1
|
Viviani L, Vandeputte J, Smith D, Coppens E, Mahmood K, Goel S, Wenzel E, Sun L, Milne C, Meyer Q, Rubbrecht M, McGoldrick M, Jungbaeck C. Global availability of critical reagents for biologicals testing - Current status, challenges and possible solutions. Biologicals 2025; 90:101821. [PMID: 40120155 DOI: 10.1016/j.biologicals.2025.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
On July 2, 2024, the International Alliance for Biological Standardization (IABS) and Humane Society International (HSI) co-hosted a webinar on the global availability and affordability of critical reagents for vaccine and biologics production. Despite growing support for non-animal testing, significant barriers remain, especially in low-income countries facing financial and supply chain challenges. This meeting showcased successful collaborations on reagent production and shared industry and regulatory perspectives. Key barriers included high reagent costs, import complexities, and the limited number of suppliers. Participants stressed the need for tailored risk-based testing, in-house assay validation, and stronger collaboration for standardised testing. The idea of regional hubs in Africa and Southeast Asia for reagent distribution was also discussed to address logistical challenges. A central theme was advocating reliance strategies, which promote shared regulatory assessments and resource optimisation, as demonstrated by the EU/EEA OCABR Network activities and South African-European laboratory collaborations. Difficulties facing smaller national control laboratories in meeting international standards were highlighted, along with the need for further innovation in non-animal-derived reagents to address these challenges. Participants stressed the importance of continued global collaboration and adopting reliance practices to improve access to critical reagents and ensure sustainability in biologics testing.
Collapse
Affiliation(s)
| | - Joris Vandeputte
- International Alliance for Biological Standardization, Geneva, Switzerland
| | | | | | | | - Sunil Goel
- Serum Institute of India Pvt Ltd, Pune, India
| | | | - Le Sun
- AbMax Biotechnology Co. Ltd., Beijing, China
| | - Catherine Milne
- European Directorate for the Quality of Medicines & HealthCare, Department of Biological Standardisation, OMCL Network and HealthCare, Council of Europe, Strasbourg, France
| | - Quinton Meyer
- South African National Control Laboratory for Biological Products, School of Biomedical Sciences, University of the Free State, Bloemfontein, South Africa
| | | | | | - Carmen Jungbaeck
- International Alliance for Biological Standardization, Geneva, Switzerland
| |
Collapse
|
2
|
Serafin B, Kamen A, de Crescenzo G, Henry O. Antibody-independent surface plasmon resonance assays for influenza vaccine quality control. Appl Microbiol Biotechnol 2024; 108:307. [PMID: 38656587 PMCID: PMC11043112 DOI: 10.1007/s00253-024-13145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.
Collapse
Affiliation(s)
- Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Gregory de Crescenzo
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Singh G, Abbad A, Tcheou J, Mendu DR, Firpo-Betancourt A, Gleason C, Srivastava K, Cordon-Cardo C, Simon V, Krammer F, Carreño JM. Binding and Avidity Signatures of Polyclonal Sera From Individuals With Different Exposure Histories to Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Vaccination, and Omicron Breakthrough Infections. J Infect Dis 2023; 228:564-575. [PMID: 37104046 PMCID: PMC10469125 DOI: 10.1093/infdis/jiad116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Demodara Rao Mendu
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Firpo-Betancourt
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Narayan K, Paduraru C, Blake T, Arunachalam AB. Rapid determination of influenza vaccine potency by an SPR-based method using subtype or lineage-specific monoclonal antibodies. Front Immunol 2023; 14:1128683. [PMID: 37457687 PMCID: PMC10344355 DOI: 10.3389/fimmu.2023.1128683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Potency testing and release of annual influenza vaccines require preparation, calibration, and distribution of reference antigens (RAs) and antisera every year, which takes an average of 8 to 12 weeks, and can be a major limiting factor in pandemic situations. Here we describe for the first time a robust Surface Plasmon Resonance (SPR)-based method that employs influenza subtype or lineage hemagglutinin (HA) specific monoclonal antibodies (mAbs) to measure the HA concentration in influenza multivalent vaccines. Implementing such an advanced test method will at the very least eliminate the rate-limiting and laborious efforts of making antisera reagents annually, and thus expedite the influenza vaccine delivery to the public by at least 6 weeks. Results demonstrate that the SPR-based method, developed using Biacore, is robust and not influenced by the type of RAs (inactivated whole virus, split, or subunit vaccine-derived materials), whether they are used as monovalent or multivalent preparations. HA concentrations obtained for monovalent drug substances (DS) or quadrivalent drug products (DP) of inactivated influenza split vaccine showed a tight correlation (the best fit value for the slope is 1.001 with R2 of 0.9815 and P-value <0.0001) with the corresponding values obtained by the current potency assay, Single Radial Immunodiffusion (SRID). Supplementary analysis of the results by the Bland-Altman plot demonstrated good agreement between the SPR and SRID methods, with no consistent bias of the SPR versus SRID method. We further demonstrate that the SPR-based method can be used to estimate HA concentrations in intermediates of the influenza vaccine manufacturing process containing varying matrices and impurity levels. Further, the results demonstrate that the method is sensitive to detecting degradation of HA caused by elevated temperature, low pH, and freezing. It is evident from this report and other published work that the advancement of analytical techniques and the early findings are encouraging for the implementation of alternate potency assays with far-reaching benefits covering both seasonal and pandemic influenza.
Collapse
|
5
|
Ekimov A, Arunachalam AB, Blake T, Bodle J, Couzens L, Dubey S, Eichelberger M, Engelhardt OG, Gubinelli F, Joshi M, Melnyk D, Palladino G, Rigsby P, Rockman S, Savina N, Smith E, Gilchrist SAN. Assessing the stability-indicating properties of alternative potency assays for inactivated influenza vaccine. Vaccine 2023:S0264-410X(23)00726-0. [PMID: 37344260 DOI: 10.1016/j.vaccine.2023.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Determination of the potency of a vaccine is critical to ensuring that an appropriate dose is delivered, lot-to-lot consistency is maintained, and that the formulation is stable over the life of the vaccine. The potency of inactivated influenza vaccines is determined routinely by the Single Radial Immunodiffusion (SRID) assay. A number of alternative potency assays have been proposed and have been under evaluation in recent years. The aim of this study was to compare a surface plasmon resonance-based assay and two different enzyme linked immunoassays against the current potency assay, SRID, and against mouse immunogenicity when haemagglutinin antigen of the A(H1N1)pdm09 component of an inactivated influenza vaccine is stressed by elevated temperature, low pH and freezing. This analysis demonstrated that the alternative assays had good correspondence with SRID for samples from most stress conditions and that the immunogenicity in mice corresponded with potency in SRID for all stress samples. Subject to further analysis, the assays have been shown to have the potential to possibly replace, and at least complement, SRID.
