1
|
Yuan J, Chen J, Zhao Q, Xu J, Li X, Zhang Y, Li H, Chen X, Zhao L, Zhang X, Li H, Chen K. Advancements in the application and research of baculovirus vector vaccines for respiratory diseases in human. Front Microbiol 2025; 16:1558482. [PMID: 40182293 PMCID: PMC11965921 DOI: 10.3389/fmicb.2025.1558482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
The rapid spread of respiratory diseases, such as influenza, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Respiratory Syncytial Virus (RSV), poses significant challenges to global public health systems. Vaccination remains the most effective strategy to mitigate these threats. Baculovirus Expression Vector Systems (BEVS) have emerged as a promising platform for vaccine development, addressing key limitations of traditional methods, including complex production processes, lengthy timelines, and high costs. BEVS offers distinct advantages, such as enhanced efficacy, safety, cost-effectiveness, and scalability for large-scale manufacturing. This review highlights the application of BEVS in combating respiratory diseases by analyzing preclinical studies, clinical trials, and approved vaccines targeting these pathogens. It also examines recent advancements in BEVS technology, emphasizing its capacity to accelerate vaccine development and respond to emerging respiratory threats. By focusing on the synergy between BEVS and respiratory disease prevention, this review provides valuable insights to guide global vaccine innovation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongyu Li
- Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Le CTT, Ahn SY, Ho TL, Lee J, Lee DH, Hwang HS, Kang SM, Ko EJ. Adjuvant effects of combination monophosphoryl lipid A and poly I:C on antigen-specific immune responses and protective efficacy of influenza vaccines. Sci Rep 2023; 13:12231. [PMID: 37507413 PMCID: PMC10382554 DOI: 10.1038/s41598-023-39210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) agonists improve vaccine immunogenicity and efficacy, but they are currently unlicensed as adjuvants in influenza vaccines. This study aimed to investigate whether a combination of monophosphoryl lipid A (MPL, a TLR4 agonist) and polyriboinosinic polyribocytidylic acid (poly I:C, a TLR3 agonist) can enhance the protective efficacy of an inactivated A/Puerto Rico/8/1934 (A/PR8) H1N1 influenza vaccine against homologous influenza infection and minimize illness outcomes. Results showed that combination MPL and poly I:C adjuvanted influenza vaccination increased the production of antigen-specific antibodies, decreased the levels of cytokines and cellular infiltrates at the infection sites, and induced significant memory T and B cell responses in mice. The results of this study suggest that the combination of MPL and poly I:C can be developed into a possible adjuvant for enhancing the efficacy of influenza vaccines.
Collapse
Affiliation(s)
- Chau Thuy Tien Le
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - So Yeon Ahn
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jueun Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Dong-Ha Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye Suk Hwang
- Department of Biomedical Science, College of Life Science and Industry, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea.
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Wang B, Liu H. Identification of potential immune/diagnosis related gene-immunocyte subtype networks in extracellular immune response to respiratory syncytial virus infection. Virus Res 2022; 321:198906. [PMID: 36044931 DOI: 10.1016/j.virusres.2022.198906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is one of the important pathogenic agents of pediatric respiratory tract infection. Weighted gene co-expression network analysis (WGCNA) is used to study autoimmune diseases, which can find potential hub genes. The diagnostic model based on hub genes and machine learning makes it possible to diagnose the extracellular immune response to RSV infection early. OBJECTIVE The aim of the present study was to identify potential immune, diagnose and treatment related genes expressed in RSV-infected cells. METHODS Firstly, gene expression data were downloaded from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). Secondly, WGCNA was performed based on DEGs to obtain hub genes related to immunity score. Thirdly, protein-protein interaction (PPI) and the immune infiltration analysis of hub immune related genes were performed. Finally, diagnostic and immune related genes were identified by machine learning, followed by functional analysis. RESULTS Totally, 2063 DEGs were identified in the extracellular immune response to RSV infection. Among which, 10 key immune and diagnosis related genes were identified, including ITGA2B, GP9, ITGB3, SELP, PPBP, MPL, CXCL8, NFE2, PTGS1 and LY6G6F. Several immune/diagnosis related gene-immunocyte subtype networks were identified, such as CXCL8-Type 17 T helper cell, LY6G6F-CD56 bright natural killer cell, PPBP-activated CD4 T cell/T follicular helper cell, NFE2/PTGS1/SELP-activated dendritic cell, GP9/ITGA2B/MPL-activated CD8 T cell. ITGB3, MPL and PTGS1 could be considered as therapeutic targets. Some significantly enriched signaling pathways were identified, including hematopoietic cell lineage (involving GP9 and ITGA2B), cytokine-cytokine receptor interaction (involving MPL), chemokine signaling pathway (involving PPBP) and arachidonic acid metabolism (involving PTGS1). CONCLUSIONS The 10-immune related gene signature may be used as potential diagnostic markers for the extracellular immune response to RSV infection, which may provide a new field in searching for diagnostic and therapeutic molecules in the extracellular immune response to RSV infection.
