathways, regulate the activity of a variety of immune cells, and increase the secretion of immune-related cytokines and antigen-specific antibodies, thereby exerting the role of immune activity. However, the chemical structure of plant saponins determines its certain hemolytic and cytotoxicity. With the development of science and technology, these disadvantages can be avoided or reduced by certain technical means. In recent years, there has been a significant surge in interest surrounding the investigation of plant saponins as immunomodulators. Consequently, the objective of this review is to thoroughly examine the immunomodulatory properties of plant saponins and elucidate their potential mechanisms, with the intention of offering a valuable point of reference for subsequent research and advancement within this domain.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Dong
- Sichuan Yuqiang Herbal Biotechnology Co., Ltd., Chengdu 611130, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu 546600, China
| |
Collapse
|
4
|
Silvestrini P, Beccaria C, Renna MS, Engler C, Simonutti V, Cellone I, Calvinho LF, Dallard BE, Baravalle C. In vitro evaluation of ginsenoside Rg1 immunostimulating effect in bovine mononuclear cells. Res Vet Sci 2023; 158:1-12. [PMID: 36898322 DOI: 10.1016/j.rvsc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effect of ginsenoside Rg1 on mammary secretion and peripheral blood mononuclear cells (MSMC and PBMC, respectively). The mRNA expression of TLR2, TLR4 and selected cytokines were evaluated on MSMC after Rg1 treatment. Also, TLR2 and TLR4 protein expression was evaluated on MSMC and PBMC after Rg1 treatment. Phagocytic activity and capacity, ROS production and MHC-II expression were evaluated on MSMC and PBMC after Rg1 treatment and co-culture with Staphylococcus aureus strain 5011. Rg1 induced mRNA expression of TLR2, TLR4, TNF-α, IL-1β, IL-6 and IL-8 in groups treated with different concentrations and at different times in MSMC, and induced TLR2 and TLR4 protein expression in MSMC and PBMC. Rg1 increased phagocytic capacity and ROS production in MSMC and PBMC. Rg1 increased MHC-II expression by PBMC. However, Rg1 pre-treatment had no effect on cells co-cultured with S. aureus. In conclusion, Rg1 was able to stimulate several sensing and effector activities in these immune cells.
Collapse
Affiliation(s)
- Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Valeria Simonutti
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Ivana Cellone
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONCET), Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
5
|
Hu W, Bi S, Shao J, Qu Y, Zhang L, Li J, Chen S, Ma Y, Cao L. Ginsenoside Rg1 and Re alleviates inflammatory responses and oxidative stress of broiler chicks challenged by lipopolysaccharide. Poult Sci 2023; 102:102536. [PMID: 36764136 PMCID: PMC9929597 DOI: 10.1016/j.psj.2023.102536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Previous study showed that ginsenoside Rg1 (Rg1) and ginsenoside Re (Re) alleviated growth inhibition of broiler chicks with immune stress. The aim of this study was to investigate the effect of Rg1 and Re on inflammatory responses, oxidative stress, and apoptosis in liver of broilers with immune stress induced by lipopolysaccharide (LPS). Forty broiler chicks were randomly divided into 4 groups, each group consisting of 10 chickens. The model group, Rg1 group, and Re group were received continuously interval injection of 250 μg/kg body weight LPS at the age of 12, 14, 33, and 35 days to induce immune stress. Control group was injected with an equivalent amount of sterile saline. Then broilers in Rg1 group and Re group were given 1mg/kg body weight Rg1 and Re intraperitoneally 2 h after the LPS challenge respectively. Blood samples were collected for the detection of hormone levels, inflammatory mediators, and antioxidant parameters. Hepatic tissues were taken for pathological observation. Total RNA was extracted from the liver for real-time quantitative polymerase chain reaction analysis. Our results showed that Rg1 or Re could alleviate histological changes of liver, reduce production of stress-related hormones, inhibit inflammatory responses, and enhance antioxidant capacity in broilers challenged by immune stress. In addition, Rg1 or Re treatment upregulated mRNA expression of antioxidant-related genes and downregulated mRNA expression of inflammation-related factors and apoptosis-related genes in the liver of immune-stressed broilers. The results suggest that the plant extracts containing Rg1 and Re can be used for ameliorating hepatic oxidative stress and inflammation and controlling immune stress in broiler chicks.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Sihuai Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
6
|
Cai J, Huang K, Han S, Chen R, Li Z, Chen Y, Chen B, Li S, Xinhua L, Yao H. A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re: Recent advances and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154119. [PMID: 35617888 DOI: 10.1016/j.phymed.2022.154119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginsenoside Re (Re) belongs to protopanaxatriol saponins and exists in Panax ginseng, Panax quinquefolium, Panax notoginseng, and other plants in the Araliaceae family. Re has recently become a research focus owing to its pharmacological activities and benefits to human bodies. PURPOSE To summarize recent findings regarding the pharmacological effects and mechanisms of Re and highlight and predict the potential therapeutic effects and systematic mechanism of Re. METHODS Recent studies (2011-2021) on the pharmacological effects and mechanisms of Re were retrieved from Web of Science, PubMed, Google Scholar, Scopus, and Embase up to December 2021 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of Re against potential diseases. RESULTS Re presented a wide range of therapeutic and biological activities, including neuroprotective, cardiovascular, antidepressant, antitumorigenic, and others effects. The related pharmacological mechanisms of Re include the regulation of cholinergic and antioxidant systems in the brain; the induction of tumor cell apoptosis; the inhibition of tau protein hyperphosphorylation and oxidative stress; the activation of p38MAPK, ERK1/2, and JNK signals; the improvement of lipid metabolism; and the reduction of endothelial cell dysfunction. CONCLUSION This paper summarizes comprehensively the current research progress of Re and provides new research insights into the therapeutic effects and mechanisms of Re against potential diseases.