Collapse
Affiliation(s)
- Aleksei Ekimov
- Department of New Technologies, Federal State Unitary Enterprise (FSUE), Saint-Petersburg Scientific Research Institute of Vaccines and Serums (SPbSRIVS), Federal Medical-Biological Agency (FMBA) of Russia, Saint-Petersburg 198320, Russian Federation.
| | - Arun B Arunachalam
- Global Analytical Sciences, R&D Sanofi, 1 Discovery Dr, Swiftwater, PA 18370, USA.
| | - Taylor Blake
- Global Analytical Sciences, R&D Sanofi, 1 Discovery Dr, Swiftwater, PA 18370, USA.
| | - Jesse Bodle
- Technical Development and Global Process Innovation, Seqirus Ltd, 63 Poplar Rd, Parkville, Victoria 3052, Australia.
| | - Laura Couzens
- Division of Biological Standards and Quality Control (DBSQC), Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research (CBER), US Food & Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America.
| | - Sitara Dubey
- Standards Lifecycle, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK.
| | - Maryna Eichelberger
- Division of Biological Standards and Quality Control (DBSQC), Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research (CBER), US Food & Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America.
| | - Othmar G Engelhardt
- Vaccines, Scientific Research & Innovation, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK.
| | - Francesco Gubinelli
- Standards Lifecycle, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK.
| | - Manju Joshi
- Division of Biological Standards and Quality Control (DBSQC), Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research (CBER), US Food & Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America.
| | - Darya Melnyk
- Division of Biological Standards and Quality Control (DBSQC), Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research (CBER), US Food & Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America.
| | - Giuseppe Palladino
- Preclinical Research, Seqirus, 50 Hampshire Street, 9th Floor Cambridge, MA 02139, United States of America.
| | - Peter Rigsby
- Analytical and Biological Sciences, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK.
| | - Steven Rockman
- Technical Development and Global Process Innovation, Seqirus Ltd, 63 Poplar Rd, Parkville, Victoria 3052, Australia.
| | - Natalya Savina
- Department of New Technologies, Federal State Unitary Enterprise (FSUE), Saint-Petersburg Scientific Research Institute of Vaccines and Serums (SPbSRIVS), Federal Medical-Biological Agency (FMBA) of Russia, Saint-Petersburg 198320, Russian Federation.
| | - Elena Smith
- Analytical CMC, Vaccine mRNA Center of Excellence, Sanofi, 200 West Street, Waltham, MA 02451, United States of America.
| | - Shawn A N Gilchrist
- S Gilchrist Consulting Services Inc, 8 Covebank Crescent, Brampton, ON L6P 2X5, Canada.
| |
Collapse
|
6
|
Khalenkov AM, Norton MG, Scott DE. Method for screening influenza neutralizing antibodies in crude human plasma and its derivatives using SPR. Heliyon 2023; 9:e15651. [PMID: 37144181 PMCID: PMC10151358 DOI: 10.1016/j.heliyon.2023.e15651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
We applied Surface Plasmon Resonance (SPR) technology to develop a method for potency screening and quantification of anti-influenza antibodies in minimally processed human plasma samples and intravenous immunoglobulin (IGIV) products. We found that specific antibodies in human plasma or IGIV capable of inhibiting binding of influenza hemagglutinin to receptor-analogous glycans do so in concentration-dependent manner. We ranked the inhibitory activity of plasma samples from multiple donors and found a good correlation (r = 0.87) of SPR assay measurements and conventional hemagglutination inhibition (HAI) assay results. This method was also applied to screen for specific anti-influenza antibodies in IGIV lots manufactured pre- and post-2009 H1N1 pandemic. The SPR method was also applied to study binding inhibition of the intact A/California/04/2009 H1N1 and B/Victoria/504/2000 influenza viruses to α2,6 or α2,3-linked synthetic glycans. In contrast to recombinant H1 hemagglutinin, which was found to interact primarily with α2,6-linked terminal sialic acids, intact H1N1 or influenza B virus recognized both types of receptor analogs with different observed dissociation rates and the inhibitory activity of plasma antibodies was dependent on the type of sialic acid link. The SPR method can provide a high-throughput, time-saving and semi-automated alternative to conventional assays such as HAI or microneutralization in situations where screening of large numbers of plasma donations to identify high titer units is needed to product highly potent immunoglobulins.
Collapse
|
7
|
Lei Y, Yong Z, Junzhi W. Development and application of potency assays based on genetically modified cells for biological products. J Pharm Biomed Anal 2023; 230:115397. [PMID: 37079933 DOI: 10.1016/j.jpba.2023.115397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Potency assays are key to the development, registration, and quality control of biological products. Although previously preferred for clinical relevance, in vivo bioassays have greatly diminished with the advent of dependent cell lines as well as due to ethical concerns. However, for some products, the development of in vitro cell-based assay is challenging, or existing method has limitations such as tedious procedure or low sensitivity. The generation of genetically modified (GM) cell line with improved response to the analyte provides a scientific and promising solution. Potency assays based on GM cell lines are currently used for the quality control of biological products including cytokines, hormones, therapeutic antibodies, vaccines and gene therapy products. In this review, we have discussed the general principles of designing and developing GM cells-based potency assays, including identification of cellular signaling pathways and detectable biological effects, generation of responsive cell lines and constitution of test systems, based on the current research progress. In addition, the applications of some novel technologies and the common concerns regarding GM cells have also been discussed. The research presented in this review provides insights for the development and application of novel GM cells-based potency assays for biological products.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Zhou Yong
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Wang Junzhi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
8
|
Biolayer Interferometry Analysis for a Higher Throughput Quantification of In-Process Samples of a Rotavirus Vaccine. Vaccines (Basel) 2022; 10:vaccines10101585. [DOI: 10.3390/vaccines10101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Rotavirus A infection is a global leading cause of severe acute gastroenteritis associated with life-threatening diarrheal episodes in infants and young children. The disease burden is being reduced, namely due to a wider access to rotavirus vaccines. However, there is a demand to expand rotavirus vaccination programs, and to achieve this, it is critical to improve high-throughput in-process product quality control and vaccine manufacturing monitoring. Here, we present the development of an analytical method for the quantification of rotavirus particles contained in a licensed vaccine. The binding of rotavirus proteins to distinct glycoconjugate receptors and monoclonal antibodies was evaluated using biolayer interferometry analysis, applied on an Octet platform. The antibody strategy presented the best results with a linear response range within 2.5 × 107–1.0 × 108 particles·mL−1 and limits of detection and quantification of 2.5 × 106 and 7.5 × 106 particles·mL−1, respectively. Method suitability for the quantification of in-process samples was shown using samples from different manufacturing stages and their titers were comparable with the approved CCID(50) method. This cell-free method enables a fast and high-throughput analysis, compatible with time constraints during bioprocess development and it is suitable to be adapted to other viral particle-based drug products.