Collapse
Affiliation(s)
- Baohong Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, No.20, East Road Yuhuangding, Zhifu District, Yantai, Shandong 264000, PR China
| | - Hongbo Liu
- Department of Pediatrics, Yantai Yuhuangding Hospital, No.20, East Road Yuhuangding, Zhifu District, Yantai, Shandong 264000, PR China.
| |
Collapse
|
4
|
Strickland BA, Rajagopala SV, Kamali A, Shilts MH, Pakala SB, Boukhvalova MS, Yooseph S, Blanco JCG, Das SR. Species-specific transcriptomic changes upon respiratory syncytial virus infection in cotton rats. Sci Rep 2022; 12:16579. [PMID: 36195733 PMCID: PMC9531660 DOI: 10.1038/s41598-022-19810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.
Collapse
Affiliation(s)
- Britton A Strickland
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Arash Kamali
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Meghan H Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Suman B Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Hua T, Chang C, Zhang X, Huang Y, Wang H, Zhang D, Tang B. Protective efficacy of intranasal inactivated pseudorabies vaccine is improved by combination adjuvant in mice. Front Microbiol 2022; 13:976220. [PMID: 36187997 PMCID: PMC9520748 DOI: 10.3389/fmicb.2022.976220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudorabies virus (PRV) not only causes great economic loss to the pig industry but also seriously threatens the biosafety of other mammals, including humans. Since 2011, PRV mutant strains have emerged widely in China, and the classical Bartha-K61 vaccine cannot confer complete protection for pigs. PRV mainly infects pigs via the respiratory tract. Intranasal immunization with PRV has received more attention because intranasal vaccination elicits systemic and mucosal immune responses. To induce systemic and mucosal immune responses against PRV, we developed a combination adjuvant as a delivery system for intranasal vaccine, which was formulated with MONTANIDE™ Gel 01 and CVCVA5. In comparison to naked antigen of inactivated PRV, single Gel 01 adjuvanted inactivated antigen and single CVCVA5 adjuvanted inactivated antigen, intranasal inactivated PRV vaccine formulated with the combination adjuvant induced greater mucosal IgA immunity and serum antibody responses (IgG, IgG1, and IgG2a). Furthermore, the production of the Th1-type cytokine IFN-γ and the Th2-type cytokine IL-4 indicated that the cellular and humoral responses to the intranasal vaccine were improved by the combination adjuvant. In addition, the intranasal vaccine formulated with the combination adjuvant induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L–CD44+) memory subsets of both CD4 and CD8 T cells in nasal-associated lymphoid tissue. Intranasal challenge with virulent PRV in mice showed that the protective efficacy of the intranasal PRV vaccine was improved by the combination adjuvant compared with the other single-adjuvanted vaccines. In summary, these data demonstrated that Gel 01 combined with the CVCVA5 adjuvant induced a synergistic effect to improve mucosal immunity and protective efficacy of the intranasally inactivated PRV vaccine in mice. It represents a promising vaccination approach against PRV infection.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqing Huang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Bo Tang,
| |
Collapse
|
6
|
D’Sa S, Braz Gomes K, Allotey-Babington GL, Boyoglu C, Kang SM, D’Souza MJ. Transdermal Immunization with Microparticulate RSV-F Virus-like Particles Elicits Robust Immunity. Vaccines (Basel) 2022; 10:vaccines10040584. [PMID: 35455333 PMCID: PMC9030121 DOI: 10.3390/vaccines10040584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023] Open
Abstract
No approved vaccines against respiratory syncytial virus (RSV) infections exist to date, due to challenges arising during vaccine development. There is an unmet need to explore novel approaches and a universal strategy to prevent RSV infections. Previous studies have proven the immune efficacy of virus-like particles (VLPs) consisting of RSV fusion (F) protein, yielding a highly immunogenic RSV-F VLP subunit vaccine. In this study, RSV-F VLP (with or without MPL®) was added to a polymer mix and spray-dried, forming microparticles. The formulations were transdermally administered in C57BL/6 mice to evaluate vaccine efficacy. The transdermal delivery of RSV-F VLP + MPL® was more effective in clearing lung viral loads and preventing weight loss after RSV challenge. At the cellular level, MPL® augmented the vaccine response in microparticulate form, which was evidenced by higher serum and lung antibody titers, and lower lung viral titers in the vaccinated groups. These preliminary results validate the effectiveness of the RSV-F VLP microparticulate vaccine via the transdermal route due to its potential to trigger robust immune responses.
