1
|
Zhao P, Wang C, Ding J, Zhao C, Xia Y, Hu Y, Zhang L, Zhou Y, Zhao J, Fang R. Evaluation of immunoprotective effects of recombinant protein and DNA vaccine based on Eimeria tenella surface antigen 16 and 22 in vivo. Parasitol Res 2021; 120:1861-1871. [PMID: 33689009 PMCID: PMC7943400 DOI: 10.1007/s00436-021-07105-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/05/2022]
Abstract
Coccidiosis triggered by Eimeria tenella is accompanied by haemorrhagic caecum and high morbidity. Vaccines are preferable choices to replace chemical drugs against coccidiosis. Surface antigens of apicomplexan parasites can adhere to host cells during the infection process. Therefore, truncated fragments coding E. tenella surface antigen 16 (EtSAG16) and 22 (EtSAG22) were cloned into pET-28a prokaryotic vector to express recombinant protein 16 (rEtSAG16) and 22 (rEtSAG22), respectively. Likewise, pEGFP-N1-EtSAG16 and pEGFP-N1-EtSAG22 plasmids were constructed using pEGFP-N1 eukaryotic vector. Further, pEGFP-N1-EtSAG4-16-22 multiple gene plasmid carrying EtSAG4, 16 and 22 were designed as cocktail vaccines to study integral immunoprotective effects. Western blot and RT-PCR (reverse transcription) assay were performed to verify expressions of EtSAG16 and 22 genes. Immunoprotective effects of recombinant protein or DNA vaccine were evaluated using different doses (50 or 100 μg) in vivo. All chickens in the vaccination group showed higher cytokine concentration (IFN-γ and IL-17), raised IgY antibody level, increased weight gain, lower caecum lesion score and reduced oocyst shedding compared with infection control groups (p < 0.05). The highest anticoccidial index (ACI) value 173.11 was from the pEGFP-N1-EtSAG4-16-22 plasmid (50 μg) group. In conclusion, EtSAG16 and 22 might be alternative candidate genes for generating vaccines against E. tenella infection.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chaofei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jun Ding
- Animal Disease Prevention and Control Center, Jingshan, 431800 Hubei China
| | - Chengfeng Zhao
- Animal Disease Prevention and Control Center, Anlu, 432600 Hubei China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yanli Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Li Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
2
|
Ma C, Li G, Chen W, Jia Z, Yang X, Pan X, Ma D. Eimeria tenella: IMP1 protein delivered by Lactococcus lactis induces immune responses against homologous challenge in chickens. Vet Parasitol 2021; 289:109320. [PMID: 33248421 DOI: 10.1016/j.vetpar.2020.109320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Avian coccidiosis leads to severe economic losses on the global poultry industry. Immune mapped protein-1 (IMP1) is a novel membrane protein, and was reported to be a candidate protective antigen. However, production and utilization modes of IMP1 using Lactococcus lactis as delivery vector were not reported untill now. In the present study, Eimeria tenella IMP1 (EtIMP1) protein was expressed in L. lactis under the nisin-inducible promoter, and EtIMP1 protein was produced in cytoplasmic, cell wall-anchored and secreted forms. Each chicken was orally immunized with one of the three live EtIMP1-expressing lactococci three times at 2 weeks intervals (immunized group), or with live bacteria harboring empty vector (immunized control group). Chickens in immunized and immunized control group were challenged with E. tenella sporulated oocysts to assess the immune responses. The results showed that proliferative responses of peripheral blood T lymphocytes, mRNA expression levels of IL-2, IL-4, IL-10 and IFN-γ in spleen tissues, levels of serum IgG and secretory IgA (sIgA) in cecal lavage fluids from chickens in immunized group were all significantly elevated compared to that in immunized control group. All three the live EtIMP1-expressing lactococci significantly decreased oocyst shedding, alleviated pathological damage in cecum and improved weight gain compared with bacteria harboring empty vector. These results suggested EtIMP1 protein delivered by L. lactis might be a promising candidate in developing novel vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Chunli Ma
- Food College, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xuelian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
3
|
Huang H, Jiang Y, Zhou F, Shi C, Yang W, Wang J, Kang Y, Cao X, Wang C, Yang G. A potential vaccine candidate towards chicken coccidiosis mediated by recombinant Lactobacillus plantarum with surface displayed EtMIC2 protein. Exp Parasitol 2020; 215:107901. [PMID: 32525007 DOI: 10.1016/j.exppara.2020.107901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Eimeria tenella (E. tenella) has caused severe economic loss in chicken production, especially after the forbidden use of antibiotics in feed. Considering the drug resistant problem caused by misuse of chemoprophylaxis and live oocyst vaccines can affect the productivity of chickens, also it has the risk to reversion of virulence, the development of efficacious, convenient and safe vaccines is still deeply needed. In this study, the EtMic2 protein of E. tenella was anchored on the surface of Lactobacillus plantarum (L. plantarum) NC8 strain. The newly constructed strain was then used to immunize chickens, followed by E. tenella challenge. The results demonstrated that the recombinant strain could provide efficient protection against E. tenella, shown by increased relative body weight gains, percentages of CD4+ and CD8+ T cells, humoral immune response and inflammatory cytokines. In addition, decreased cecum lesion scores and fecal oocyst shedding were also observed during the experiment. In conclusion, this study proves the possibility to use L. plantarum as a vessel to deliver protective antigen to protect chickens against coccidiosis.