Collapse
|
9
|
Cheung CY, Dubey S, Hadrovic M, Ball CR, Ramage W, McDonald JU, Harvey R, Hufton SE, Engelhardt OG. Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies. Vaccines (Basel) 2022; 10:vaccines10091473. [PMID: 36146550 PMCID: PMC9503116 DOI: 10.3390/vaccines10091473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inactivated vaccines are the main influenza vaccines used today; these are usually presented as split (detergent-disrupted) or subunit vaccines, while whole-virus-inactivated influenza vaccines are rare. The single radial immune diffusion (SRD) assay has been used as the gold standard potency assay for inactivated influenza vaccines for decades; however, more recently, various alternative potency assays have been proposed. A new potency test should be able to measure the amount of functional antigen in the vaccine, which in the case of influenza vaccines is the haemagglutinin (HA) protein. Potency tests should also be able to detect the loss of potency caused by changes to the structural and functional integrity of HA. To detect such changes, most alternative potency tests proposed to date use antibodies that react with native HA. Due to the frequent changes in influenza vaccine composition, antibodies may need to be updated in line with changes in vaccine viruses. We have developed two ELISA-based potency assays for group 1 influenza A viruses using cross-reactive nanobodies. The nanobodies detect influenza viruses of subtype H1N1 spanning more than three decades, as well as H5N1 viruses, in ELISA. We found that the new ELISA potency assays are sensitive to the nature of the reference antigen (standard) used to quantify vaccine antigens; using standards matched in their presentation to the vaccine type improved correspondence between the ELISA and SRD assays.
Collapse
Affiliation(s)
- Chung Y. Cheung
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Sitara Dubey
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Martina Hadrovic
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Christina R. Ball
- Biotherapeutics Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Walter Ramage
- Biotherapeutics Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Jacqueline U. McDonald
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Ruth Harvey
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Simon E. Hufton
- Biotherapeutics Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
| | - Othmar G. Engelhardt
- Vaccines Division, Scientific Research & Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QG, UK
- Correspondence:
| |
Collapse
|
10
|
On the Use of Surface Plasmon Resonance-Based Biosensors for Advanced Bioprocess Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomanufacturers are being incited by regulatory agencies to transition from a quality by testing framework, where they extensively test their product after their production, to more of a quality by design or even quality by control framework. This requires powerful analytical tools and sensors enabling measurements of key process variables and/or product quality attributes during production, preferably in an online manner. As such, the demand for monitoring technologies is rapidly growing. In this context, we believe surface plasmon resonance (SPR)-based biosensors can play a role in enabling the development of improved bioprocess monitoring and control strategies. The SPR technique has been profusely used to probe the binding behavior of a solution species with a sensor surface-immobilized partner in an investigative context, but its ability to detect binding in real-time and without a label has been exploited for monitoring purposes and is promising for the near future. In this review, we examine applications of SPR that are or could be related to bioprocess monitoring in three spheres: biotherapeutics production monitoring, vaccine monitoring, and bacteria and contaminant detection. These applications mainly exploit SPR’s ability to measure solution species concentrations, but performing kinetic analyses is also possible and could prove useful for product quality assessments. We follow with a discussion on the limitations of SPR in a monitoring role and how recent advances in hardware and SPR response modeling could counter them. Mainly, throughput limitations can be addressed by multi-detection spot instruments, and nonspecific binding effects can be alleviated by new antifouling materials. A plethora of methods are available for cell growth and metabolism monitoring, but product monitoring is performed mainly a posteriori. SPR-based biosensors exhibit potential as product monitoring tools from early production to the end of downstream processing, paving the way for more efficient production control. However, more work needs to be done to facilitate or eliminate the need for sample preprocessing and to optimize the experimental protocols.
Collapse
|
11
|
Considerations for bioanalytical characterization and batch release of COVID-19 vaccines. NPJ Vaccines 2021; 6:53. [PMID: 33850138 PMCID: PMC8044082 DOI: 10.1038/s41541-021-00317-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has prompted hundreds of laboratories around the world to employ traditional as well as novel technologies to develop vaccines against SARS-CoV-2. The hallmarks of a successful vaccine are safety and efficacy. Analytical evaluation methods, that can ensure the high quality of the products and that can be executed speedily, must be in place as an integral component of Chemistry, Manufacturing, and Control (CMC). These methods or assays are developed to quantitatively test for critical quality attributes (CQAs) of a vaccine product. While clinical (human) efficacy of a vaccine can never be predicted from pre-clinical evaluation of CQA, precise and accurate measurements of antigen content and a relevant biological activity (termed “potency”) elicited by the antigen allow selection of potentially safe and immunogenic doses for entry into clinical trials. All available vaccine technology platforms, novel and traditional, are being utilized by different developers to produce vaccines against SARS-CoV-2. It took less than a year from the publication of SARS-CoV-2 gene sequence to Emergency Use Authorization (EUA) of the first vaccine, setting a record for speed in the history of vaccine development. The largest ever global demand for vaccines has prompted some vaccine developers to enter multiple manufacturing partnerships in different countries in addition to implementing unprecedented scale-up plans. Quantitative, robust, and rapid analytical testing for CQA of a product is essential in ensuring smooth technology transfer between partners and allowing analytical bridging between vaccine batches used in different clinical phases leading up to regulatory approvals and commercialization. We discuss here opportunities to improve the speed and quality of the critical batch release and characterization assays.
