1
|
Lei H, Gao T, Cen Q, Peng X. Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens. Microb Cell Fact 2020; 19:193. [PMID: 33059676 PMCID: PMC7557258 DOI: 10.1186/s12934-020-01453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China
| |
Collapse
|
2
|
Basak S, Chu KB, Kang HJ, Kim MJ, Lee SH, Yoon KW, Jin H, Suh JW, Moon EK, Quan FS. Orally administered recombinant baculovirus vaccine elicits partial protection against avian influenza virus infection in mice. Microb Pathog 2020; 149:104495. [PMID: 32910984 DOI: 10.1016/j.micpath.2020.104495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hui Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Tao LN, Liu ZH, Xu HL, Lu Y, Liao M, He F. LvYY1 Activates WSSV ie1 Promoter for Enhanced Vaccine Production and Efficacy. Vaccines (Basel) 2020; 8:E510. [PMID: 32911686 PMCID: PMC7563808 DOI: 10.3390/vaccines8030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The baculovirus expression vector system (BEVS) has been used as a preferred platform for the production of recombinant protein complexes and efficacious vaccines. However, limited protein yield hinders the application of BEVS. It is well accepted that transcription enhancers are capable of increasing translational efficiency of mRNAs, thereby achieving better protein production. In this study, the ability of LvYY1 as a transcription enhancer was assessed. LvYY1 could interact with the WSSV ie1 promoter via binding to special DNA sites in BEVS. The effects of LvYY1 on protein expression mediated by WSSV ie1 promoter of BEVS was investigated using eGFP as a reporter gene. Enhanced eGFP expression was observed in Sf-9 cells with LvYY1. On this basis, a modified vector combining ie1 promoter and LvYY1 was developed to express either secreting CSFV E2 or baculovirus surface displayed H5 HA of AIVs. Compared to control groups without LvYY1, E2 protein yield increases to 1.6-fold, while H5 production improves as revealed by an upregulated hemagglutination titer of 8-fold at least. Moreover, with LvYY1, H5 displaying baculovirus driven by WSSV ie1 promoter (BV-LvYY1-ie1-HA) sustains the transduction activity in CEF cells. In chicken, BV-LvYY1-ie1-HA elicits a robust immune response against H5 AIVs in the absence of adjuvant, as indicated by specific antibody and cytokine responses. The findings suggest its potential function as both a vectored and subunit vaccine. These results demonstrate that the coexpression with LvYY1 serves as a promising strategy to extensively improve the efficiency of BEVS for efficacious vaccine production.
Collapse
Affiliation(s)
- Li-Na Tao
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Ze-Hui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Ying Lu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China;
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| |
Collapse
|
4
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
5
|
Yamada S, Yasuhara A, Kawaoka Y. Soluble Recombinant Hemagglutinin Protein of H1N1pdm09 Influenza Virus Elicits Cross-Protection Against a Lethal H5N1 Challenge in Mice. Front Microbiol 2019; 10:2031. [PMID: 31551968 PMCID: PMC6737379 DOI: 10.3389/fmicb.2019.02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, influenza vaccines are produced using embryonated chicken eggs. Recently, recombinant influenza vaccines have been developed as a potential alternative to egg-grown vaccines. In this study, we evaluated the efficacy of soluble recombinant hemagglutinin (HA) protein produced in human cell culture (Expi293F cells) as an influenza vaccine against homosubtypic and heterosubtypic influenza virus challenges in mice. Mice were immunized intramuscularly with purified soluble HA protein of H1N1pdm09 virus and then challenged with a lethal dose of H1N1pdm09, seasonal H3N2, or highly pathogenic avian influenza (HPAI) H5N1 virus. Vaccinated mice showed better morbidity than mock-vaccinated mice following H1N1pdm09 challenge. By contrast, all mice died following H3N2 challenge. Interestingly, all vaccinated mice survived challenge with H5N1 virus, whereas all mock-vaccinated mice died. These results suggest that intramuscular immunization with recombinant HA proteins produced in Expi 293F cells could be of value in influenza vaccine strategies.