Collapse
Affiliation(s)
- Sucheta D’Sa
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA; (S.D.); (K.B.G.); (G.L.A.-B.); (C.B.)
| | - Kimberly Braz Gomes
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA; (S.D.); (K.B.G.); (G.L.A.-B.); (C.B.)
| | - Grace Lovia Allotey-Babington
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA; (S.D.); (K.B.G.); (G.L.A.-B.); (C.B.)
| | - Cemil Boyoglu
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA; (S.D.); (K.B.G.); (G.L.A.-B.); (C.B.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| | - Martin J. D’Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA; (S.D.); (K.B.G.); (G.L.A.-B.); (C.B.)
- Correspondence:
| |
Collapse
|
7
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
8
|
Functional NK Cell Activation by Ovalbumin Immunization with a Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Dendritic Cell Maturation. Vaccines (Basel) 2021; 9:vaccines9101061. [PMID: 34696169 PMCID: PMC8540815 DOI: 10.3390/vaccines9101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells are one of the types of innate immune cells to remove pathogen-infected cells and modulate inflammatory immune responses. Recent studies have revealed that NK cells could enhance vaccine efficacy by coordinating the innate and adaptive immune responses. In this study, we have evaluated the efficacy of intranasal ovalbumin (OVA) immunization with a monophosphoryl lipid A (MPL) and polyriboinosinic polyribocytidylic acid (poly I:C) combination adjuvant in promoting NK cell recruitment, differentiation, and activation. The frequencies of NK cells were positively correlated with those of dendritic cells (DCs) at the site of immunization. Moreover, the activated NK cells and DCs by the MPL + poly I:C combination adjuvant induced activations of each other cells in vitro. Taken together, this study suggested that the MPL and poly I:C combination adjuvant in OVA vaccination mediated NK cell activation and cellular crosstalk between NK cells and DCs, suggesting a promising vaccine adjuvant candidate for promoting cellular immune responses.
Collapse
|
9
|
Kaushik D, Bhandari R, Kuhad A. TLR4 as a therapeutic target for respiratory and neurological complications of SARS-CoV-2. Expert Opin Ther Targets 2021; 25:491-508. [PMID: 33857397 PMCID: PMC8095161 DOI: 10.1080/14728222.2021.1918103] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
Introduction: The COVID-19 pandemic remains aglobal challenge. While there are mRNA agents on the horizon as apotential prevention, adefinitive drug therapy is an unmet medical need. The hyperinflammatory response, known as the 'cytokine storm', is chiefly responsible for complications and deaths. The binding of spike-glycoprotein of SARS-CoV-2 to TLR4 receptors has been documented in several studies and has been found to play arole in hyperinflammation; hence, there is an interest in TLR4 as apotential drug target.Areas covered: This review discusses the neurological and respiratory complications of SARS-CoV-2 infection and progresses to examine the role of the 'cytokine storm' and the involvement of TLR4 receptors in these complications. The possibility of using TLR4 modulators to curb the complications are considered and finally, ashort perspective on future potential drug treatments is offered. Various databases were searched including Pub-Med, Google Scholar, and Medline. The search mainly included research articles, meta-analysis, retrospective studies, reports, and systematic reviews.Expert opinion: TLR4 modulators are being investigated in clinical trials for COVID-19. Challenges in terms of structural diversity of the agents, their natural origin, and efficacy demand extensive research.
Collapse
Affiliation(s)
- Dhriti Kaushik
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, ChandigarhIndia
| | - Ranjana Bhandari
- Assistant Professor of Pharmaceutics, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Assistant Professor of Pharmacology, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Wang LN, Peng XL, Xu M, Zheng YB, Jiao YY, Yu JM, Fu YH, Zheng YP, Zhu WY, Dong ZJ, He JS. Evaluation of the Safety and Immune Efficacy of Recombinant Human Respiratory Syncytial Virus Strain Long Live Attenuated Vaccine Candidates. Virol Sin 2021; 36:706-720. [PMID: 33559831 PMCID: PMC8379332 DOI: 10.1007/s12250-021-00345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.