Collapse
|
12
|
Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Biomolecules 2021; 11:biom11030407. [PMID: 33802072 PMCID: PMC8001348 DOI: 10.3390/biom11030407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
The antigenic variability of influenza presents many challenges to the development of vaccines and immunotherapeutics. However, it is apparent that there are epitopes on the virus that have evolved to remain largely constant due to their functional importance. These more conserved regions are often hidden and difficult to access by the human immune system but recent efforts have shown that these may be the Achilles heel of the virus through development and delivery of appropriate biological drugs. Amongst these, single domain antibodies (sdAbs) are equipped to target these vulnerabilities of the influenza virus due to their preference for concave epitopes on protein surfaces, their small size, flexible reformatting and high stability. Single domain antibodies are well placed to provide a new generation of robust analytical reagents and therapeutics to support the constant efforts to keep influenza in check.
Collapse
Affiliation(s)
- Andrew Tung Yep
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Yasu Takeuchi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
- Advanced Therapies Division, NIBSC, Potters Bar, Hertfordshire EN6 3QG, UK
| | | | - Simon E. Hufton
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Correspondence:
| |
Collapse
|
13
|
Carnell GW, Trombetta CM, Ferrara F, Montomoli E, Temperton NJ. Correlation of Influenza B Haemagglutination Inhibiton, Single-Radial Haemolysis and Pseudotype-Based Microneutralisation Assays for Immunogenicity Testing of Seasonal Vaccines. Vaccines (Basel) 2021; 9:100. [PMID: 33525543 PMCID: PMC7911544 DOI: 10.3390/vaccines9020100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza B is responsible for a significant proportion of the global morbidity, mortality and economic loss caused by influenza-related disease. Two antigenically distinct lineages co-circulate worldwide, often resulting in mismatches in vaccine coverage when vaccine predictions fail. There are currently operational issues with gold standard serological assays for influenza B, such as lack of sensitivity and requirement for specific antigen treatment. This study encompasses the gold standard assays with the more recent Pseudotype-based Microneutralisation assay in order to study comparative serological outcomes. Haemagglutination Inhibition, Single Radial Haemolysis and Pseudotype-based Microneutralisation correlated strongly for strains in the Yamagata lineage; however, it correlated with neither gold standard assays for the Victoria lineage.
Collapse
Affiliation(s)
- George W. Carnell
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); or (E.M.)
| | - Francesca Ferrara
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); or (E.M.)
- VisMederi srl, 53100 Siena, Italy
| | - Nigel J. Temperton
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham Maritime ME4 4TB, UK; (G.W.C.); (F.F.)
| |
Collapse
|
14
|
Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA ADVANCES 2021; 1:100022. [PMID: 37082021 PMCID: PMC10074945 DOI: 10.1016/j.bbadva.2021.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fundamental importance of membrane protein (MP) targets in central biological and cellular events has driven a marked increase in the use of membrane mimetics for exploring these proteins as therapeutic targets. The main challenge associated with biophysical analysis of membrane protein is the need for detergent extraction from the bilayer environment, which in many cases causes the proteins to become insoluble, unstable or display altered structure or activity. Recent technological advances have tried to limit the exposure of purified membrane protein to detergents. One such method involves the amphipathic co-polymer of styrene and maleic acid (SMA), which can release lipids and integral membrane proteins into water soluble native particles (or vesicles) termed SMALPs (Styrene Maleic Acid Lipid Particles). In this study, assay conditions that leverage SMA for membrane protein stabilization were developed to perform kinetic analysis of antibody binding to integral membrane protein and complexes in SMALPs in both purified and complex mixture settings using multiple biosensor platforms. To develop a robust and flexible platform using SMALPs technology, we optimized various SPR assay formats to analyze SMALPs produced with cell membrane pellets as well as whole cell lysates from the cell lines overexpressing membrane protein of interest. Here we emphasize the extraction of model membrane proteins of diverse architecture and function from native environments to encapsulate with SMALPs. Given the importance of selected membrane targets in central biological events and therapeutic relevance, MP-specific or tag-specific antibodies were used as a proof-of-principal to validate the SMALPs platform for ligand binding studies to support drug discovery or tool generation processes. MP-SMALPs that retain specific binding capability in multiple assay formats and biosensors, such as waveguide interferometry and surface plasmon resonance, would be a versatile platform for a wide range of downstream applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
- Corresponding author.
| | - Matthew Plant
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Cambridge, MA, 02141
| | - Sheung Kwan Lam
- Biologics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Qing Chen
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
| |
Collapse
|
15
|
Hemagglutinin from multiple divergent influenza A and B viruses bind to a distinct branched, sialylated poly-LacNAc glycan by surface plasmon resonance. Vaccine 2020; 38:6757-6765. [PMID: 32928588 DOI: 10.1016/j.vaccine.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022]
Abstract
Influenza viruses initiate infection via specific interactions of hemagglutinin (HA) with host cell surface sialic acid-containing glycans. Antigenic drift has resulted in HA amino acid sequence changes that affect binding properties for sialic acids. Further, viral propagation in eggs and cell culture for vaccine production can yield variants with mutations that affect the conformation and affinity of HA for sialic acids. Therefore, influenza vaccine researchers and manufacturers need robust analytical methods to assess directly the ability of vaccine candidates to bind to their specific sialic acid ligand. We developed a surface plasmon resonance method that uses an extended, biantennary glycan terminating with α-2,6 linked sialic acids to bind influenza HA and assess this interaction. Recombinant HA (rHA) from both influenza A and B viruses isolated from 1999 to 2017 strongly and specifically bind this sialic acid ligand, suggesting the binding ability of divergent HA for this ligand is resistant to antigenic drift. Importantly, the method can differentiate between wild type and mutant rHA for which binding to this sialylated glycan and red blood cells in hemagglutination assays is compromised. We believe this method can be a powerful tool to screen influenza A and B vaccine candidates and final vaccine preparations for their functional ability to bind sialic acids, which allows manufacturers to identify preparations in which mutations that affect sialic acid binding have arisen during propagation. Evaluation of vaccine rHA antigen integrity by confirmation of the receptor binding site functionality is a prudent cautionary step to assure the antigenic quality of seasonal influenza vaccines.