Collapse
Affiliation(s)
- Jiasong Cai
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Li
- Center of Chemistry Experiment, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Lin Xinhua
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Hioki K, Hayashi T, Natsume-Kitatani Y, Kobiyama K, Temizoz B, Negishi H, Kawakami H, Fuchino H, Kuroda E, Coban C, Kawahara N, Ishii KJ. Machine Learning-Assisted Screening of Herbal Medicine Extracts as Vaccine Adjuvants. Front Immunol 2022; 13:847616. [PMID: 35663999 PMCID: PMC9160479 DOI: 10.3389/fimmu.2022.847616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Adjuvants are important vaccine components, composed of a variety of chemical and biological materials that enhance the vaccine antigen-specific immune responses by stimulating the innate immune cells in both direct and indirect manners to produce a variety cytokines, chemokines, and growth factors. It has been developed by empirical methods for decades and considered difficult to choose a single screening method for an ideal vaccine adjuvant, due to their diverse biochemical characteristics, complex mechanisms of, and species specificity for their adjuvanticity. We therefore established a robust adjuvant screening strategy by combining multiparametric analysis of adjuvanticity in vivo and immunological profiles in vitro (such as cytokines, chemokines, and growth factor secretion) of various library compounds derived from hot-water extracts of herbal medicines, together with their diverse distribution of nano-sized physical particle properties with a machine learning algorithm. By combining multiparametric analysis with a machine learning algorithm such as rCCA, sparse-PLS, and DIABLO, we identified that human G-CSF and mouse RANTES, produced upon adjuvant stimulation in vitro, are the most robust biological parameters that can predict the adjuvanticity of various library compounds. Notably, we revealed a certain nano-sized particle population that functioned as an independent negative parameter to adjuvanticity. Finally, we proved that the two-step strategy pairing the negative and positive parameters significantly improved the efficacy of screening and a screening strategy applying principal component analysis using the identified parameters. These novel parameters we identified for adjuvant screening by machine learning with multiple biological and physical parameters may provide new insights into the future development of effective and safe adjuvants for human use.
Collapse
Affiliation(s)
- Kou Hioki
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Hideo Negishi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, Yuan HD. Pharmacological Properties of Ginsenoside Re. Front Pharmacol 2022; 13:754191. [PMID: 35462899 PMCID: PMC9019721 DOI: 10.3389/fphar.2022.754191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,” and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases. The aim of this review was to provide an exhaustive overview of the pharmacological activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has shown effectiveness in specific diseases, such as diabetes mellitus, nervous system diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate virus, enhance the immune response, improve osteoporosis, improve skin barrier function, enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this review provides data on pharmacokinetic parameters and toxicological factors to examine the safety profile of Re. Such data will provide a theoretical basis and reference for Re-related studies and future applications.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | | | | | - Ling-He Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Chang Xu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zi-An Yan
- College of Integration Science, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yi-Fei Su
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jung-Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Guang-Chun Piao
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| | - Hai-Dan Yuan
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| |
Collapse
|
9
|
Xiao L, Niu L, Xu X, Zhao Y, Yue L, Liu X, Li G. Comparative Efficacy of Tonic Chinese Herbal Injections for Treating Sepsis or Septic Shock: A Systematic Review and Bayesian Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2022; 13:830030. [PMID: 35370733 PMCID: PMC8972587 DOI: 10.3389/fphar.2022.830030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Sepsis has high mortality and is responsible for significant healthcare costs. Chinese herbal injections (CHIs) have been widely used in China as a novel and promising treatment option for sepsis. Therefore, this study assessed and ranked the effectiveness of CHIs to provide more sights for the selection of sepsis treatment. Method: Eight databases were searched from their inception up to September 1, 2021. The methodological quality of included study was evaluated by the Revised Cochrane risk-of-bias tool for randomized trials. Then Bayesian network meta-analysis was performed by OpenBUGS 3.2.3 and STATA 14.0 software. The surface under the cumulative ranking curve (SUCRA) probability values were applied to rank the examined treatments. Publication bias was reflected by a funnel plot. Results: A total of 50 eligible randomized controlled trials involving 3,394 participants were identified for this analysis. Five CHIs including Shenfu injection, Shenmai injection, Shengmai injection, Shenqifuzheng injection, and Huangqi injection were included. The results of the NMA and sensitivity analysis showed that Shenqifuzheng (MD = -4.48, 95% CI = -5.59 to -3.24), Shenmai (MD = -3.38, 95% CI = -4.38 to -2.39), Shenfu (MD = -2.38, 95% CI = -3.03 to -1.70) and Shengmai (MD = -1.90, 95% CI = -3.47 to -0.31) combined with Western medicine (WM) had a superior effect in improving the APACHE II score. Based on SUCRA values, Shenqifuzheng injection (95.65%) ranked highest in the APACHE II score, followed by Shenmai (74%), Shenfu (47.1%), Shengmai (35.3%) and Huangqi injection (33.2%). Among the secondary outcomes, Shenmai injection was the most favorable intervention in reducing PCT and CRP levels, and Shenqifuzheng injection was the second favorable intervention in reducing CRP level. Shenfu injection combined with WM was more effective than the other treatments in decreasing the serum IL-6 and TNF-α levels and lowering the 28-days mortality. Regarding the improvement of immune function, Shenqifuzheng injections had obvious advantages. Conclusion: In conclusion, Shenqifuzheng injection was the optimum treatment regimen to improve APACHE II score, reduce CRP level, and regulate immune function. Shenfu injection was superior in reducing the expression of inflammatory factors and decreasing 28-days mortality. Nevertheless, more multicenter, diverse, and direct comparisons randomized controlled trials are needed to further confirm the results. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=254531, identifier CRD42021254531.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,State Key Laboratory of Multi-Fractions Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liqing Niu
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xinyi Xu
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuetong Zhao
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Linkai Yue
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xinqiao Liu
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guiwei Li
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
11
|
Song Z, Xie K, Zhang Y, Xie Q, He X, Zhang H. Effects of Dietary Ginsenoside Rg1 Supplementation on Growth Performance, Gut Health, and Serum Immunity in Broiler Chickens. Front Nutr 2021; 8:705279. [PMID: 34912836 PMCID: PMC8667319 DOI: 10.3389/fnut.2021.705279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1-28) and late (day 29-51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P < 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P < 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P < 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.