Collapse
Affiliation(s)
- Li-Nan Wang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Min Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuan-Bo Zheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yue-Ying Jiao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Jie-Mei Yu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuan-Hui Fu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-Yang Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
11
|
Xu H, Alzhrani RF, Warnken ZN, Thakkar SG, Zeng M, Smyth HDC, Williams RO, Cui Z. Immunogenicity of Antigen Adjuvanted with AS04 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration. Mol Pharm 2020; 17:3259-3269. [PMID: 32787271 DOI: 10.1021/acs.molpharmaceut.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adjuvant system 04 (AS04) is in injectable human vaccines. AS04 contains two known adjuvants, 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and insoluble aluminum salts. Data from previous studies showed that both MPL and insoluble aluminum salts have nasal mucosal vaccine adjuvant activity. The present study was designed to test the feasibility of using AS04 as an adjuvant to help nasally administered antigens to induce specific mucosal and systemic immunity as well as to evaluate the deposition of antigens in the upper respiratory tract when adjuvanted with AS04. Alhydrogel, an aluminum (oxy)hydroxide suspension, was mixed with MPL to form AS04, which was then mixed with ovalbumin (OVA) or 3× M2e-HA2, a synthetic influenza virus hemagglutinin fusion protein, as an antigen to prepare OVA/AS04 and 3× M2e-HA2/AS04 vaccines, respectively. In mice, AS04 enabled antigens, when given intranasally, to induce specific IgA response in nasal and lung mucosal secretions as well as specific IgG response in the serum samples of the immunized mice, whereas subcutaneous injection of the same vaccine induced specific antibody responses only in the serum samples but not in the mucosal secretions. Splenocytes isolated from mice intranasally immunized with the OVA/AS04 also proliferated and released cytokines (i.e., IL-4 and IFN-γ) after in vitro stimulation with the antigen. In the immunogenicity test, intranasal OVA/AS04 was not more effective than intranasal OVA/MPL at the dosing regimens tested. However, when compared to OVA/MPL, OVA/AS04 showed a different atomized droplet size distribution and more importantly a more favorable OVA deposition profile when atomized into a nasal cast that was 3-D printed based on the computer tomography scan of the nose of a child. It is concluded that AS04 has mucosal adjuvant activity when given intranasally. In addition, there is a reason to be optimistic about using AS04 as an adjuvant to target an antigen of interest to the right region of the nasal cavity in humans for immune response induction.
Collapse
Affiliation(s)
- Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary N Warnken
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sachin G Thakkar
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingtao Zeng
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, United States
| | - Hugh D C Smyth
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert O Williams
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Lee Y, Ko EJ, Kim KH, Lee YT, Hwang HS, Kwon YM, Graham BS, Kang SM. A unique combination adjuvant modulates immune responses preventing vaccine-enhanced pulmonary histopathology after a single dose vaccination with fusion protein and challenge with respiratory syncytial virus. Virology 2019; 534:1-13. [PMID: 31163351 DOI: 10.1016/j.virol.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Alum adjuvanted formalin-inactivated respiratory syncytial virus (RSV) vaccination resulted in enhanced respiratory disease in young children upon natural infection. Here, we investigated the adjuvant effects of monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG (CpG) on vaccine-enhanced respiratory disease after fusion (F) protein prime vaccination and RSV challenge in infant and adult mouse models. Combination CpG + MPL adjuvant in RSV F protein single dose priming of infant and adult age mice was found to promote the induction of IgG2a isotype antibodies and neutralizing activity, and lung viral clearance after challenge. CpG + MPL adjuvanted F protein (Fp) priming of infant and adult age mice was effective in avoiding lung histopathology, in reducing interleukin-4+ CD4 T cells and cellular infiltration of monocytes and neutrophils after RSV challenge. This study suggests that combination CpG and MPL adjuvant in RSV subunit vaccination might contribute to priming protective immune responses and preventing inflammatory RSV disease after infection.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, South Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
13
|
Aranda SS, Polack FP. Prevention of Pediatric Respiratory Syncytial Virus Lower Respiratory Tract Illness: Perspectives for the Next Decade. Front Immunol 2019; 10:1006. [PMID: 31134078 PMCID: PMC6524688 DOI: 10.3389/fimmu.2019.01006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
The landscape of infant bronchiolitis and viral pneumonia may be altered by preventive interventions against respiratory syncytial virus under evaluation today. Pediatric wards in 2018 in developing countries may differ from those attended by future generation pediatricians who may not witness the packed emergency rooms, lack of available beds, or emergency situations that all physicians caring for children with RSV experience every year. In this review, we describe and discuss different prevention strategies under evaluation to protect pediatric patients. Then, we outline a number of potential challenges, benefits, and concerns that may result from successful interventions after licensure.