Collapse
Affiliation(s)
- HaiBin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - YanLong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - FangYu Zhou
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - ChunWei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - WenTao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - JianZhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - YuanHuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - ChunFeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - GuiLian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
4
|
Chen W, Ma C, Wang D, Li G, Ma D. Immune response and protective efficacy of recombinant Enterococcus faecalis displaying dendritic cell-targeting peptide fused with Eimeria tenella 3-1E protein. Poult Sci 2020; 99:2967-2975. [PMID: 32475431 PMCID: PMC7597732 DOI: 10.1016/j.psj.2020.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Avian coccidiosis causes significant economic losses on the global poultry breeding industry. Exploration of new-concept vaccines against coccidiosis has gradually become a research hotspot. In this study, an Enterococcus faecalis strain (MDXEF-1) showing excellent performance isolated from chicken intestinal tract was used as a vector to deliver Eimeria target protein. The plasmid pTX8048-SP-DCpep-NAΔ3-1E-CWA harboring dendritic cell–targeting peptide (DCpep) fusion with Eimeria tenella NAΔ3-1E gene (3-1E protein–coding gene without start codon ATG and terminator codon TAA) was electrotransformed into MDXEF-1 to generate the recombinant bacteria MDXEF-1/pTX8048-SP-DCpep-NAΔ3-1E-CWA in which NAΔ3-1E protein was covalently anchored to the surface of bacteria cells by cell wall anchor (CWA) sequence. The expression of target fusion protein DCpep-NAΔ3-1E-CWA was detected by Western blot. Each chicken was immunized 3 times at 2-wk intervals with live E. faecalis expressing DCpep-NAΔ3-1E fusion protein (DCpep-NAΔ3-1E group), live E. faecalis expressing NAΔ3-1E protein (NAΔ3-1E group), and live E. faecalis containing empty vector only. The 3 immunized groups were then challenged with homologous E. tenella sporulated oocyst after immunizations, and the immune response and protective efficacy in each group were evaluated. The results showed that serum IgG levels, secretory IgA levels in cecal lavage, proportion of CD4+ and CD8α+ cells in peripheral blood, and mRNA expression levels of IL-2 and IFN-γ in the spleen were significantly higher in chickens in the DCpep-NAΔ3-1E group than in chickens of the NAΔ3-1E group (P < 0.05). Oral immunization to chickens with live E. faecalis expressing DCpep-NAΔ3-1E offered more protective efficacy against homologous challenge including significant improved body weight gain, increased oocyst decrease ratio, and reduced average lesion scores in cecum compared with chickens with live E. faecalis expressing NAΔ3-1E protein. These results suggest that recombinant E. faecalis expressing dendritic cell–targeting peptide fusion with E. tenella 3-1E protein could be a potential approach for prevention of Eimeria infection.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
5
|
Li J, Wang F, Ma C, Huang Y, Wang D, Ma D. Recombinant lactococcus lactis expressing Eimeria tenella AMA1 protein and its immunological effects against homologous challenge. Exp Parasitol 2018; 191:1-8. [PMID: 29890444 DOI: 10.1016/j.exppara.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023]
Abstract
Avian coccidiosis leads to severe economic losses for the global poultry industry. Apical membrane antigen 1 (AMA1) of E. tenella (EtAMA1) plays a vital role during invasion of parasites into host cells. In the present study, recombinant live Lactococcus lactis expressing cytoplasmic, secreted and cell wall-anchored EtAMA1 protein were respectively constructed. The three live bacteria were respectively administered orally to SPF chickens (100 μl bacteria containing 5 × 109 CFU per chicken) for three times at 10-day intervals. After immunization, the lymphocyte proliferative function, the percentage of CD4+ and CD8α+ T cells in peripheral blood, and the IgG titers in serum of chickens in each group were respectively measured. The protective effects of live bacteria expressing EtAMA1 protein against E. tenella challenge were evaluated based on body weight gain (BWG), lesion score in cecum, oocyst descrease ratio. The results showed that chickens immunized with three live bacteria, especially the bacteria expressing cell wall-anchored EtAMA1 protein, displayed higher IgG titers and CD4+ T cells proportions, thus provided more immune protective effects against homologous challenge compared with the PBS control group and vector control group (lactococci harboring pTX8048). The oocyst decrease ratio of 33.33% from chickens immunized with lactococci expressing cell wall-anchored EctoAMA1 was observed, which was higher than that of 27.67% and 25.37% from the other two bacteria-immunized groups, respectively. The above results suggested that cell wall-anchored EtAMA1 protein delivered by Lactococcus lactis could stimulate an effective immune responses against Eimeria infection.