Collapse
Affiliation(s)
- Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Kaihuan Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunlu Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
12
|
Wu HC, Hu QR, Luo T, Wei WC, Wu HJ, Li J, Zheng LF, Xu QY, Deng ZY, Chen F. The immunomodulatory effects of ginsenoside derivative Rh2-O on splenic lymphocytes in H22 tumor-bearing mice is partially mediated by TLR4. Int Immunopharmacol 2021; 101:108316. [PMID: 34768129 DOI: 10.1016/j.intimp.2021.108316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Previously, we reported the octyl ester derivative of ginsenoside Rh2 (Rh2-O) had better antitumor and immunomodulatory effects than Rh2 in H22 tumor-bearing mice. Therefore, this study further explored the effects of Rh2-O on splenic lymphocytes in H22 tumor-bearing mice and the underlying mechanism. METHODS Wild type and Tlr4-/- mice were selected to establish the H22 tumor-bearing mice model. After the treatment of Rh2-O (10 mg/kg by gavage) for 15 days, the sizes of tumor were measured. Subsequently, the splenic lymphocytes were isolated and the activities (eg. cell proliferation, cytotoxicity and cytokine secretion) were evaluated. Then, the proteins and mRNA expression levels of TRAF6 and NF-ĸB p65 in splenic lymphocytes were examined. RESULTS The results showed that Rh2-O administration enhanced the proliferative capacity and cytotoxicity of splenic lymphocytes, and the effects were Tlr4-associated. Compared to WT mice, the up-regulation of cytokines secretion (eg. IFN-γ, IL-2 and IL-4) in isolated splenic lymphocytes after Rh2-O administration was lower in Tlr4-/- mice. Moreover, the results showed Rh2-O increased the expression of TRAF6 and the level of endonuclear NF-ĸB p65, which was inhibited in Tlr4-/- mice (P < 0.05). CONCLUSION Rh2-O could exert immunomodulatory effects on splenic lymphocytes with the partial participation of TLR4 in H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Han-Cheng Wu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qi-Rui Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Wen-Cheng Wei
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hui-Juan Wu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Liu-Feng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qun-Ying Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
13
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
He M, Wang N, Zheng W, Cai X, Qi D, Zhang Y, Han C. Ameliorative effects of ginsenosides on myelosuppression induced by chemotherapy or radiotherapy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113581. [PMID: 33189841 DOI: 10.1016/j.jep.2020.113581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: As the major side effect of radiotherapy or chemotherapy, myelosuppression usually leads to anemia, hemorrhage, immunosuppression, and even fatal infections, which may discontinue the process of cancer treatment. As a result, more and more attention is paid to the treatment of myelosuppression. Ginseng, root of Panax ginseng Meyer (Panax ginseng C. A. Mey), is considered as the king of herbs in the Orient, particularly in China, Korea and Japan. Ginsenosides, the most important active ingredients of ginseng, have been shown to have a variety of therapeutic effects, such as neuroprotective, anti-cancer and anti-diabetic properties. Considering that ginsenosides are closely associated with the pathogenesis of myelosuppression, researchers have carried out a few experiments on ginsenosides to attenuate myelosuppression induced by chemotherapy or radiotherapy in recent years. AIM OF THE STUDY To summarize previous studies about the effects of ginsenosides on alleviating myelosuppression and the mechanisms of action. METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, and ScienceDirect. RESULTS Ginsenosides play an important role in relieving myelosuppression predominantly by restoring hematopoiesis and immunity. CONCLUSION Ginsenosides might be potential candidates for the treatment of myelosuppression induced by chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
15
|
Zhou FM, Chen YC, Jin CY, Qian CD, Zhu BQ, Zhou Y, Ding ZS, Wang YQ. Polysaccharide Isolated From Tetrastigma hemsleyanum Activates TLR4 in Macrophage Cell Lines and Enhances Immune Responses in OVA-Immunized and LLC-Bearing Mouse Models. Front Pharmacol 2021; 12:609059. [PMID: 33841142 PMCID: PMC8024652 DOI: 10.3389/fphar.2021.609059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a valuable Chinese medicinal herb with a long history of clinical application. Our previous study isolated and characterized a purified polysaccharide from the aerial part of Tetrastigma hemsleyanum (SYQP) and found it having antipyretic and antitumor effects in mice. A preliminary mechanistic study suggests these effects may be related to the binding of toll-like receptor (TLR4). The objective of this study is to further explore the detailed stimulating characteristics of SYQP on TLR4 signaling pathway and its in vivo immune regulating effect. We use HEK-BLUE hTLR4, mouse and human macrophage cell lines, as research tools. In vitro results show SYQP activated HEK-BLUE hTLR4 instead of HEK-BLUE Null cells. The secretion and the mRNA expression of cytokines related to TLR4 signaling significantly increased after SYQP treatment in both PMA-induced THP-1 and RAW264.7 macrophage cell lines. The TLR4 antagonist TAK-242 can almost completely abolish this activation. Furthermore, molecules such as IRAK1, NF-κB, MAPKs, and IRF3 in both the MyD88 and TRIF branches were all activated without pathway selection. In vivo results show SYQP enhanced antigen-specific spleen lymphocyte proliferation and serum IgG levels in OVA-immunized C57BL/6 mice. Orally administered 200 mg/kg SYQP induced obvious tumor regression, spleen weight increase, and the upregulation of the mRNA expression of TLR4-related cytokines in Lewis lung carcinoma-bearing mice. These results indicate SYQP can act as both a human and mouse TLR4 agonist and enhance immune responses in mice (p < 0.05). This study provides a basis for the development and utilization of SYQP as a new type of TLR4 agonist in the future.