Collapse
|
14
|
Zhang Y, Zhou Z, Zhu SL, Zu X, Wang Z, Zhang LK, Wang W, Xiao G. A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection. Antiviral Res 2019; 165:11-22. [DOI: 10.1016/j.antiviral.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
15
|
Park S, Lee Y, Kwon YM, Lee YT, Kim KH, Ko EJ, Jung JH, Song M, Graham B, Prausnitz MR, Kang SM. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS One 2018; 13:e0205071. [PMID: 30365561 PMCID: PMC6203256 DOI: 10.1371/journal.pone.0205071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Intramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge. With MPL adjuvant, MN patch delivery of FI-RSV significantly increased the immunogenicity and efficacy as well as preventing RSV disease as evidenced by lung viral clearance and avoiding pulmonary histopathology. Improved efficacy and prevention of disease by FI-RSV MN with MPL were correlated with no sign of airway resistance, lower levels of Th2 cytokines and infiltrating innate inflammatory cells, and higher levels of Th1 T cell responses into the lung. This study suggests that MN patch delivery of RSV vaccines to the skin with MPL adjuvant would be a promising vaccination method.
Collapse
Affiliation(s)
- Soojin Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Manki Song
- International Vaccine Institute, Seoul, Korea
| | - Barney Graham
- Vaccine Research Center, National Institute of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Joyce C, Scallan CD, Mateo R, Belshe RB, Tucker SN, Moore AC. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats. Vaccine 2018; 36:4265-4277. [DOI: 10.1016/j.vaccine.2018.05.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
17
|
Ko EJ, Lee Y, Lee YT, Kim YJ, Kim KH, Kang SM. MPL and CpG combination adjuvants promote homologous and heterosubtypic cross protection of inactivated split influenza virus vaccine. Antiviral Res 2018; 156:107-115. [PMID: 29885376 DOI: 10.1016/j.antiviral.2018.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
Abstract
Annual vaccination is not effective in conferring cross-protection against antigenically different influenza viruses. Therefore, it is of high priority to improve the cross protective efficacy of influenza vaccines. We investigated the adjuvant effects of monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG (CpG) on promoting homologous protection and cross-protection after vaccination of C57BL/6 and BALB/c mice with inactivated split virus. Combination adjuvant effects of MPL and CpG on improving homologous and cross protective vaccine efficacy were evident as shown by higher levels of homologous and cross-reactive binding IgG and hemagglutination inhibiting antibodies. Combination adjuvant effects on enhancing the protective efficacy against homologous and heterosubtypic virus were demonstrated by less weight loss, lower airway inflammatory disease, and better control of viral loads as well as prevention of inflammatory cytokines and cellular infiltrates. Overall, the findings in this study suggest that a combination adjuvant of different toll-like receptor ligands exhibits a unique pattern of innate and adaptive immune responses, contributing to improved homologous and heterosubtypic cross-protection by inactivated split virion influenza vaccination.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Garg R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Intranasal immunization with a single dose of the fusion protein formulated with a combination adjuvant induces long-term protective immunity against respiratory syncytial virus. Hum Vaccin Immunother 2017; 13:2894-2901. [PMID: 28825870 PMCID: PMC5718833 DOI: 10.1080/21645515.2017.1349584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of respiratory tract infections in both children and elderly people. In this study we evaluated the short- and long-term protective efficacy of a single intranasal (IN) immunization with a RSV vaccine formulation consisting of a codon-optimized fusion (F) protein formulated with poly(I:C), an innate defense regulator peptide and a polyphosphazene (ΔF/TriAdj). This vaccine induced strong systemic and local immune responses, including RSV F-specific IgG1 and IgG2a, SIgA and virus neutralizing antibodies in mice. Furthermore, ΔF/TriAdj promoted production of IFN-γ-secreting T cells and RSV F85-93-specific CD8+ effector T cells. After RSV challenge, no virus was recovered from the lungs of the vaccinated mice. To evaluate the duration of immunity induced by a single IN vaccination, mice were again immunized once with ΔF/TriAdj and challenged with RSV five months later. High levels of IgG1, IgG2a and virus neutralizing antibodies were detected in the ΔF/TriAdj-vaccinated animals. Moreover, this vaccine formulation induced robust local SIgA production and IgA-secreting memory B cell development, and conferred complete protection against subsequent RSV challenge. In conclusion, a single IN vaccination with RSV ΔF protein formulated with TriAdj induced robust, long-term protective immune responses against RSV infection.
