1
|
Zhang Y, Gao S, Yao S, Weng D, Wang Y, Huang Q, Zhang X, Wang H, Xu W. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4 +T cells. iScience 2023; 26:107464. [PMID: 37588169 PMCID: PMC10425906 DOI: 10.1016/j.isci.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
3
|
Sánchez Ramón S, Manzanares M, Candelas G. MUCOSAL anti-infections vaccines: Beyond conventional vaccines. REUMATOLOGIA CLINICA 2020; 16:49-55. [PMID: 30527360 DOI: 10.1016/j.reuma.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
An urgent search is currently underway for alternatives to antibiotics to prevent infections, due to the accelerated evolution and increase in antibiotic resistance. This problem is more serious for patients with recurrent infections, since they have to use many cycles of antibiotics per year, so the risk for antibiotic resistance is higher and can be life-threatening. In recent years, the use of prophylactic vaccines via the mucosal route for these patients with recurrent infections has been demonstrated as a potentially beneficial and safe alternative to prevent infections. The new knowledge about mucosal immunity and trained immunity, a form of innate immunity memory that can enhance the response to different infectious threads, has made it easier to extend its use. The application of the new concepts of trained immunity may explain the simultaneous pro-tolerogenic and boosting effect or effects of these drugs on diverse immune cells for different infections. In this review, we describe the immunomodulatory mechanisms of mucosal polybacterial vaccines and their connection with trained immunity and its utility in the prevention of recurrent infections in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Mario Manzanares
- Servicio de Inmunología, Hospital Clínico San Carlos, Madrid, España
| | - Gloria Candelas
- Servicio de Reumatología, Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
4
|
Mohammadzadeh M, Pourakbari B, Doosti A, Mahmoudi S, Habibi-Anbouhi M, Mamishi S. Construction and evaluation of a whole-cell pneumococcal vaccine candidate. J Appl Microbiol 2018; 125:1901-1910. [PMID: 30133088 DOI: 10.1111/jam.14079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022]
Abstract
AIMS Pneumococcal infections are a major public health problem, especially in developing countries, and the current pneumococcal vaccines do not cover all pathogenic strains. New, more economical serotype-independent vaccines based on species-common protein antigens are being pursued. The pneumococcal whole-cell vaccine which is based on noncapsular antigens common to all strains induces serotype-independent immunity. In the present study, we developed a new candidate for a whole-cell pneumococcal vaccine in which two important virulence factors, the capsule and pneumolysin, were deleted. METHODS AND RESULTS Protection was elicited by immunization against colonization in mice with a killed mutant strain and the antibody response in the mice serum was evaluated. This candidate vaccine was effective in preventing nasopharyngeal colonization. The mice immunized with this candidate vaccine had significantly higher serum antibody titres than mice that received the adjuvant alone. CONCLUSIONS Based on obtained results in this study, the engineered whole-cell pneumococci can be considered as a vaccine candidate in future studies. SIGNIFICANCE AND IMPACT OF THE STUDY This candidate vaccine can overcome the limitations of available polysaccharide vaccines.
Collapse
Affiliation(s)
- M Mohammadzadeh
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - B Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - A Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - S Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Habibi-Anbouhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - S Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kim SJ, Seon SH, Luong TT, Ghosh P, Pyo S, Rhee DK. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection. Vaccine 2018; 37:90-98. [PMID: 30467061 DOI: 10.1016/j.vaccine.2018.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Streptococcus pneumoniae is a well-known pathogenic bacterium with a high mortality rate. Currently, a 23-valent pneumococcal polysaccharide vaccine (PPV23) and protein-conjugate vaccines (PCVs) are available on the market. However, both of these vaccines have limitations; specifically, PPV23 produces weak antibody responses in children younger than 2 years and PCVs only partially protect against secondary infection. Previously, we showed serotype-nonspecific protection by Δpep27 vaccine, but the reversion of Δpep27 to the wild type serotype during immunization cannot be excluded. To ensure the safety of the Δpep27 vaccine, comD, an important protein that activates competence, was inactivated, and the transformability of the double mutant (Δpep27ΔcomD) was determined. The transformation ability of this double mutant was successfully abolished. Δpep27ΔcomD immunization significantly increased the survival time after heterologous challenge(s), and diminished colonization levels independent of serotype, including a non-typeable strain (NCC1). Moreover, the double mutant was found to be highly safe in both normal and immunocompromised mice. In conclusion, this pneumococcal Δpep27ΔcomD vaccine appears to be a highly feasible and safe vaccine to prevent various types of pneumococcal infections.