Collapse
Affiliation(s)
- Jian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Fen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, National Evaluation Center for the Toxicology of Fertility and Regulating Drugs, Shanghai 200032, PR China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yuchen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
6
|
A concise review of poultry vaccination and future implementation of plant-based vaccines. WORLD POULTRY SCI J 2017. [DOI: 10.1017/s0043933917000484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Kundu K, Garg R, Kumar S, Mandal M, Tomley FM, Blake DP, Banerjee PS. Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella. Vet Parasitol 2017; 244:44-53. [PMID: 28917316 DOI: 10.1016/j.vetpar.2017.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022]
Abstract
Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 (IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-1) and to compare post-vaccination immune responses of chickens to those stimulated by live oocyst infection. Following challenge, parasite replication measured using quantitative PCR was significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or recombinant thioredoxin mock-immunised controls, p<0.05), or the birds vaccinated by infection with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both p<0.05).
Collapse
Affiliation(s)
- Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Mrityunjay Mandal
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Partha Sarathi Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India.
| |
Collapse
|
8
|
Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel) 2017; 5:vaccines5020014. [PMID: 28556800 PMCID: PMC5492011 DOI: 10.3390/vaccines5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
The lethality of infectious diseases has decreased due to the implementation of crucial sanitary procedures such as vaccination. However, the resurgence of pathogenic diseases in different parts of the world has revealed the importance of identifying novel, rapid, and concrete solutions for control and prevention. Edible vaccines pose an interesting alternative that could overcome some of the constraints of traditional vaccines. The term “edible vaccine” refers to the use of edible parts of a plant that has been genetically modified to produce specific components of a particular pathogen to generate protection against a disease. The aim of this review is to present and critically examine “edible vaccines” as an option for global immunization against pathogenic diseases and their outbreaks and to discuss the necessary steps for their production and control and the list of plants that may already be used as edible vaccines. Additionally, this review discusses the required standards and ethical regulations as well as the advantages and disadvantages associated with this powerful biotechnology tool.
Collapse
|
9
|
Ma C, Zhang L, Gao M, Ma D. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge. Exp Parasitol 2017; 178:14-20. [PMID: 28526337 DOI: 10.1016/j.exppara.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022]
Abstract
Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4+ and CD8α+ cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection.
Collapse
Affiliation(s)
- Chunli Ma
- College of Food Science, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China
| | - Lili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China
| | - Mingyang Gao
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
10
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
12
|
|
13
|
Chen P, Lv J, Zhang J, Sun H, Chen Z, Li H, Wang F, Zhao X. Evaluation of immune protective efficacies of Eimeria tenella EtMic1 polypeptides with different domain recombination displayed on yeast surface. Exp Parasitol 2015; 155:1-7. [DOI: 10.1016/j.exppara.2015.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
|
14
|
Lin Z, Shi Y, Deng B, Mao X, Yu D, Li W. Protective immunity against Eimeria tenella infection in chickens following oral immunization with Bacillus subtilis expressing Eimeria tenella 3-1E protein. Parasitol Res 2015; 114:3229-36. [DOI: 10.1007/s00436-015-4539-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
15
|
Mucosal Vaccines from Plant Biotechnology. Mucosal Immunol 2015. [PMCID: PMC7158328 DOI: 10.1016/b978-0-12-415847-4.00065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of plants for production of recombinant proteins has evolved over the past 25 years. The first plant-based vaccines were expressed in stably transgenic plants, with the idea to conveniently deliver “edible vaccines” by ingestion of the antigen-containing plant material. These systems provided a proof of concept that oral delivery of vaccines in crude plant material could stimulate antigen-specific serum and mucosal antibodies. Transgenic grains like rice in particular provide a stable and robust vehicle for antigen delivery. However, some issues exist with stably transgenic plants, including relatively low expression levels and regulatory issues. Thus, many recent studies use transient expression with plant viral vectors to achieve rapid high expression in Nicotiana benthamiana, followed by purification of antigen and intranasal delivery for effective stimulation of mucosal immune responses.