Collapse
Affiliation(s)
- R. Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| | - L. Latimer
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| | - V. Gerdts
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Potter
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - S. van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Ko EJ, Lee YT, Lee Y, Kim KH, Kang SM. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination. Immune Netw 2017; 17:326-342. [PMID: 29093654 PMCID: PMC5662782 DOI: 10.4110/in.2017.17.5.326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
20
|
Xu H, Ruwona TB, Thakkar SG, Chen Y, Zeng M, Cui Z. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccin Immunother 2017; 13:2688-2694. [PMID: 28933668 DOI: 10.1080/21645515.2017.1365995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Some insoluble aluminum salts are commonly used in injectable vaccines as adjuvants to accelerate, prolong, or enhance the antigen-specific immune responses. Data from previous studies testing the nasal mucosal vaccine adjuvant activity of aluminum salts are conflicting. The present study is designed to further assess the feasibility of using aluminum salts in injectable vaccines as nasal mucosal vaccine adjuvants. Using Alhydrogel®, the international scientific standard of aluminum (oxy)hydroxide gels, and ovalbumin or 3 × M2e-HA2, a synthetic influenza virus fusion protein, as antigens, we showed in a mouse model that when dosed intranasally Alhydrogel® enables antigens adsorbed on it to induce stronger antigen-specific immune responses in both serum samples (e.g., specific IgG) and nasal and lung mucosal secretions (i.e., specific IgA) in all immunized mice, as compared with nasal immunization with the antigens alone. Rerouting insoluble aluminum salts in injectable vaccines may represent a viable approach for (nasal) mucosal vaccine adjuvant discovery.
Collapse
Affiliation(s)
- Haiyue Xu
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Tinashe B Ruwona
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Sachin G Thakkar
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Yanping Chen
- b Texas Tech University Health Sciences Center El Paso , Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases , El Paso , TX , USA
| | - Mingtao Zeng
- b Texas Tech University Health Sciences Center El Paso , Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases , El Paso , TX , USA
| | - Zhengrong Cui
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA.,c Inner Mongolia Medical University , Inner Mongolia Key Laboratory of Molecular Biology , Hohhot , Inner Mongolia , China
| |
Collapse
|
21
|
Blanco JCG, Pletneva LM, Otoa RO, Patel MC, Vogel SN, Boukhvalova MS. Preclinical assessment of safety of maternal vaccination against respiratory syncytial virus (RSV) in cotton rats. Vaccine 2017. [PMID: 28624306 DOI: 10.1016/j.vaccine.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maternal immunization directed to control RSV infection in newborns and infants is an appealing vaccination strategy currently under development. In this work we have modeled maternal vaccination against RSV in cotton rats (CR) to answer two fundamental questions on maternal vaccine safety. We tested (i), whether a known, unsafe RSV vaccine (i.e., FI-RSV Lot 100 vaccine) induces vaccine enhanced disease in the presence of passively transferred, RSV maternal immunity, and (ii) whether the same FI-RSV vaccine could induce vaccine enhanced disease in CR litters when used to immunize their RSV-primed mothers. Our data show that FI-RSV immunization of pups with subsequent RSV infection results in vaccine-enhanced disease independent of whether the pups were born to RSV-seropositive or RSV-seronegative mothers, and that FI-RSV immunization of RSV-seropositive mothers does not present a health risk to either the mother or the infant. Our study also raises a novel concern regarding infant immunization, namely that "safe" RSV vaccines (e.g., live RSV administered intramuscularly) may induce vaccine-enhanced disease in RSV-infected pups born to seropositive mothers. Finally, we describe for the first time a sharp decrease in RSV neutralizing antibody titers in immunized seropositive CR at the time of delivery. This decline may reflect maternal immune suppression, potentially pinpointing a window of increased vulnerability to RSV infection that could be alleviated by effective immunization of expectant mothers.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Raymonde O Otoa
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| |
Collapse
|
22
|