Collapse
Affiliation(s)
- Se-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seung Han Seon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Truc Thanh Luong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Prachetash Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Liao H, Peng X, Gan L, Feng J, Gao Y, Yang S, Hu X, Zhang L, Yin Y, Wang H, Xu X. Protective Regulatory T Cell Immune Response Induced by Intranasal Immunization With the Live-Attenuated Pneumococcal Vaccine SPY1 via the Transforming Growth Factor-β1-Smad2/3 Pathway. Front Immunol 2018; 9:1754. [PMID: 30116243 PMCID: PMC6082925 DOI: 10.3389/fimmu.2018.01754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Vaccine effectiveness is mainly determined by the mechanism mediating protection, emphasizing the importance of unraveling the protective mechanism for novel pneumococcal vaccine development. We previously demonstrated that the regulatory T cell (Treg) immune response has a protective effect against pneumococcal infection elicited by the live-attenuated pneumococcal vaccine SPY1. However, the mechanism underlying this protective effect remains unclear. In this study, a short synthetic peptide (P17) was used to downregulate Tregs during immunization and subsequent challenges in a mouse model. In immunized mice, increase in immune cytokines (IL-12p70, IL-4, IL-5, and IL-17A) induced by SPY1 were further upregulated by P17 treatment, whereas the decrease in the infection-associated inflammatory cytokine TNF-α by SPY1 was reversed. P17 also inhibited the increase in the immunosuppressive cytokine IL-10 and inflammatory mediator IL-6 in immunized mice. More severe pulmonary injuries and more dramatic inflammatory responses with worse survival in P17-treated immunized mice indicated the indispensable role of the Treg immune response in protection against pneumococcal infection by maintaining a balance among acquired immune responses stimulated by SPY1. Further studies revealed that the significant elevation of active transforming growth factor β (TGF-β)1 by SPY1 vaccination activated FOXP3, leading to increased frequencies of CD4+CD25+Foxp3+ T cells. Moreover, SPY1 vaccination elevated the levels of Smad2/3 and phosphor-Smad2/3 and downregulated the negative regulatory factor Smad7 in a time-dependent manner during pneumococcal infection, and these changes were reversed by P17 treatment. These results illustrate that SPY1-stimulated TGF-β1 induced the generation of SPY1-specific Tregs via the Smad2/3 signaling pathway. In addition, SPY1-specific Tregs may participate in protection via the enhanced expression of PD-1 and CTLA-4. The data presented here extend our understanding of how the SPY1-induced acquired Treg immune response contributes to protection elicited by live-attenuated vaccines and may be helpful for the evaluation of live vaccines and other mucosal vaccine candidates.
Collapse
Affiliation(s)
- Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqiong Peng
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Shen M, Yao R, Yue H, Zhang J, Chen M, Zhang W, Liu D, Wu K. Serotype prevalence and antibiotic susceptibility patterns of pneumococcal isolates in Zunyi city, China. Saudi Med J 2018; 38:1243-1249. [PMID: 29209675 PMCID: PMC5787637 DOI: 10.15537/smj.2017.12.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the serotype distribution and antimicrobial susceptibility of pneumococci isolated from inpatients of all ages suspected of having bacterial infections. METHODS In this retrospective study, pneumococcal isolates were consecutively collected from the Third Affiliated Hospital of Zunyi Medical University, in Zunyi city, China, between January 2014 and December 2016. Pneumococci were identified using routine microbiological assays. We performed antimicrobial susceptibility analyses using the bacteria identification/susceptibility system VITEK2 and E-tests. Capsular types of all isolates were determined by multiplex polymerase chain reaction. RESULTS We identified 778 pneumococcal isolates. Serotypes 19F, 6A/6B, 19A, 23F, and 15B/15C were the most prevalent strains, accounting for 71.5% (556/778) of all isolates. Data show that 409 (70.4%) isolates could be covered by the PCV13 vaccine in children less than 2 years old. Irrespective of serotypes, 747 (96%) isolates were sensitive to penicillin, while 720 to 778 (90% to 100%) isolates were not susceptible to erythromycin, tetracycline, and trimethoprim/sulfamethoxazole. For isolates resistant to penicillin, ceftriaxone, cefotaxime, and meropenem, 22 to 39 (70% to 81.25%) strains belonged to PCV13 serotypes. CONCLUSION We found a substantial increase in the annual number of pneumococcal isolates since 2014. The theoretical impact of PCV13 was high in children less than 2 years old, and penicillin might be effective against pneumococcal infections in this region.