Collapse
Affiliation(s)
- Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Wang Z, Gao Y, Xia X. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine 2018; 36:5990-5998. [PMID: 30172635 DOI: 10.1016/j.vaccine.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.
Collapse
Affiliation(s)
- Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China.
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Jing Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Weiyang Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Kun Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Structural Basis for the Broad, Antibody-Mediated Neutralization of H5N1 Influenza Virus. J Virol 2018; 92:JVI.00547-18. [PMID: 29925655 DOI: 10.1128/jvi.00547-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.
Collapse
|
8
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
9
|
Lei H, Jin S, Karlsson E, Schultz-Cherry S, Ye K. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines. J Immunol Res 2016; 2016:4131324. [PMID: 28078309 PMCID: PMC5204078 DOI: 10.1155/2016/4131324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/25/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Viral/blood
- Antigens, Surface/immunology
- Cell Surface Display Techniques
- Cross Reactions
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/economics
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Lung/immunology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Saccharomyces cerevisiae/genetics
- Vaccination
Collapse
Affiliation(s)
- Han Lei
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| | - Erik Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| |
Collapse
|
10
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
11
|
Sim SH, Kim JY, Seong BL, Nguyen HH, Chang J. Baculovirus Displaying Hemagglutinin Elicits Broad Cross-Protection against Influenza in Mice. PLoS One 2016; 11:e0152485. [PMID: 27023684 PMCID: PMC4811570 DOI: 10.1371/journal.pone.0152485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022] Open
Abstract
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.
Collapse
Affiliation(s)
- Sang-Hee Sim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Joo Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Huan Huu Nguyen
- Laboratory of Viral Immunology, International Vaccine Institute, Seoul, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Abstract
Influenza outbreaks by highly pathogenic avian influenza viruses, such as H5N1, have caused significant morbidity and mortality in poultry and mammals. Though the risk of community-level spread of highly pathogenic avian influenza (HPAI) remains to be low since the transmission of influenza virus from animals to humans is not common, HPAI may acquire changes in receptor-binding specificity that lead to human to human transmission. Cases of sporadic infection in humans have been increasing every year and the continuous spread has posed a threat to animal and human health. Vaccination remains to be the most effective strategy to prevent and control the spread of influenza viruses. Other than conventional inactivated whole virus vaccine, several vaccine strategies have been adopted in order to universally defend against H5N1s infection, including subunit vaccine, viral vector-based vaccine, chimeric epitope vaccine strains and HA stalk-based vaccine.
Collapse
Affiliation(s)
- Yunrui Tan
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Microbiology Faculty of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Ren Z, Ji X, Meng L, Wei Y, Wang T, Feng N, Zheng X, Wang H, Li N, Gao X, Jin H, Zhao Y, Yang S, Qin C, Gao Y, Xia X. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res 2015; 200:9-18. [PMID: 25599603 DOI: 10.1016/j.virusres.2015.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/20/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has become highly enzootic since 2003 and has dynamically evolved to undergo substantial evolution. Clades 2.3.2.1 and 2.3.4 have become the most dominant lineage in recent years, and H5N8 avian influenza outbreaks have been reported Asia. The current approach to generate influenza virus vaccines uses embryonated chicken eggs for large-scale production, although such vaccines have been poorly immunogenic to heterologous virus challenge. In the current study, virus-like particles (VLP) based on A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) and comprising hemagglutinin (HA), neuraminidase (NA), and matrix (M1) were produced using a baculovirus expression system to develop effective protection for different H5 HPAI clade challenges. Mice immunized with VLP demonstrated stronger humoral and cellular immune responses than mice immunized with whole influenza virus (WIV), with 20-fold higher IgG antibody titers against A/meerkat/Shanghai/SH-1/2012 after boost. Notably, the WIV vaccine group showed partial protection (80% survival) to homologous challenge, little protection (40% survival) to heterologous challenge, and 20% survival to H5N8 challenge, whereas all mice in the VLP+CFA group survived. These results provide insight for the development of effective prophylactic vaccines based on VLPs with cross-clade protection for the control of current H5 HPAI outbreaks in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chick Embryo
- Cross Protection
- Female
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Zhiguang Ren
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yurong Wei
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xuexing Zheng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaolong Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hongli Jin
- Changchun SR Biological Technology Co., Ltd, Changchun, Jilin Province, China
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
14
|
Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine. PLoS One 2014; 9:e107316. [PMID: 25229722 PMCID: PMC4167863 DOI: 10.1371/journal.pone.0107316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022] Open
Abstract
Background The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector) was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes. Methods BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains. Results The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7). Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012. Conclusions The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.