Collapse
|
16
|
Yin G, Lin Q, Wei W, Qin M, Liu X, Suo X, Huang Z. Protective immunity against Eimeria tenella infection in chickens induced by immunization with a recombinant C-terminal derivative of EtIMP1. Vet Immunol Immunopathol 2014; 162:117-21. [PMID: 25464823 DOI: 10.1016/j.vetimm.2014.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. Cloning and sequence analysis has predicted the antigen to be a novel membrane protein of apicomplexan parasites. In order to assess the immunogenicity of EtIMP1, a C-terminal derivative of EtIMP1 was expressed in a bacterial host system and was used to immunize chickens. The protective efficacy against a homologous challenge was evaluated by body weight gains, lesion scores and fecal oocyst shedding. The results showed that the subunit vaccine can improve weight gains, reduced cecal pathology and lower oocyst fecal shedding compared with non immunized controls. The results suggested that the C-terminal derivative of EtIMP1 might be considered as a candidate in the development of subunit vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Qian Lin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Wenjun Wei
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mei Qin
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
17
|
Liu Q, Chen Z, Shi W, Sun H, Zhang J, Li H, Xiao Y, Wang F, Zhao X. Preparation and initial application of monoclonal antibodies that recognize Eimeria tenella microneme proteins 1 and 2. Parasitol Res 2014; 113:4151-61. [DOI: 10.1007/s00436-014-4087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
|
18
|
Saravanan S, Palanivel KM, Harikrishnan TJ, Srinivasan P, Selvaraju G. Assessment of humoral immunity to Eimeria tenella sporozoites in chickens by ELISA. Vet World 2014. [DOI: 10.14202/vetworld.2014.452-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Shivaramaiah C, Barta JR, Hernandez-Velasco X, Téllez G, Hargis BM. Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:23-34. [PMID: 32670843 PMCID: PMC7337151 DOI: 10.2147/vmrr.s57839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/05/2022]
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is probably the most expensive parasitic disease of poultry. Species of Eimeria are ubiquitous where poultry are raised and are known to cause drastic reductions in performance and induce mortality, thereby affecting the overall health status of poultry. Chemotherapy has been the predominant form of disease control for many years, even though vaccination is steadily gaining importance as a feasible control method. The objective of this review is to highlight recent advancements in understanding the role of host immunity against coccidiosis. In addition, pros and cons associated with chemotherapy and the role of vaccination as an increasingly popular disease control method are discussed. Finally, the role played by recombinant vaccines as a potential vaccination tool is highlighted. With interest growing rapidly in understanding host–parasite biology, recent developments in designing recombinant vaccines and potential epitopes that have shown promise are mentioned.
Collapse
Affiliation(s)
| | - John R Barta
- Department of Pathobiology, University of Guelph, ON, Canada
| | | | - Guillermo Téllez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
20
|
Sun H, Wang L, Wang T, Zhang J, Liu Q, Chen P, Chen Z, Wang F, Li H, Xiao Y, Zhao X. Display of Eimeria tenella EtMic2 protein on the surface of Saccharomyces cerevisiae as a potential oral vaccine against chicken coccidiosis. Vaccine 2014; 32:1869-76. [PMID: 24530147 DOI: 10.1016/j.vaccine.2014.01.068] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
S. cerevisiae is generally regarded as safe and benign organism and its surface display system may be used as a unique eukaryotic expression system that is suitable for expressing eukaryotic antigen. In addition to the convenience of vaccine delivery, the yeast cell wall has been shown to enhance the innate immunity when immunized with the yeast live oral vaccine. In the present study, we expressed the chicken coccidian E. tenella EtMic2, a microneme protein, on the surface of the S. cerevisiae and evaluated it as a potential oral vaccine for chicken against E. tenella challenge. The protective efficacy against a homologous challenge was evaluated by body weight gains, lesion scores and fecal oocyst shedding. The results showed that the live oral vaccine can improve weight gains, reduced cecal pathology and lower oocyst fecal shedding compared with non immunized controls. In addition, the yeast oral vaccine could stimulate humoral as well as cell mediate immune responses. These results suggested that EtMic2 displayed on the cell surface of S. cerevisiae could be used as potential live vaccine against chicken coccidiosis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Longjiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Tiantian Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Jie Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Qing Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Peipei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Zhengtao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Yihong Xiao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China.