Collapse
Affiliation(s)
- Fang-Mei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Chi Chen
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao-Ying Jin
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao-Dong Qian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Qi Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Su F, Wu Y, Li J, Huang Y, Yu B, Xu L, Xue Y, Xiao C, Yuan X. Escherichia coli Heat-Labile Enterotoxin B Subunit Combined with Ginsenoside Rg1 as an Intranasal Adjuvant Triggers Type I Interferon Signaling Pathway and Enhances Adaptive Immune Responses to an Inactivated PRRSV Vaccine in ICR Mice. Vaccines (Basel) 2021; 9:vaccines9030266. [PMID: 33809809 PMCID: PMC8002527 DOI: 10.3390/vaccines9030266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has threatened the global swine industry for almost 30 years. Because current vaccines do not provide complete protection, exploration of new preventive strategies is urgently needed. Here, we combined a heat-labile enterotoxin B subunit of Escherichia coli (LTB) and ginsenoside Rg1 to form an intranasal adjuvant and evaluated its enhancement of immune responses in mice when added to an inactivated-PRRSV vaccine. The combination adjuvant synergistically elicited higher neutralizing and non-neutralizing (immunoglobulin G and A) antibody responses in the circulatory system and respiratory tract, and enhanced T and B lymphocyte proliferation, CD4+ T-cell priming, and cytotoxic CD4+ T cell activities in mononuclear cells from spleen and lung tissues when compared to the PRRSV vaccine alone, and it resulted in balanced Th1/Th2/Th17 responses. More importantly, we observed that the combination adjuvant also up-regulated type I interferon signaling, which may contribute to improvement in adaptive immune responses. These results highlight the potential value of a combined adjuvant approach for improving the efficacy of vaccination against PRRSV. Further study is required to evaluate the efficacy of this combined adjuvant in swine.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yige Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou 310020, China;
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China; (F.S.); (Y.W.); (J.L.); (Y.H.); (B.Y.); (L.X.); (C.X.)
- Correspondence:
| |
Collapse
|
17
|
Efficacy of Rg1-Oil Adjuvant on Inducing Immune Responses against Bordetella bronchiseptica in Rabbits. J Immunol Res 2021; 2021:8835919. [PMID: 33575363 PMCID: PMC7864750 DOI: 10.1155/2021/8835919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bordetella bronchiseptica (B. bronchiseptica) is an obligately aerobic, oxidase- and catalase-positive, nonfermentative Gram-negative coccobacillus. This study is aimed at examining the immune effects of Rg1, Rg1 plus oil, and other common adjuvants on inactivated B. bronchiseptica vaccine in rabbits. The mechanism underlying the adjuvant effect of Rg1 plus oil on the vaccine was also explored. Rg1 (100 μg) plus oil significantly improved the immune effect of B. bronchiseptica vaccine at both the humoral and cellular levels. Rg1-oil adjuvant increased the levels of IL-2 and IL-4 in rabbits after immunization. Rg1 (100 μg) plus oil also significantly increased TLR2 expression and downregulated NF-κB in splenocytes. Rg1-oil adjuvant may increase the levels of IL-2 and IL-4 via upregulating TLR2, thereby enhancing the immune effect of B. bronchiseptica vaccine. In conclusion, Rg1 plus oil could be used as a potential vaccine adjuvant for rabbit B. bronchiseptica vaccine.
Collapse
|
18
|
Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, Cho JY. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res 2021; 45:32-40. [PMID: 33437154 PMCID: PMC7790873 DOI: 10.1016/j.jgr.2020.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- School of Health and Society, University of Wollongong, NSW, Australia
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Soo Hyun Youn
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Yuan L, Wang Y, Ma X, Cui X, Lu M, Guan R, Chi X, Xu W, Hu S. Sunflower seed oil combined with ginseng stem-leaf saponins as an adjuvant to enhance the immune response elicited by Newcastle disease vaccine in chickens. Vaccine 2020; 38:5343-5354. [PMID: 32571723 DOI: 10.1016/j.vaccine.2020.05.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
The present study was to evaluate the adjuvant effect of sunflower seed oil containing saponins extracted from the stem and leaf of Panax ginseng C.A. Meyer (E515-D) on the immune response induced by an inactivated Newcastle disease virus (NDV) in chickens. The results showed that E515-D promoted significantly higher serum NDV-specific HI and neutralizing antibody responses, IFN-γ and IL-4 levels, and lymphocyte proliferative responses to Con A, LPS, and NDV antigen than the conventional adjuvant Marcol 52. Different adjuvant effect between E515-D and Marcol 52 may be attributed to different genes expressed in two groups. Transcriptome analysis of splenocytes showed that there were 1198 differentially expressed genes (DEGs) with 539 up and 659 down regulated in E515-D group while 1395 DEGs with 697 up and 698 down regulated in Marcol 52 group in comparison with the control group. Analysis of gene ontology (GO) term and kyoto encyclopedia of Genes and Genomes (KEGG) pathways showed that the predominant immune related pathways included "Toll-like receptor signaling pathway", "NOD-like receptor signaling pathway", "C-type lectin receptor signaling pathway", and "Phosphatidylinositol signaling system" in E515-D group while Marcol 52 were "NOD-like receptor signaling pathway", "Phagosome", and "Lysosome", and the most relevant DEGs in E515-D group were STAT1, STAT2, PI3K, and IL-6. Considering the excellent adjuvant activity and vegetable origin, E515-D deserves further study as an adjuvant for vaccines used in food animals.
Collapse
Affiliation(s)
- Lijia Yuan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Xiaodan Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Xuemei Cui
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Meiqian Lu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Ran Guan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Xiaoqing Chi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Rd, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice. J Immunol Res 2020; 2020:2714257. [PMID: 32149156 PMCID: PMC7054799 DOI: 10.1155/2020/2714257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.