Collapse
|
16
|
Hemagglutinin Quantitative ELISA-based Potency Assay for Trivalent Seasonal Influenza Vaccine Using Group-Specific Universal Monoclonal Antibodies. Sci Rep 2019; 9:19675. [PMID: 31873147 PMCID: PMC6927952 DOI: 10.1038/s41598-019-56169-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
The assurance of vaccine potency is important for the timely release and distribution of influenza vaccines. As an alternative to Single Radial Immunodiffusion (SRID), we report a new quantitative enzyme-linked immunosorbent assay (ELISA) for seasonal trivalent influenza vaccine (TIV). The consensus hemagglutinin (cHA) stalks for group 1 influenza A virus (IAV), group 2 IAV, and influenza B virus (IBV) were designed and produced in bacterial recombinant host in a soluble form, and monoclonal antibodies (mAbs) were generated. The group-specific ‘universal’ mAbs (uAbs) bound to various subtypes of HAs in the same group from recombinant hosts, embryonated eggs, and commercial vaccine lots. The calibration curves were generated to assess the sensitivity, specificity, accuracy, and linear dynamic range. The quantitative ELISA was validated for the potency assay of individual components of TIV- H1, H3, and IBV- with good correlation with the SRID method. This new assay could be extended to pandemic or pre-pandemic mock-up vaccines of H5 of group 1 and H7 virus of group 2, and novel HA stalk-based universal vaccines.
Collapse
|
17
|
Lemieux M, Lorbetskie B, Luebbert C, Walrond L, Li C, Li X, Cyr T, Sauvé S, Johnston M, Farnsworth A. The differential effect of sub-micron level HA aggregates on influenza potency assays. Vaccine 2019; 37:5276-5287. [DOI: 10.1016/j.vaccine.2019.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
|
18
|
Lorbetskie B, Cunningham AM, Lemieux M, Durno L, Farnsworth A, Wang J, Li C, Li X, Gilbert M, Sauvé S, Girard M. Selective Capture and Determination of Receptor-Binding Hemagglutinin in Influenza Vaccine Preparations Using a Coupled Receptor-Binding/RP-HPLC Assay. Anal Chem 2019; 91:8908-8917. [PMID: 31251585 DOI: 10.1021/acs.analchem.9b00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza vaccine potency is determined by the quantification of immunologically active hemagglutinin capable of eliciting neutralizing antibodies upon immunization. Currently, the single radial immunodiffusion (SRID) method is the standard in vitro potency assay used for lot release of seasonal inactivated influenza vaccines. Despite the proven usage of SRID, significant limitations such as the time-consuming preparation of reagents and limited dynamic range warrant the need for the development of alternative potency assays. Such alternative approaches need to discriminate and quantify relevant hemagglutinin material, provide strain identity, and be independent of strain-specific and seasonal reagents. Herein, we present a proof of concept method that combines the capture of conformationally well-folded hemagglutinin via a sialic acid binding step with the resolving power of reversed-phase high-performance liquid chromatography for strain identity and determination. Details of the protocol for the selective capture of receptor-binding hemagglutinin, its release from the receptor, and its relative determination are presented. This approach was found to provide flexibility for the reagents to be used and was adaptable to varying strain compositions of influenza vaccines. This proof of concept approach was developed as an antibody-independent methodology.
Collapse
Affiliation(s)
- Barry Lorbetskie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| | - Anna-Maria Cunningham
- National Research Council Canada , Human Health Therapeutics Research Centre , Ottawa , Ontario K1A 0R6 , Canada
| | - Michèle Lemieux
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| | - Laura Durno
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| | - Junzhi Wang
- National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals , National Institute for Food and Drug Control of China , No.2 Tiantan Xili , Beijing 10050 , People's Republic of China
| | - Changgui Li
- National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals , National Institute for Food and Drug Control of China , No.2 Tiantan Xili , Beijing 10050 , People's Republic of China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Michel Gilbert
- National Research Council Canada , Human Health Therapeutics Research Centre , Ottawa , Ontario K1A 0R6 , Canada
| | - Simon Sauvé
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| | - Michel Girard
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate , Health Canada , 251 Sir Frederick Banting , Tunney's Pasture, Ottawa , Ontario K1A 0K9 , Canada
| |
Collapse
|
19
|
Durous L, Julien T, Padey B, Traversier A, Rosa-Calatrava M, Blum LJ, Marquette CA, Petiot E. SPRi-based hemagglutinin quantitative assay for influenza vaccine production monitoring. Vaccine 2019; 37:1614-1621. [DOI: 10.1016/j.vaccine.2019.01.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
|
20
|
Engelhardt OG, Edge C, Dunleavy U, Guilfoyle K, Harvey R, Major D, Newman R, Penn R, Skeldon S, Storey C, Wheeler J, Wood J, Minor P. Comparison of single radial immunodiffusion, SDS-PAGE and HPLC potency assays for inactivated influenza vaccines shows differences in ability to predict immunogenicity of haemagglutinin antigen. Vaccine 2018; 36:4339-4345. [PMID: 29895503 DOI: 10.1016/j.vaccine.2018.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
The current gold-standard potency test for inactivated influenza vaccines is the single radial immunodiffusion (SRD) assay. A number of alternative potency tests for inactivated influenza vaccines have been proposed in recent years. Evaluation of these new potency tests commonly involves comparison with SRD, in order to ascertain that the new method obtains values that correlate with those measured by the standard potency test. Here, we extended comparison of two methods, reverse-phase HPLC and SDS-PAGE, with SRD by assessing the methods' capacity to detect loss of potency induced by various deliberate treatments of vaccine samples. We demonstrate that neither of these methods detected the loss of potency observed by SRD; importantly, neither SDS-PAGE nor reverse-phase HPLC reflected results from mouse experiments that showed decreased immunogenicity and protection in vivo. These results emphasise the importance of assessing the stability-indicating nature, ie the ability to measure loss of vaccine potency, of any potential new potency assay.