Monophosphoryl lipid A enhances nontypeable Haemophilus influenzae-specific mucosal and systemic immune responses by intranasal immunization. Int J Pediatr Otorhinolaryngol 2017; 97:5-12. [PMID: 28483250 DOI: 10.1016/j.ijporl.2017.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Acute otitis media (AOM) is one of the most common infectious diseases in children. Nontypeable Haemophilus influenzae (NTHi) is Gram-negative bacteria that are considered major pathogens of AOM and respiratory tract infections. In this study, we used monophosphoryl lipid A (MPL), a toll-like receptor (TLR) 4 agonist, as an adjuvant to induce mucosal immune responses against NTHi to enhance bacterial clearance from the nasopharynx. METHODS Mice were administered 10 μg outer membrane protein (OMP) from NTHi and 0, 10, or 20 μg MPL intranasally once a week for 3 weeks. Control mice were administered phosphate-buffered saline alone. After immunization, these mice were challenged with NTHi. At 6 and 12 h after bacterial challenge, the mice were killed and nasal washes and sera were collected. The numbers of NTHi- and OMP-specific antibodies were quantified by enzyme-linked immunosorbent assay. RESULTS The MPL 10 and 20 μg group produced a significant reduction in the number of bacteria recovered from the nasopharynx at 12 h after bacterial challenge compared to the control group. OMP-specific IgA titers were also augmented in the MPL groups compared to the control and OMP groups. CONCLUSION MPL is suitable for eliciting effective mucosal immune responses against NTHi in the nasopharynx. These results demonstrate the possibility of an adjuvant that involves stimulation of the innate immune system by TLR4 agonists such as MPL for mucosal vaccination.
Collapse
|
23
|
A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus. Antiviral Res 2017; 144:57-69. [PMID: 28529001 DOI: 10.1016/j.antiviral.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8+ T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production.
Collapse
|
24
|
Francica JR, Lynn GM, Laga R, Joyce MG, Ruckwardt TJ, Morabito KM, Chen M, Chaudhuri R, Zhang B, Sastry M, Druz A, Ko K, Choe M, Pechar M, Georgiev IS, Kueltzo LA, Seymour LW, Mascola JR, Kwong PD, Graham BS, Seder RA. Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjug Chem 2016; 27:2372-2385. [PMID: 27583777 DOI: 10.1021/acs.bioconjchem.6b00370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Rajoshi Chaudhuri
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kiyoon Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
25
|
Shah M, Anwar MA, Kim JH, Choi S. Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opin Investig Drugs 2016; 25:437-53. [DOI: 10.1517/13543784.2016.1154040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Jaberolansar N, Toth I, Young PR, Skwarczynski M. Recent advances in the development of subunit-based RSV vaccines. Expert Rev Vaccines 2015; 15:53-68. [PMID: 26506139 DOI: 10.1586/14760584.2016.1105134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections causing pneumonia and bronchiolitis in infants. RSV also causes serious illness in elderly populations, immunocompromised patients and individuals with pulmonary or cardiac problems. The significant morbidity and mortality associated with RSV infection have prompted interest in RSV vaccine development. In the 1960s, a formalin-inactivated vaccine trial failed to protect children, and indeed enhanced pathology when naturally infected later with RSV. Hence, an alternative approach to traditional killed virus vaccines, which can induce protective immunity without serious adverse events, is desired. Several strategies have been explored in attempts to produce effective vaccine candidates including gene-based and subunit vaccines. Subunit-based vaccine approaches have shown promising efficacy in animal studies and several have reached clinical trials. The current stage of development of subunit-based vaccines against RSV is reviewed in this article.
Collapse
Affiliation(s)
- Noushin Jaberolansar
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia
| | - Istvan Toth
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia.,b Institute for Molecular Bioscience , The University of Queensland , St Lucia , Queensland , Australia.,c School of Pharmacy , The University of Queensland , Woolloongabba , Queensland , Australia
| | - Paul R Young
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia.,b Institute for Molecular Bioscience , The University of Queensland , St Lucia , Queensland , Australia.,d Australian Infectious Diseases Research Centre , The University of Queensland , St Lucia , Queensland , Australia
| | - Mariusz Skwarczynski
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia
| |
Collapse
|
27
|
Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells. PLoS One 2015; 10:e0139916. [PMID: 26468884 PMCID: PMC4607166 DOI: 10.1371/journal.pone.0139916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease.