Collapse
Affiliation(s)
- Meijing Shen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohammadzadeh M, Pourakbari B, Mahmoudi S, Keshtkar A, Habibi-Anbouhi M, Mamishi S. Efficacy of whole-cell pneumococcal vaccine in mice: A systematic review and meta-analysis. Microb Pathog 2018; 122:122-129. [PMID: 29908308 DOI: 10.1016/j.micpath.2018.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/14/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Despite the fact that pneumococcal conjugate vaccines (PCVs) have significantly reduced the rate of invasive pneumococcal diseases through the use of vaccine serotypes, infection with Streptococcus pneumoniae remains a major public health hazard. Serotype-independent vaccines that are economically viable species of common protein antigens such as whole-cell vaccines (WCVs) are needed. Considering the ongoing debate about the effectiveness of WCVs, a systematic literature review and meta-analysis was carried out to determine the efficacy of WCVs against colonization in mice. MATERIAL AND METHODS A systematic review was undertaken of published studies on the protection (colonized/uncolonized) of whole cell pneumococcal vaccine in mice. The search terms used were "whole cell vaccine" and "Streptococcus pneumoniae" in PubMed, Google Scholar, Embase, Web of Science and Scopus engines. Data was extracted from original publications and a meta-analysis was performed on studies divided into sub-groups by the number of inoculations, type of sample, type of adjuvant, time of sampling, design of study and quality of study. RESULTS Ten eligible articles published from 2000 to 2016 were included in this review. The meta-analysis was performed on eight out of 10 studies and demonstrated that the estimated pooled risk ratios (RRs) for comparison of colonization between the vaccinated and unvaccinated mice for outcomes 1 and 2 were 0.18 and 0.24, respectively. Lower RRs were observed in sub-groups that were inoculated with vaccines three times, those using cholera toxin (CT) adjuvants and those obtained as tracheal specimens from the mice. CONCLUSIONS The best protocol for use of a WCV is its application with CT adjuvant administered intranasally in three inoculations at doses of 10⁸ CFU. Further studies performed under similar conditions to obtain accurate results on the effectiveness of this vaccine are recommended.
Collapse
Affiliation(s)
- Mona Mohammadzadeh
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shima Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Gan L, Zhang X, Xu X, Xu W, Lu C, Cui J, Wang H. spd1672, a novel in vivo-induced gene, affects inflammatory response in a murine model of Streptococcus pneumoniae infection. Can J Microbiol 2018; 64:401-408. [DOI: 10.1139/cjm-2017-0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
spd1672, a novel Streptococcus pneumoniae (hereinafter S. pn) gene induced in vivo, has been identified to contribute to the virulence of S. pn; however, the role of spd1672 during host innate immune reaction against S. pn infection is unknown. In the present study, mice were infected with wild-type D39 and mutant D39Δspd1672 strains. Compared with the D39-infected mice, reduced bacterial load and attenuated inflammatory response were observed in the D39Δspd1672-treated mice. The levels of proinflammatory cytokines, including IFN-γ, TNF-α, and IL-1β, in the blood of D39Δspd1672-infected mice were lower than that in the D39-infected group. Additionally, attenuated activation of STAT3 and AKT was observed in the D39Δspd1672-infected mice. In conclusion, our data indicated that spd1672 expression modulates the release of proinflammatory cytokines, and AKT–STAT3 signaling appears to participate in the process. In conclusion, the present study extends our understanding of the role of an in vivo-induced gene in S. pn–host interaction.