Collapse
|
21
|
Ginsenoside Rg1 Suppresses Type 2 PRRSV Infection via NF-κB Signaling Pathway In Vitro, and Provides Partial Protection against HP-PRRSV in Piglet. Viruses 2019; 11:v11111045. [PMID: 31717616 PMCID: PMC6893584 DOI: 10.3390/v11111045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a huge threat to the modern pig industry, and current vaccine prevention strategies could not provide full protection against it. Therefore, exploring new anti-PRRSV strategies is urgently needed. Ginsenoside Rg1, derived from ginseng and notoginseng, is shown to exert anti-inflammatory, neuronal apoptosis-suppressing and anti-oxidant effects. Here we demonstrate Rg1-inhibited PRRSV infection both in Marc-145 cells and porcine alveolar macrophages (PAMs) in a dose-dependent manner. Rg1 treatment affected multiple steps of the PRRSV lifecycle, including virus attachment, replication and release at concentrations of 10 or 50 µM. Meanwhile, Rg1 exhibited broad inhibitory activities against Type 2 PRRSV, including highly pathogenic PRRSV (HP-PRRSV) XH-GD and JXA1, NADC-30-like strain HNLY and classical strain VR2332. Mechanistically, Rg1 reduced mRNA levels of the pro-inflammatory cytokines, including IL-1β, IL-8, IL-6 and TNF-α, and decreased NF-κB signaling activation triggered by PRRSV infection. Furthermore, 4-week old piglets intramuscularly treated with Rg1 after being challenged with the HP-PRRSV JXA1 strain display moderate lung injury, decreased viral load in serum and tissues, and an improved survival rate. Collectively, our study provides research basis and supportive clinical data for using Ginsenoside Rg1 in PRRSV therapies in swine.
Collapse
|
22
|
Protective Effect of Ginsenoside Rg1 on Oxidative Damage Induced by Hydrogen Peroxide in Chicken Splenic Lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8465030. [PMID: 31178974 PMCID: PMC6501224 DOI: 10.1155/2019/8465030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells, malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105 genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such as RELT, EDA2R, and TLR4.
Collapse
|
23
|
Xu W, Fang S, Cui X, Guan R, Wang Y, Shi F, Hu S. Signaling pathway underlying splenocytes activation by polysaccharides from Atractylodis macrocephalae Koidz. Mol Immunol 2019; 111:19-26. [PMID: 30952011 DOI: 10.1016/j.molimm.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 02/08/2023]
Abstract
Previous study demonstrated that total polysaccharides isolated from Atractylodis macrocephalae Koidz. (RAMPtp) were effective to eliminate intramammary infection in cows. The present study was designed to investigate the immunomodulatory activity of RAMPtp in mouse splenocytes. Splenocyte proliferation, natural killer (NK) cytotoxicity, productions of NO and cytokines, transcription factor activity as well as the signal pathways and receptor were examined. The results showed that RAMPtp significantly promoted splenocyte proliferation and made the cells enter S and G2/M phases, increased ratios of T/B cells, boosted NK cytotoxicity, enhanced transcriptional activities of nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB) and activator protein 1 (AP-1), and stimulated secretions of NO, immunoglobulin G (IgG) and multiple cytokine families (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, IFN-γ, TNF-α, G-CSF, GM-CSF, KC, MIP-1α, MIP-1β, RANTES and Eotaxin). In addition, all the specific inhibitors against the mitogen-activated protein kinases (MAPKs) and NF-κB significantly suppressed the IL-6 production induced by RAMPtp. Moreover, splenocytes from Toll-like receptor 4 (TLR4) deficient mouse responded equally to RAMPtp stimulation as the wild-type. Therefore, RAMPtp might induce splenocytes activation at least in part via the TLR4-independent MAPKs and NF-κB signaling pathways. The present results would be useful to further understand the immunomodulatory mechanisms of RAMPtp in elimination of intramammary infection in cows.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Sijia Fang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Xuemei Cui
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Ran Guan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
24
|
Yao S, Li Y, Zhang Q, Zhang H, Zhou L, Liao H, Zhang C, Xu M. Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathog Dis 2019; 76:5025657. [PMID: 29860490 DOI: 10.1093/femspd/fty049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Rabies vaccine administration is the most effective method to prevent the occurrence of rabies disease. However, administration of rabies vaccine without adjuvant always shows low efficiency. As a member of superantigen, staphylococcal enterotoxin C2 (SEC2) non-specifically activates T-cells at extremely low concentration. It enlightens us that SEC2 may be used as an adjuvant. We carried out the experiment that the mice received twice immunization with rabies vaccine in the presence or absence of SEC2 at 1-week interval. Serum and splenocytes from immunized mice were collected to measure the level of rabies-specific-IgG and the cell that secretes IFN-γ or IL-4. The promotion of antigen-specific splenocytes proliferation was also detected. Besides, a challenge test was performed to evaluate the protective efficiency of SEC2. It was shown that mice immunized with vaccine combined with SEC2 generated more specific anti-rabies-antibodies. The results for production of IFN-γ and IL-4, as well as the proliferation of splenocytes from immunized mice indicated SEC2 promoted the specific immune responses induced by rabies vaccine. Moreover, immunization of mice with vaccine combined with SEC2 provided efficient protection against the lethal rabies exposure. Taken together, our findings indicated that SEC2 can be served as an adjuvant for rabies vaccines.