Collapse
Affiliation(s)
- Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK.
| | - Chantal Edge
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Una Dunleavy
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Kate Guilfoyle
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Ruth Harvey
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Diane Major
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Robert Newman
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Rebecca Penn
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Sarah Skeldon
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Claire Storey
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Jun Wheeler
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - John Wood
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| | - Philip Minor
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| |
Collapse
|
21
|
Wood JM, Weir JP. Standardisation of inactivated influenza vaccines-Learning from history. Influenza Other Respir Viruses 2018; 12:195-201. [PMID: 29356318 PMCID: PMC5820418 DOI: 10.1111/irv.12543] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/15/2023] Open
Abstract
The single radial immunodiffusion assay has been the accepted method for determining the potency of inactivated influenza vaccines since 1978. The worldwide adoption of this assay for vaccine standardisation was facilitated through collaborative studies that demonstrated a high level of reproducibility and its applicability to the different types of influenza vaccine being produced at that time. Clinical evidence indicated the relevance of SRID as a potency assay. Unique features of the SRID assay are likely responsible for its longevity even as newer technologies for vaccine characterisation have been developed and refined. Nevertheless, there are significant limitations to the SRID assay that indicate the need for improvement, and there has been a substantial amount of work undertaken in recent years to develop and evaluate alternative potency assays, including collaborative studies involving research laboratories, regulatory agencies and vaccine manufacturers. Here, we provide an overview of the history of inactivated influenza vaccine potency testing, the current state of alternative assay development and the some of the major challenges to be overcome before implementation of new assays for potency determination.
Collapse
Affiliation(s)
- John M Wood
- Formerly National Institute for Biological Standards and Control, Potters Bar, Bushey, Herts, UK
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
22
|
Su P, He Z, Wu L, Li L, Zheng K, Yang Y. SI-traceable calibration-free analysis for the active concentration of G2-EPSPS protein using surface plasmon resonance. Talanta 2018; 178:78-84. [PMID: 29136894 DOI: 10.1016/j.talanta.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 01/07/2023]
Abstract
Active proteins play important roles in the function regulation of human bodies and attract much interest for use in pharmaceuticals and clinical diagnostics. However, the lack of primary methods to analyze active proteins means there is currently no metrology standard for active protein measurement. In recent years, calibration-free concentration analysis (CFCA), which is based on surface plasmon resonance (SPR) technology, has been proposed to determine the active concentration of proteins that have specific binding activity with a binding partner without any higher order standards. The CFCA experiment observes the changes of binding rates at totally different two flow rates and uses the known diffusion coefficient of an analyte to calculate the active concentration of proteins, theoretically required, the binding process have to be under diffusion-limited conditions. Measuring the active concentration of G2-EPSPS protein by CFCA was proposed in this study. This method involves optimization of the regeneration buffer and preparation of chip surfaces for appropriate reaction conditions by immobilizing ligands (G2-EPSPS antibodies) on sensor chips (CM5) via amine coupling. The active concentration of G2-EPSPS was then determined by injection of G2-EPSPS protein samples and running buffer over immobilized and reference chip surfaces at two different flow rates (5 and 100μLmin-1). The active concentration of G2-EPSPS was obtained after analyzing these sensorgrams with the 1:1 model. Using the determined active concentration of G2-EPSPS, the association, dissociation, and equilibrium constants of G2-EPSPS and its antibody were determined to be 2.18 ± 0.03 × 106M-1s-1, 5.79 ± 0.06 ×10-3s-1, and 2.65 ± 0.06 × 10-9M, respectively. The performance of the proposed method was evaluated. The within-day precisions were from 3.26% to 4.59%, and the between-day precision was 8.36%. The recovery rate of the method was from 97.46% to 104.34% in the concentration range of 1.5-8nM. The appropriate concentration range of G2-EPSPS in the proposed method was determined to be 1.5-8nM. The active G2-EPSPS protein concentration determined by our method was only 17.82% of that obtained by isotope dilution mass spectrometry, showing the active protein was only a small part of the total G2-EPSPS protein. The measurement principle of the proposed method can be clearly described by equations and the measurement result can be expressed in SI units. Therefore, the proposed method shows promise to become a primary method for active protein concentration measurement, which can benefit the development of certified reference materials for active proteins.
Collapse
Affiliation(s)
- Ping Su
- Beijing University of Chemical Technology, Beijing, China
| | - Zhangjing He
- Beijing University of Chemical Technology, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kangle Zheng
- Beijing University of Chemical Technology, Beijing, China
| | - Yi Yang
- Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
23
|
Ji Y, Woods RJ. Quantifying Weak Glycan-Protein Interactions Using a Biolayer Interferometry Competition Assay: Applications to ECL Lectin and X-31 Influenza Hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:259-273. [PMID: 30484253 DOI: 10.1007/978-981-13-2158-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter introduces two formats using bio-layer interferometry competition assays to determine the solution K D values of weak glycan-protein interactions. This approach overcomes the challenge of determining weak interactions while minimizing the amount of reagents required. Accurate solution K D values aid in understanding the complex relationships between monomeric versus multimeric interactions and affinity versus avidity. The assays have been applied to a well-studied lectin (Erythrina crista-galli lectin) and influenza hemagglutinin (X-31). The solution K D values determined from this approach are in good agreement with previous reported literature values from isothermal titration calorimetry and NMR. Additionally, this approach appears robust and precise.
Collapse
Affiliation(s)
- Ye Ji
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
24
|
Karlsson R, Fridh V, Frostell Å. Surrogate potency assays: Comparison of binding profiles complements dose response curves for unambiguous assessment of relative potencies. J Pharm Anal 2017; 8:138-146. [PMID: 29736301 PMCID: PMC5934736 DOI: 10.1016/j.jpha.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Surface plasmon resonance (SPR) systems are widely used for detailed characterization of antibody activities including antigen and Fc-receptor binding. During the later stages of development, where the focus is to ensure that established critical quality attributes (CQAs) are maintained during cell culture, purification and formulation processes, analysis is simplified, and relative potencies are often determined. Here, simulation of binding data revealed that relative potency values, determined via parallel line analysis (PLA) and half maximal effective concentration (EC50) analysis accurately reflect changes in active concentration only if binding kinetics remain unchanged. Changes in the association rate constant shifted dose response curves, and therefore relative potencies, in the same way as changes in analyte concentration do. However, for interactions characterized by stable binding, changes in the dissociation rate constant did not result in any shift, suggesting that this type of change may go unnoticed in the dose response curve. Thus, EC50 and PLA analyses of dose response curves obtained with an anti-TNF-α antibody were complemented with the Biacore functionality for sensorgram comparison analysis, whereby changes in antigen and Fc-receptor binding profiles could be detected. Next, analysis of temperature stressed TNF-α antibody revealed that calibration free concentration analysis (CFCA) data correlated perfectly with relative potency values. Together, these results demonstrate that combinations of SPR based dose response curves, sensorgram comparison and CFCA can be used to strengthen the confidence in relative potency assessments, and suggest that SPR can potentially be used as a surrogate potency assay in the quality control of biotherapeutic medicines.