Collapse
Affiliation(s)
- Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jin Cui
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Zhang X, Cui J, Wu Y, Wang H, Wang J, Qiu Y, Mo Y, He Y, Zhang X, Yin Y, Xu W. Streptococcus pneumoniae Attenuated Strain SPY1 with an Artificial Mineral Shell Induces Humoral and Th17 Cellular Immunity and Protects Mice against Pneumococcal Infection. Front Immunol 2018; 8:1983. [PMID: 29375585 PMCID: PMC5768616 DOI: 10.3389/fimmu.2017.01983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a major pathogen leading to substantial morbidity and mortality in children under 5 years of age. Vaccination is an effective strategy to prevent S. pneumoniae infection. SPY1 is a pneumococcal vaccine candidate strain obtained in our previous study. To improve its stability and immunogencity, in this study, we constructed the SPY1ΔlytA strain that lacks autolysin activity and was coated with an artificial exterior surface calcium phosphate shell by in situ mineralization. The resulting strain SPY1ΔlytACaPi displayed enhanced thermal stability enabling storage at 37°C for 1 week. Furthermore, mucosal and subcutaneous immunization with the SPY1ΔlytACaPi strain induced better protective effects than SPY1ΔlytA in anti-colonization after challenging with 19F and anti-invasion by D39 in mice. Subcutaneous immunization with SPY1ΔlytACaPi elicited higher IgG level while mucosal immunization primarily elicited an immune response which is supposed to be related to Th17 cells. Taken together, the mineralized strain may be a promising candidate for an attenuated S. pneumoniae vaccine.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jingjing Cui
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yunjun Mo
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Korean Red Ginseng enhances pneumococcal Δ pep27 vaccine efficacy by inhibiting reactive oxygen species production. J Ginseng Res 2017; 43:218-225. [PMID: 30962736 PMCID: PMC6437420 DOI: 10.1016/j.jgr.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background Streptococcus pneumoniae, more than 90 serotypes of which exist, is recognized as an etiologic agent of pneumonia, meningitis, and sepsis associated with significant morbidity and mortality worldwide. Immunization with a pneumococcal pep27 mutant (Δpep27) has been shown to confer comprehensive, long-term protection against even nontypeable strains. However, Δpep27 is effective as a vaccine only after at least three rounds of immunization. Therefore, treatments capable of enhancing the efficiency of Δpep27 immunization should be identified without delay. Panax ginseng Mayer has already been shown to have pharmacological and antioxidant effects. Here, the ability of Korean Red Ginseng (KRG) to enhance the efficacy of Δpep27 immunization was investigated. Methods Mice were treated with KRG and immunized with Δpep27 before infection with the pathogenic S. pneumoniae strain D39. Total reactive oxygen species production was measured using lung homogenates, and inducible nitric oxide (NO) synthase and antiapoptotic protein expression was determined by immunoblotting. The phagocytic activity of peritoneal macrophages was also tested after KRG treatment. Results Compared with the other treatments, KRG significantly increased survival rate after lethal challenge and resulted in faster bacterial clearance via increased phagocytosis. Moreover, KRG enhanced Δpep27 vaccine efficacy by inhibiting reactive oxygen species production, reducing extracellular signal–regulated kinase apoptosis signaling and inflammation. Conclusion Taken together, our results suggest that KRG reduces the time required for immunization with the Δpep27 vaccine by enhancing its efficacy.