Collapse
Affiliation(s)
- Songyuan Yao
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianru Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Libao Zhou
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Hui Liao
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| |
Collapse
|
25
|
Wang YM, Ma YQ, Bi SC, Ma XD, Guan R, Wang SH, Lu MQ, Shi FS, Hu SH. Therapeutic effect of ginsenoside Rg1 on mastitis experimentally induced by lipopolysaccharide in lactating goats. J Dairy Sci 2019; 102:2443-2452. [PMID: 30612791 DOI: 10.3168/jds.2018-15280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
Escherichia coli is a cause of subclinical and clinical mastitis in dairy cattle and goats, and sometimes causes severe clinical disease that may result in death of the animal. Previous investigation showed that ginsenoside Rg1 extracted from Panax ginseng C.A. Meyer (Araliaceae) has an anti-inflammatory effect on the sepsis induced by E. coli lipopolysaccharide via competitive binding to toll-like receptor 4. We hypothesized that intravenous injection of Rg1 had therapeutic effect on mastitis experimentally induced by intramammary infusion of lipopolysaccharide in lactating goats. In this study, 9 lactating goats were randomly assigned to 1 of the 3 groups: (1) lipopolysaccharide intramammary infusion + saline intravenous injection, (2) lipopolysaccharide intramammary infusion + Rg1 intravenous injection, and (3) saline intramammary administration + saline intravenous injection. Because no adverse clinical signs were observed after intramammary infusion of saline and intravenous injection of Rg1 in a preliminary experiment, and available qualified goats were limited in this study, this treatment was not included in this study. One udder half of each goat received intramammary infusion of lipopolysaccharide (50 μg/kg of body weight; groups 1 and 2) or saline solution (group 3), and the other half was infused with 2 mL of saline solution at h 0. Afterward, intravenous injections of saline solution (groups 1 and 3) or Rg1 (2.5 mg/kg of body weight; group 2) were administered at h 2 and 4 post-lipopolysaccharide challenge. Blood and milk samples were collected 3, 6, 9, 12, 15, 18, 21, 24, 48, and 72 h post-lipopolysaccharide challenge, and clinical signs were monitored hourly after lipopolysaccharide challenge within the first 10 h and at the same time points as blood samples. The results showed that Rg1 treatment downregulated rectal temperature, udder skin temperature, udder girth, milk somatic cell count, and N-acetyl-β-d-glucosaminidase and upregulated milk production, lactose, and recovered blood components, such as white blood cells, neutrophils, lymphocytes, total proteins, albumin, and globulin. Considering the positive therapeutic effect on lipopolysaccharide-induced mastitis in goats presented in this study as well as the anti-inflammatory activity found previously, the botanical Rg1 deserves further study as a therapeutic agent in the treatment of E. coli mastitis in dairy animals.
Collapse
Affiliation(s)
- Y M Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - Y Q Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - S C Bi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - X D Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - R Guan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - S H Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - M Q Lu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - F S Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China
| | - S H Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Zhejiang 310058, China.
| |
Collapse
|
26
|
Bi S, Chi X, Zhang Y, Ma X, Liang S, Wang Y, Hu SH. Ginsenoside Rg1 enhanced immune responses to infectious bursal disease vaccine in chickens with oxidative stress induced by cyclophosphamide. Poult Sci 2018; 97:2698-2707. [PMID: 29660049 DOI: 10.3382/ps/pey132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
This study was designed to evaluate the effect of oral administration of ginsenoside Rg1 on oxidative stress induced by cyclophosphamide in chickens. Ninety-six chickens were randomly divided into 4 groups, each consisting of 24 birds. Groups 2 and 3 received intramuscular injection of cyclophosphamide at 100 mg/kg body weight for 3 d to induce oxidative stress and immune suppression. Groups 1 and 4 were injected with saline in the same way as groups 2 and 3. Then chickens in group 3 were orally administrated Rg1 of 1 mg/kg body weight in drinking water for 7 d. After that, groups 1 to 3 were orally vaccinated with attenuated infectious bursal disease vaccine (Strain B87). Blood samples were collected for determination of infectious bursal disease virus-specific antibodies, cytokines, and oxidative parameters. Splenocytes were prepared for lymphocyte proliferation assay. The results showed that oral administration of ginsenoside Rg1 significantly enhanced specific antibody, IFN-γ, and IL-6 responses, and lymphocyte proliferation induced by concanavalin A and lipopolysaccharide in chickens injected with cyclophosphamide. Antioxidant activity of ginsenoside Rg1 was also observed in chickens by increased total antioxidant capacity, total superoxide dismutase, catalase, glutathione peroxidase, glutathione, ascorbic acid, and α-tocopherol, as well as decreased malondialdehyde and protein carbonyl. Therefore, oral administration of Rg1 was shown to improve the immune responses to infectious bursal disease vaccine in chickens suffering from oxidative stress.
Collapse
Affiliation(s)
- S Bi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - X Chi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Y Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - X Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - S Liang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Y Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - S H Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
27
|
Han J, Xia J, Zhang L, Cai E, Zhao Y, Fei X, Jia X, Yang H, Liu S. Studies of the effects and mechanisms of ginsenoside Re and Rk 3 on myelosuppression induced by cyclophosphamide. J Ginseng Res 2018; 43:618-624. [PMID: 31695568 PMCID: PMC6823735 DOI: 10.1016/j.jgr.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 01/20/2023] Open
Abstract
Background Ginsenoside Re (Re) is one of the major components of Panax ginseng Meyer. Ginsenoside Rk3 (Rk3) is a secondary metabolite of Re. The aim of this study was to investigate and compare the effects and underlying mechanisms of Re and Rk3 on cyclophosphamide-induced myelosuppression. Methods The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide. Peripheral blood cells, bone marrow nucleated cells, and colony yield of hematopoietic progenitor cells in vitro were counted. The levels of erythropoietin, thrombopoietin, and granulocyte macrophage colony-stimulating factor in plasma were measured by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. The expression of apoptotic protein bcl-2, bax, and caspase-3 was detected by Western blotting. Results Both Re and Rk3 could improve peripheral blood cells, bone marrow nucleated cell counts, thymus index, and spleen index. Furthermore, they could enhance the yield of colonies cultured in vitro and make the levels of granulocyte macrophage colony-stimulating factor, erythropoietin, and thrombopoietin normal, reduce the ratio of G0/G1 phase cells, and increase the proliferation index. Finally, Re and Rk3 could upregulate the expression of bcl-2, whereas they could downregulate the expression of bax and caspase-3. Conclusion Re and Rk3 could improve the hematopoietic function of myelosuppressed mice. The effect of Rk3 was superior to that of Re at any dose. Regulating the levels of cytokines, promoting cells enter the normal cell cycle, regulating the balance of bcl-2/bax, and inhibiting the expression of caspase-3 may be the effects of Re and Rk3 on myelosuppression.