Collapse
Affiliation(s)
- Robert Karlsson
- Purification and Analysis, GE Healthcare Life Sciences, Uppsala, Sweden
| | - Veronica Fridh
- Purification and Analysis, GE Healthcare Life Sciences, Uppsala, Sweden
| | - Åsa Frostell
- Purification and Analysis, GE Healthcare Life Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Vasudevan A, Woerner A, Schmeisser F, Verma S, Williams O, Weir JP. Potency determination of inactivated H7 influenza vaccines using monoclonal antibody-based ELISA and biolayer interferometry assays. Influenza Other Respir Viruses 2017; 12:250-258. [PMID: 29152878 PMCID: PMC5820428 DOI: 10.1111/irv.12528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/28/2023] Open
Abstract
Background The single radial immunodiffusion (SRID) assay, the accepted method for determining potency of inactivated influenza vaccines, measures an immunogenic form of the influenza hemagglutinin. Nevertheless, alternative methods for measuring vaccine potency have been explored to address some of the weaknesses of the SRID assay, including limited sensitivity and the requirement for large amounts of standardized reagents. Monoclonal antibody (mAb)‐based potency assays also have the ability to detect and measure relevant immunogenic forms of HA. Objectives The objective of this study was to continue evaluation of mAb‐based alternative methods for measuring the potency of inactivated influenza vaccines, focusing on A(H7N9) pandemic influenza vaccines. Methods Several murine mAbs that recognize different epitopes on the H7 hemagglutinin (HA) were identified and characterized. These mAbs were evaluated in both a mAb‐capture ELISA and a mAb‐based biolayer interferometry (BLI) assay. Results Results indicated that potency of inactivated A(H7N9) vaccines, including vaccine samples that were stressed by heat treatment, measured by either alternative method correlated well with potency determined by the traditional SRID potency assay. Conclusions The availability of multiple H7 mAbs, directed to different HA epitopes, provides needed redundancy in the potency analysis as A(H7N9) viruses continue to evolve antigenically and suggests the importance of having a broad, well‐characterized panel of mAbs available for development of vaccines against influenza strains with pandemic potential. In addition, the results highlight the potential of mAb‐based platform such as ELISA and BLI for development as alternative methods for determining the potency of inactivated influenza vaccines.
Collapse
Affiliation(s)
- Anupama Vasudevan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amy Woerner
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Swati Verma
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ollie Williams
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
26
|
Carvalho SB, Moleirinho MG, Wheatley D, Welsh J, Gantier R, Alves PM, Peixoto C, Carrondo MJT. Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J 2017; 12. [PMID: 28514082 DOI: 10.1002/biot.201700031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
Abstract
Virus-like particles (VLPs) are becoming established as vaccines, in particular for influenza pandemics, increasing the interest in the development of VLPs manufacturing bioprocess. However, for complex VLPs, the analytical tools used for quantification are not yet able to keep up with the bioprocess progress. Currently, quantification for Influenza relies on traditional methods: hemagglutination assay or Single Radial Immunodiffusion. These analytical technologies are time-consuming, cumbersome, and not supportive of efficient downstream process development and monitoring. Hereby we report a label-free tool that uses Biolayer interferometry (BLI) technology applied on an Octet platform to quantify Influenza VLPs at all stages of bioprocess. Human (α2,6-linked sialic acid) and avian (α2,3-linked sialic acid) biotinylated receptors associated with streptavidin biosensors were used, to quantify hemagglutinin content in several mono- and multivalent Influenza VLPs. The applied method was able to quantify hemagglutinin from crude samples up to final bioprocessing VLP product. BLI technology confirmed its value as a high throughput analytical tool with high sensitivity and improved detection limits compared to traditional methods. This simple and fast method allowed for real-time results, which are crucial for in-line monitoring of downstream processing, improving process development, control and optimization.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| |
Collapse
|
27
|
Abstract
A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed.
Collapse
|
28
|
Verma S, Soto J, Vasudevan A, Schmeisser F, Alvarado-Facundo E, Wang W, Weiss CD, Weir JP. Determination of influenza B identity and potency in quadrivalent inactivated influenza vaccines using lineage-specific monoclonal antibodies. PLoS One 2017; 12:e0175733. [PMID: 28423025 PMCID: PMC5396888 DOI: 10.1371/journal.pone.0175733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Chickens
- Dogs
- Enzyme-Linked Immunosorbent Assay/methods
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Immunodiffusion/methods
- Immunogenicity, Vaccine
- Influenza B virus/immunology
- Influenza B virus/isolation & purification
- Influenza Vaccines/analysis
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Madin Darby Canine Kidney Cells
- Mice
- Protein Binding
- Vaccines, Inactivated
- Vaccines, Subunit
- Zygote/virology
Collapse
Affiliation(s)
- Swati Verma
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jackeline Soto
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Anupama Vasudevan
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Falko Schmeisser
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Esmeralda Alvarado-Facundo
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Carol D. Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jerry P. Weir
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kuck LR, Saye S, Loob S, Roth-Eichhorn S, Byrne-Nash R, Rowlen KL. VaxArray assessment of influenza split vaccine potency and stability. Vaccine 2017; 35:1918-1925. [PMID: 28262335 DOI: 10.1016/j.vaccine.2017.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
Vaccine manufacturers require more rapid and accurate tools to characterize the potency and stability of their products. Currently, the gold standard for influenza vaccine potency is the single radial immunodiffusion (SRD) assay, which has inherent disadvantages. The primary objective of this study was to investigate the ability of the VaxArray Influenza (VXI) seasonal hemagglutinin (sHA) potency assay to accurately quantify potency and stability in finished vaccines as well as to quantify hemagglutinin protein (HA) within crude in-process samples. Monobulk intermediates and mono- and multivalent vaccines were tested using VXI. Quantification of HA in crude samples was evaluated by spiking known concentrations of HA into allantoic fluid. VXI generated SRD equivalent potency measurements with high accuracy (within ±10%) and precision (CV 10±4%) for antigen components of monobulk intermediates and multivalent split vaccines. For these vaccines and vaccine intermediates, the VXI linear dynamic range was ∼0.01-0.6μg/mL, which is 12× greater than the linear range of SRD. The measured sample limit of detection (LOD) for VXI varied from 0.005 to 0.01μg/mL for the different subtypes, which in general is ≥600× lower than the LOD for SRD. VXI was able to quantify HA in crude samples where HA only accounts for 0.02% of the total protein content. Stability indication was investigated by tracking measured potency as a function of time at elevated temperature by both SRD and VXI. After 20 h at 56°C, the ratio of VXI to SRD measured potency in a quadrivalent vaccine was 76%, 125%, 60%, and 98% for H1/California, H3/Switzerland, B/Phuket and B/Brisbane, respectively. Based on the study results, it is concluded that VXI is a rapid, multiplexed immunoassay that can be used to accurately determine flu vaccine potency and stability in finished product and in crude samples from upstream processes.