Collapse
|
28
|
Blanco JCG, Pletneva LM, Oue RO, Patel MC, Boukhvalova MS. Maternal transfer of RSV immunity in cotton rats vaccinated during pregnancy. Vaccine 2015; 33:5371-5379. [PMID: 26335771 PMCID: PMC5155338 DOI: 10.1016/j.vaccine.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/07/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. There is currently no RSV vaccine. Although maternal serum antibodies against RSV are efficiently transferred through placenta protecting human infants from RSV-induced disease, this protection is short-lived and the methods for extending and augmenting protection are not known. The objective of this study was to develop an animal model of maternal RSV vaccination using the Sigmodon hispidus cotton rat. Naïve or RSV-primed female cotton rats were inoculated with live RSV and set in breeding pairs. Antibody transfer to the litters was quantified and the offspring were challenged with RSV at different ages for analysis of protection against viral replication and lung inflammation. There was a strong correlation between RSV-neutralizing antibody (NA) titers in cotton rat mothers and their pups, which also correlated with protection of litters against virus challenge. Passive protection was short-lived and strongly reduced in animals at 4 weeks after birth. Protection of litters was significantly enhanced by inoculating mothers parenterally with live RSV and inversely correlated with the expression of lung cytokines and pathology. Importantly, vaccination and boosting of naïve mothers with the live RSV produced the highest levels of NAs. We conclude that maternal vaccination against RSV in the cotton rat can be used to define vaccine preparations that could improve preexistent immunity and induce subsequent transfer of efficient immunity to infants.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Raymonde O Oue
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States; University of Maryland School of Medicine, Baltimore, MD 21101, United States
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| |
Collapse
|
29
|
Lee YN, Hwang HS, Kim MC, Lee YT, Lee JS, Moore ML, Kang SM. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Res 2015; 115:1-8. [PMID: 25513755 PMCID: PMC4323669 DOI: 10.1016/j.antiviral.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis in both children and the elderly. There is no vaccine available for the prevention of RSV infection. Here, we generated recombinant influenza virus (PR8/RSV.HA-F) expressing an RSV F243-294 neutralizing epitope in the hemagglutinin (HA) as a chimeric protein. Neutralizing antibodies specific for both RSV and influenza virus were induced by a single intranasal immunization of mice with PR8/RSV.HA-F. Mice that were immunized with PR8/RSV.HA-F were protected against RSV infection comparable with live RSV as evidenced by significant reduction of RSV lung viral loads, as well as the absence of lung eosinophilia and RSV-specific cellular immune responses. In contrast, formalin-inactivated RSV-immunized mice showed severe disease and high cellular immune responses in lungs after RSV infection. These findings support a concept that recombinant influenza virus carrying the RSV F243-294 neutralizing epitope can be developed as a promising RSV vaccine candidate which induces protective neutralizing antibodies but avoids lung immunopathology.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
30
|
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9:811-829. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.
Collapse
Affiliation(s)
- Mira C Patel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Alfredo Garzino-Demo
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA ; Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
31
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Ko EJ, Kwon YM, Lee JS, Hwang HS, Yoo SE, Lee YN, Lee YT, Kim MC, Cho MK, Lee YR, Quan FS, Song JM, Lee S, Moore ML, Kang SM. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:99-108. [PMID: 25109662 DOI: 10.1016/j.nano.2014.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/15/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c(+) versus CD11b(+) phenotypic cells and CD8(+) T versus CD4(+) T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Si-Eun Yoo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - You Ri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Sujin Lee
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Yang K, Varga SM. Mucosal vaccines against respiratory syncytial virus. Curr Opin Virol 2014; 6:78-84. [PMID: 24794644 DOI: 10.1016/j.coviro.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/30/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease in infants, young children, immune-compromised and elderly populations worldwide. Natural RSV infection in young children does not elicit long-lasting immunity and individuals remain susceptible to repeated RSV infections throughout life. Because RSV infection is restricted to the respiratory tract, an RSV vaccine should elicit mucosal immunity at upper and lower respiratory tracts in order to most effectively prevent RSV reinfection. Although there is no safe and effective RSV vaccine available, significant progress has been recently made in basic RSV research and vaccine development. This review will discuss recent advances in the identification of a new neutralizing antigenic site within the RSV fusion (F) protein, understanding the importance of mucosal immune responses against RSV infection, and the development of novel mucosal vaccination strategies.
Collapse
Affiliation(s)
- Kejian Yang
- Biomedical Research Models Inc., 10 New Bond Street, Worcester, MA 01606, USA.
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|