Collapse
|
15
|
Prabakaran M, Rajesh Kumar S, Ashok Raj KV, Wu X, He F, Zhou J, Kwang J. Cross-protective efficacy of baculovirus displayed hemagglutinin against highly pathogenic influenza H7 subtypes. Antiviral Res 2014; 109:149-59. [DOI: 10.1016/j.antiviral.2014.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/04/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
16
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Virus-vectored influenza virus vaccines. Viruses 2014; 6:3055-79. [PMID: 25105278 PMCID: PMC4147686 DOI: 10.3390/v6083055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Collapse
|
18
|
Yang S, Niu S, Guo Z, Yuan Y, Xue K, Liu S, Jin H. Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus. Virol J 2013; 10:291. [PMID: 24053449 PMCID: PMC3848947 DOI: 10.1186/1743-422x-10-291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022] Open
Abstract
Background Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can be enhanced by IL-2 as an adjuvant. Cellular immune responses may play an important role in HSI against influenza virus.
Collapse
Affiliation(s)
- Song Yang
- Department of Pathogen Biology, China Medical University, Shenyang, Liaoning, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Prabakaran M, Kwang J. Recombinant baculovirus displayed vaccine: a novel tool for the development of a cross-protective influenza H5N1 vaccine. Bioengineered 2013; 5:45-8. [PMID: 23941989 DOI: 10.4161/bioe.26001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rapid evolution of new sublineages of H5N1 influenza in Asia poses the greatest challenge in vaccine development for pre-pandemic preparedness. To overcome the antigenic diversity of H5N1 strains, multiple vaccine strains can be designed based on the distribution of neutralizing epitopes in the globular head of H5 hemagglutinin (HA). Recently, we selected two different HAs of H5N1 strains based on the neutralizing epitopes and reactivity with different neutralizing antibodies. The HAs of selected vaccine strains were individually expressed on the baculovirus envelope (bivalent-BacHA) with its native antigenic configuration. Further, oral delivery of live bivalent-BacHA elicited broadly reactive humoral, mucosal and cell-mediated immune responses and showed complete protection against antigenically distinct H5N1 strains in mice. The strategy for the vaccine strain selection, vaccine design and route of administration will provide an idea for development of a widely protective vaccine against highly pathogenic H5N1 for pre-pandemic preparedness.
Collapse
Affiliation(s)
- Mookkan Prabakaran
- Animal Health Biotechnology; Temasek Life Sciences Laboratory; National University of Singapore; Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology; Temasek Life Sciences Laboratory; National University of Singapore; Singapore, Singapore; Department of Microbiology; Faculty of Medicine; National University of Singapore; Singapore, Singapore
| |
Collapse
|
20
|
Wang G, Zhou F, Buchy P, Zuo T, Hu H, Liu J, Song Y, Ding H, Tsai C, Chen Z, Zhang L, Deubel V, Zhou P. DNA Prime and Virus-like Particle Boost From a Single H5N1 Strain Elicits Broadly Neutralizing Antibody Responses Against Head Region of H5 Hemagglutinin. J Infect Dis 2013; 209:676-85. [DOI: 10.1093/infdis/jit414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|