Collapse
Affiliation(s)
- Laura R Kuck
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States.
| | - Stephen Saye
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Sam Loob
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Sylke Roth-Eichhorn
- GlaxoSmithKline Biologicals, NL der SB Pharma GmbH & Co. KG, Zirkusstraße 40, 01069 Dresden, Germany
| | - Rose Byrne-Nash
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Kathy L Rowlen
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States.
| |
Collapse
|
30
|
Conformationally selective biophysical assay for influenza vaccine potency determination. Vaccine 2015; 33:5342-5349. [DOI: 10.1016/j.vaccine.2015.08.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/15/2015] [Accepted: 08/29/2015] [Indexed: 12/19/2022]
|
31
|
Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromol Rapid Commun 2015; 36:1472-8. [DOI: 10.1002/marc.201500118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| | - Hyunji Park
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| |
Collapse
|
32
|
Jiang L, Eichelberger MC. Evaluation of Epic® label-free technology to quantify functional recombinant hemagglutinin. Biol Proced Online 2015; 17:7. [PMID: 25774096 PMCID: PMC4359790 DOI: 10.1186/s12575-015-0019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background Alternative methods are being sought to measure the potency of influenza vaccines. Label-free technologies that do not require the use of hemagglutinin (HA)-specific antisera are particularly attractive as the preparation of antiserum delays availability of potency reagents. The objective of these experiments was to evaluate the use of a Corning Epic® label-free method to quantify functional influenza hemagglutinin in rHA preparations. The method was optimized to quantify recombinant HA (rHA) of B/Brisbane/60/2008 (B/BR/08). Fetuin was immobilized onto plates and the change in wavelength of refracted light measured using an Enspire (Perkin Elmer) instrument. Results The change in wavelength measured in response to addition of rHA of B/BR/08 was proportional to its concentration and was optimal in the presence of native rHA conformations. However, the assay was strain-dependent and did not correlate with HAU measured using turkey red blood cells. Conclusions The Corning Epic® label-free method is suitable for quantifying the native forms of rHA for B/BR/08 and A/Brisbane/59/2007 (H1N1) and A/Hangxhou/3/2013 (H7N9). This method is a useful tool for research purposes but further investigation is needed to identify suitable glycoproteins to use as ligands that allow quantification of HAs from a broader range of virus strains. Electronic supplementary material The online version of this article (doi:10.1186/s12575-015-0019-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianlian Jiang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993 USA
| | - Maryna C Eichelberger
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993 USA
| |
Collapse
|
33
|
Minor PD. Assaying the Potency of Influenza Vaccines. Vaccines (Basel) 2015; 3:90-104. [PMID: 26344948 PMCID: PMC4494238 DOI: 10.3390/vaccines3010090] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
The potency of vaccines must be determined to ensure that the appropriate dose is given. The manufacture and assessment of influenza vaccines are complicated by the continuously changing nature of the pathogen, which makes efficacy estimates difficult but also confounds attempts to produce a well-validated, consistent potency assay. Single radial diffusion has been used for decades and provides a relatively simple way to measure the amount of biologically active materials present in the vaccine. It requires reagents, which are updated on a regular, frequently yearly, basis and alternative methods continue to be sought.
Collapse
Affiliation(s)
- Philip D Minor
- National Institute for Biological Standards and Control/MHRA, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
34
|
Gravel C, Elmgren C, Muralidharan A, Hashem AM, Jaentschke B, Xu K, Widdison J, Arnold K, Farnsworth A, Rinfret A, Van Domselaar G, Wang J, Li C, Li X. Development and applications of universal H7 subtype-specific antibodies for the analysis of influenza H7N9 vaccines. Vaccine 2015; 33:1129-34. [PMID: 25620245 DOI: 10.1016/j.vaccine.2015.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 01/13/2015] [Indexed: 12/31/2022]
Abstract
H7N9 is a newly emerged avian influenza virus with a relatively high mortality rate in humans. At this time, there is no licensed vaccine for human protection. Development of analytical tools for H7N9 vaccine could facilitate vaccine development. Here, a universally conserved epitope in all H7 hemagglutinin (HA) sequences was identified through comprehensive bioinformatics analyses. The peptide epitope, RSGSSFYAEMK, (aa positions 149 to 159), is located on the head of the HA molecule. Antibodies generated against this universal H7 epitope were remarkably specific against H7 viral sequence with no detectable cross-reactivity to other HA subtypes. A new immunoblotting assay based on the universal H7 antibody was developed and compared with the traditional single radial immunodiffusion assay (SRID) for potency analyses of candidate H7N9 vaccines. This new assay was more sensitive and rapid compared to SRID. In addition to statistically acceptable precision and reproducibility, the new assay differs from many other alternative potency assays for influenza vaccine in that it is potentially stability-indicating, which is an important requirement for industry vaccine stability studies analyses. Furthermore, the robustness of this new assay was demonstrated by the quantitative determination of HA content in four H7N9 vaccines (split or inactivated) from different manufacturers.
Collapse
Affiliation(s)
- Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | | | - Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bozena Jaentschke
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Kangwei Xu
- National Institutes for the Control of Food and Drug and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | | | | | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aline Rinfret
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Junzhi Wang
- National Institutes for the Control of Food and Drug and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Changgui Li
- National Institutes for the Control of Food and Drug and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|