Collapse
Affiliation(s)
- Jiahong Han
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Xia
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xuan Fei
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Xiaohuan Jia
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - He Yang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
Sui M, Si L, Xu T, Cui M. Establishment of specific cytotoxic T lymphocyte culture system and its inhibitory effect on ovarian cancer. Oncol Lett 2016; 12:4087-4093. [PMID: 27895776 DOI: 10.3892/ol.2016.5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to establish a novel method for efficiently inducing cytotoxic T lymphocytes (CTLs) in vitro, in order to develop an immune-based therapy for suppressing and killing ovarian cancer cells with a high safety and efficacy. Peripheral blood mononuclear cells (PBMCs) were stimulated with CpG oligodeoxynucleotide (CpGODN) and ginsenoside Rg1, which were united as an immune adjuvant, and human epidermal growth factor receptor 2 (HER2/neu) antigen peptide, in order to establish a specific CTL culture system in vitro. Chromosome karyotype analysis, growth curve construction and flow cytometric analysis of immune phenotypes, including cluster of differentiation (CD)3, CD4 and CD8, were performed to characterize the stimulated PBMCs in vitro. Subsequently, SKOV3 ovarian cancer cells were treated with the specific CTL culture system in vitro, and MTT assays were performed to test the inhibitory and lethal effects of the CTLs on SKOV3 cells. The number of CTLs was significantly increased from day 7 of stimulation with the specific mixture (CpGODN, ginsenoside Rg1 and HER2/neu) (P<0.01), and plateaued on day 19. Following activation, the number of CD3+, CD3+CD4+ and CD3+CD8+ cells was significantly increased (P<0.01). The lymphocyte karyotype did not change following exposure to antigen. After treatment with the specific CTL system, the number of SKOV3 cells in the experimental group was significantly reduced compared with that in the control group (P<0.01). The results of the present study suggested that two novel immune adjuvants, CpGODN and ginsenoside Rg1, could be combined with the HER2/neu antigen peptide to establish a specific CTL culture system in vitro. This system demonstrated a high antigen specificity, safety and proliferative ability, and exerted significant lethal and inhibitory effects on SKOV3 cells in vitro.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Lihui Si
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
29
|
Improved immune response to an attenuated pseudorabies virus vaccine by ginseng stem-leaf saponins (GSLS) in combination with thimerosal (TS). Antiviral Res 2016; 132:92-8. [PMID: 27241688 DOI: 10.1016/j.antiviral.2016.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
Abstract
Vaccination using attenuated vaccines remains an important method to control animal infectious diseases. The present study evaluated ginseng stem-leaf saponins (GSLS) and thimerosal (TS) for their adjuvant effect on an attenuated pseudorabies virus (aPrV) vaccine in mice. Compared to the group immunized with aPrV alone, the co-inoculation of GSLS and/or TS induced a higher antibody response. Particularly, when administered together with GSLS-TS, the aPrV vaccine provoked a higher serum gB-specific antibody, IgG1 and IgG2a levels, lymphocyte proliferative responses, as well as production of cytokines (IFN-γ, IL-12, IL-5 and IL-10) from lymphocytes, and more importantly provided an enhanced cytotoxicity of NK cells and protection against virulent field pseudorabies virus challenge. Additionally, the increased expression of miR-132, miR-146a, miR-147 and miR-155 was found in murine macrophages cultured with GSLS and/or TS. These data suggest that GSLS-TS as adjuvant improve the efficacy of aPrV vaccine in mouse model and have potential for the development of attenuated viral vaccines.
Collapse
|
30
|
Yuan D, Yuan Q, Cui Q, Liu C, Zhou Z, Zhao H, Dun Y, Wang T, Zhang C. Vaccine adjuvant ginsenoside Rg1 enhances immune responses against hepatitis B surface antigen in mice. Can J Physiol Pharmacol 2016; 94:676-81. [PMID: 27095502 DOI: 10.1139/cjpp-2015-0528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adjuvant effect of ginsenoside Rg1 on immune responses against hepatitis B surface antigen (HBsAg) in mice was investigated. Female BALB/c mice were subcutaneously injected with saline or HBsAg antigen with or without Rg1 on days 7 and 21. Samples were collected 2 weeks after the boosting for the detection of anti-HBsAg immunoglobulin G (IgG) isotypes in sera and gamma interferon (IFN-γ) and interleukin-4 (IL-4) produced in splenocytes. The innate and adaptive immune responses were measured in mice immunized as described above. The results showed that ginsenoside Rg1 had adjuvant properties in stimulating IgG, splenocyte proliferation, and mRNA expression of cytokines IFN-γ and IL-4, as well as the expression of cell surface marker TLR4 in the HBsAg-immunized mice. These results indicate that Rg1 enhances both Th1 (IgG2b and IFN-γ) and Th2 (IgG1 and IL-4) responses. In addition, the TLR4 signaling pathway is involved in the adjuvant activities of ginsenoside Rg1.
Collapse
Affiliation(s)
- Ding Yuan
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China.,b Renhe Hospital, The Second College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443001, China
| | - Qin Yuan
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Qianqian Cui
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Chaoqi Liu
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Zhiyong Zhou
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Haixia Zhao
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Yaoyan Dun
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Ting Wang
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| | - Changcheng Zhang
- a College of Medical Science, Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
31
|
Park HY, Lee SH, Lee KS, Yoon HK, Yoo YC, Lee J, Choi JE, Kim PH, Park SR. Ginsenoside Rg1 and 20(S)-Rg3 Induce IgA Production by Mouse B Cells. Immune Netw 2015; 15:331-6. [PMID: 26770188 PMCID: PMC4700410 DOI: 10.4110/in.2015.15.6.331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Ginsenosides are the major components of ginseng, which is known to modulate blood pressure, metabolism, and immune function, and has been used to treat various diseases. It has been reported that ginseng and several ginsenosides have immunoregulatory effects on the innate and T cell-mediated immune response. However, their effects on the humoral immune response have not been fully explored. The present study examined the direct effects of red ginseng extract (RGE) and ginsenosides on mouse B cell proliferation and on antibody production and the expression of germline transcripts (GLT) by mouse B cells in vitro. RGE slightly reduced B cell proliferation, but increased IgA production by LPS-stimulated B cells. Furthermore, ginsenoside Rg1 and 20(S)-Rg3 selectively induced IgA production and expression of GLTα transcripts by LPS-stimulated B cells. Collectively, these results suggest that ginsenoside Rg1 and 20(S)-Rg3 can drive the differentiation of B cells into IgA-producing cells through the selective induction of GLTα expression.