| |
Collapse
|
21
|
Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol 2014; 30:12-9. [DOI: 10.1016/j.pt.2013.10.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
|
22
|
Protective effects of oral immunization with live Lactococcus lactis expressing Eimeria tenella 3-1E protein. Parasitol Res 2013; 112:4161-7. [PMID: 24037539 DOI: 10.1007/s00436-013-3607-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
The codon-optimized Eimeria tenella 3-1E gene was introduced into the lactic acid bacterial vector pTX8048 to construct plasmid pTX8048-3-1E. The plasmid pTX8048-3-1E was transformed into Lactococcus lactis NZ9000 by electroporation to create the strain of L. lactis pTX8048-3-1E. The expression of objective protein was verified by Western blot. The live bacteria L. lactis pTX8048-3-1E were administered orally, and an animal challenge experiment was carried out to evaluate the protective efficacy. The results indicated the strain of L. lactis pTX8048-3-1E was constructed successfully. Oral immunization to specific pathogen-free (SPF) chickens with L. lactis pTX8048-3-1E provided partial protection against homologous challenge including significant increased oocyst decrease ratio, reduced average lesion score in cecum, and improved body weight gain compared to control bacteria L. lactis pTX8048. These results demonstrate the use of Lactococcus as live vector for delivery of Eimeria antigen is feasible and promising method to control coccidiosis in poultry.
Collapse
|
23
|
Gómez E, Lucero MS, Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Berinstein A. Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 2013; 31:2623-7. [PMID: 23583894 DOI: 10.1016/j.vaccine.2013.03.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
Abstract
Infectious Bursal Disease Virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds. This disease causes important economic losses in the poultry industry worldwide. The VP2 protein has been used for the development of subunit vaccines in a variety of heterologous platforms. In this context, the aim of this study was to investigate VP2 expression and immunogenicity using an experimental plant-based vaccine against IBDV. We determined that the agroinfiltration of N. benthamiana leaves allowed the production of VP2 with no apparent change on its conformational epitopes. Chickens intramuscularly immunized in a dose/boost scheme with crude concentrated extracts developed a specific humoral response with viral neutralizing ability. Given these results, it seems plausible for a plant-based vaccine to have a niche in the veterinary field. Thus, plants can be an adequate system of choice to produce immunogens against IBDV.
Collapse
Affiliation(s)
- Evangelina Gómez
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25 B1712WAA, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
24
|
Jacob SS, Cherian S, Sumithra TG, Raina OK, Sankar M. Edible vaccines against veterinary parasitic diseases--current status and future prospects. Vaccine 2013; 31:1879-85. [PMID: 23485715 DOI: 10.1016/j.vaccine.2013.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/02/2013] [Accepted: 02/11/2013] [Indexed: 12/17/2022]
Abstract
Protection of domestic animals against parasitic infections remains a major challenge in most of the developing countries, especially in the surge of drug resistant strains. In this circumstance vaccination seems to be the sole practical strategy to combat parasites. Most of the presently available live or killed parasitic vaccines possess many disadvantages. Thus, expression of parasitic antigens has seen a continued interest over the past few decades. However, only a limited success was achieved using bacterial, yeast, insect and mammalian expression systems. This is witnessed by an increasing number of reports on transgenic plant expression of previously reported and new antigens. Oral delivery of plant-made vaccines is particularly attractive due to their exceptional advantages. Moreover, the regulatory burden for veterinary vaccines is less compared to human vaccines. This led to an incredible investment in the field of transgenic plant vaccines for veterinary purpose. Plant based vaccine trials have been conducted to combat various significant parasitic diseases such as fasciolosis, schistosomosis, poultry coccidiosis, porcine cycticercosis and ascariosis. Besides, passive immunization by oral delivery of antibodies expressed in transgenic plants against poultry coccidiosis is an innovative strategy. These trials may pave way to the development of promising edible veterinary vaccines in the near future. As the existing data regarding edible parasitic vaccines are scattered, an attempt has been made to assemble the available literature.
Collapse
Affiliation(s)
- Siju S Jacob
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India.
| | | | | | | | | |
Collapse
|