Collapse
Affiliation(s)
- Ha-Yan Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyu-Seon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hee-Kyung Yoon
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jae Eul Choi
- College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
32
|
Protective effect of ginsenosides Rg1 and Re on lipopolysaccharide-induced sepsis by competitive binding to Toll-like receptor 4. Antimicrob Agents Chemother 2015; 59:5654-63. [PMID: 26149990 DOI: 10.1128/aac.01381-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
We previously demonstrated that ginsenosides Rg1 and Re enhanced the immune response in C3H/HeB mice but not in C3H/HeJ mice carrying a mutation in the Tlr4 gene. The results of the present study showed that both Rg1 and Re inhibited mRNA expression and production of proinflammatory mediators that included tumor necrosis factor α, interleukin-1β, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase from lipopolysaccharide (LPS)-stimulated macrophages. Rg1 was found to be distributed both extracellularly and intracellularly but Re was located only extracellularly to compete with LPS for binding to Toll-like receptor 4. Preinjection of Rg1 and Re into rats suppressed LPS-induced increases in body temperature, white blood cell counts, and levels of serum proinflammatory mediators. Preinjection of Rg1 and Re into mice prevented the LPS-induced decreases in total white blood cell counts and neutrophil counts, inhibited excessive expression of multiple proinflammatory mediators, and successfully rescued 100% of the mice from sepsis-associated death. More significantly, when administered after lethal LPS inoculation, Rg1, but not Re, still showed a potent antisepsis effect and protected 90% of the mice from death. The better protection efficacy of Rg1 could result from its intracellular distribution, suggesting that Rg1 may be an ideal antisepsis agent.
Collapse
|
33
|
Zhang W, Cho SY, Xiang G, Min KJ, Yu Q, Jin JO. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells. PLoS One 2015; 10:e0130926. [PMID: 26090808 PMCID: PMC4474810 DOI: 10.1371/journal.pone.0130926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB) has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs) in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs). Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR) at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA)-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Young Cho
- R&D Unit, AmorePacific Corporation, 1920 Yonggudae-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Gao Xiang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA, United States of America
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
34
|
Wang Y, Liu Y, Zhang XY, Xu LH, Ouyang DY, Liu KP, Pan H, He J, He XH. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Int Immunopharmacol 2014; 23:77-84. [PMID: 25179784 DOI: 10.1016/j.intimp.2014.07.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Ginsenoside Rg1 is one of the major active components of ginseng, which has been shown to regulate the immune response of hosts. However, the mechanism underlying the immunomodulatory effect of Rg1 is incompletely understood. In this study, we aimed to explore whether and how Rg1 regulates the innate immune response in macrophages. The results showed that Rg1 treatment significantly increased tumor necrosis factor (TNF)-α but decreased interleukin-6 (IL-6) protein expression in both lipopolysaccharide (LPS)-activated RAW 264.7 cells and mouse peritoneal macrophages. However, Rg1 reduced the mRNA levels of both cytokines in LPS-activated macrophages, which might be a consequence of decreased activation of IκB and nuclear factor-κB (NF-κB). Importantly, Rg1 treatment further promoted LPS-induced activation of the Akt/mechanistic target of rapamycin (mTOR) pathway, which is critical for controlling protein translation. The elevated Akt/mTOR signaling was likely responsible for increased production of TNF-α protein at the translational level, as suppression of this pathway by LY294002, an inhibitor of the upstream phosphatidylinositol 3-kinase (PI3K), abrogated such an enhancement of TNF-α protein expression even though its mRNA levels were conversely increased. These findings highlight a novel mechanism for Rg1 to regulate the innate immune response in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways.
Collapse
Affiliation(s)
- Yao Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Xiao-Yu Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Kun-Peng Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Jian He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
35
|
Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, Kang SM. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014; 34:902-14. [PMID: 25051168 PMCID: PMC4217040 DOI: 10.1089/jir.2013.0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease.
Collapse
Affiliation(s)
- Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Hwaseong, Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| |
Collapse
|
36
|
Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 2014; 20:283-9. [PMID: 24680943 DOI: 10.1016/j.intimp.2014.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
The inactivated rabies virus vaccine (RV) is a relatively expensive vaccine, prone to failure in some cases. Ginsenoside Re (Re) is a saponin isolated from Panax ginseng, and has an adjuvant property. Here the adjuvant effect of Re to improve the immune response to the RV is evaluated in mice. ICR mice were immunized with saline, 2.50mg/kg Re, 20μl RV, 100μl RV, or 20μl of RV adjuvanted with Re (1.25, 2.50 or 5.00mg/kg). Different time points after boosting, we measured serum antibodies in blood samples and separated splenocytes to detect lymphocyte proliferation and the production of IL-4, IL-10, IL-12, and IFN-γ in vitro. We also compared immunizations containing 20μl RV and 20μl RV adjuvanted with Re (5.00mg/kg) for the expression of CD4(+) and CD8(+) T-cell subsets at different time points. Results indicated that co-administration of Re significantly enhanced serum antibody titers, increased the CD4(+):CD8(+) ratio, and enhanced both proliferation responses and IL-4, IL-10, IL-12 and IFN-γ secretions. Both Th1 and Th2 immune responses were activated. The supplementation of the Re (5.00mg/kg) to 20μl of RV significantly amplified serum antibody responses and Th1/Th2 responses inducing similar protection as did 100μl of RV. This suggests that Re could be used to reduce the dose, and therefore the cost, of the RV to achieve the same effective protection. Re merits further studies for use with vaccines of mixed Th1/Th2 immune responses.
Collapse
|
37
|
Kang S, Min H. Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System. J Ginseng Res 2013; 36:354-68. [PMID: 23717137 PMCID: PMC3659612 DOI: 10.5142/jgr.2012.36.4.354] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/28/2022] Open
Abstract
Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenerative disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.
Collapse
Affiliation(s)
- Soowon Kang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|