Collapse
|
12
|
Qiu Y, Zhang X, Wang H, Zhang X, Mo Y, Sun X, Wang J, Yin Y, Xu W. Heterologous prime-boost immunization with live SPY1 and DnaJ protein of Streptococcus pneumoniae induces strong Th1 and Th17 cellular immune responses in mice. J Microbiol 2017; 55:823-829. [PMID: 28956354 DOI: 10.1007/s12275-017-7262-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is a leading cause of infectious diseases in children under 5-year-old. Vaccine has been used as an indispensable strategy to prevent S. pneumoniae infection for more than 30 years. Our previous studies confirmed that mucosal immunization with live attenuated strain SPY1 can protect mice against nasopharyngeal colonization of S. pneumoniae and lethal pneumococcal infection, and the protective effects are comparable with those induced by commercially available 23-valent polysaccharide vaccine. However, live attenuated vaccine SPY1 needs four inoculations to get satisfactory protective effect, which may increase the risk of virulence recovery. It is reported that heterologous primeboost approach is more effective than homologous primeboost approach. In the present study, to decrease the doses of live SPY1 and improve the safety of SPY1 vaccine, we immunized mice with SPY1 and DnaJ protein alternately. Our results showed that heterologous prime-boost immunization with SPY1 and DnaJ protein could significantly reduce the colonization of S. pneumoniae in the respiratory tract of mice, and induce stronger Th1 and Th17 cellular immune responses than SPY1 alone. These results indicate heterologous prime-boost immunization method not only elicits better protective effect than SPY1 alone, but also reduces the doses of live SPY1 and decreases the risk of SPY1 vaccine. This work is the first time to study the protective efficiency with two different forms of S. pneumoniae candidate vaccine, and provides a new strategy for the development of S. pneumoniae vaccine.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Cloning, Molecular
- Colony Count, Microbial
- Cytokines/metabolism
- Escherichia coli/genetics
- Female
- Gene Expression Regulation, Bacterial
- HSP40 Heat-Shock Proteins/administration & dosage
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/immunology
- Immunity, Cellular/immunology
- Immunization
- Immunoglobulin G/blood
- Lung/microbiology
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Pneumococcal Infections/immunology
- Pneumococcal Infections/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Respiratory System/microbiology
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
- Streptococcus pneumoniae/pathogenicity
- Th1 Cells/immunology
- Th17 Cells/immunology
- Vaccination
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Yulan Qiu
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Xuemei Zhang
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Hong Wang
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Xinyuan Zhang
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Yunjun Mo
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Xiaoyu Sun
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Jichao Wang
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Yibing Yin
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China
| | - Wenchun Xu
- College of Laboratory Medicine, Key Laboratory Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
13
|
Kim GL, Seon SH, Rhee DK. Pneumonia and Streptococcus pneumoniae vaccine. Arch Pharm Res 2017; 40:885-893. [PMID: 28735461 PMCID: PMC7090487 DOI: 10.1007/s12272-017-0933-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
Pneumonia is an inflammatory disease of the lung, responsible for high morbidity and mortality worldwide. It is caused by bacteria, viruses, fungi, or other microorganisms. Streptococcus pneumoniae, a gram-positive bacterium with over 90 serotypes, is the most common causative agent. Moreover, comorbid factors including heart failure, renal disease, and pulmonary disease could increase the risk of pneumococcal pneumonia. Since the advent of the pneumococcal vaccine in the 1980s, the incidence of pneumonia has decreased significantly. However, current vaccines confer only limited protection against serotypes included in the vaccine. Thus, to overcome this limitation, new types of pneumococcal vaccines have been sought and under clinical trials. In this review, we discuss pneumonia and summarize the various types of pneumococcal vaccines in progress.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Seung-Han Seon
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
14
|
Sun X, Wang J, Zhou J, Wang H, Wang X, Wu J, He Y, Yin Y, Zhang X, Xu W. Subcutaneous immunization with Streptococcus pneumoniae GAPDH confers effective protection in mice via TLR2 and TLR4. Mol Immunol 2017; 83:1-12. [DOI: 10.1016/j.molimm.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/28/2016] [Accepted: 01/01/2017] [Indexed: 01/27/2023]
|
15
|
Kim GL, Choi SY, Seon SH, Lee S, Park SS, Song JY, Briles DE, Rhee DK. Pneumococcal pep27 mutant immunization stimulates cytokine secretion and confers long-term immunity with a wide range of protection, including against non-typeable strains. Vaccine 2016; 34:6481-6492. [DOI: 10.1016/j.vaccine.2016.10.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022]
|
16
|
Gao S, Zeng L, Zhang X, Wu Y, Cui J, Song Z, Sun X, Wang H, Yin Y, Xu W. Attenuated Streptococcus pneumoniae vaccine candidate SPY1 promotes dendritic cell activation and drives a Th1/Th17 response. Immunol Lett 2016; 179:47-55. [PMID: 27609353 DOI: 10.1016/j.imlet.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/13/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is one of the causative agent of pneumonia, meningitis, otitis media and sepsis. Vaccination is an effective strategy to combat S. pneumoniae invasion. We previously reported that SPY1, a novel attenuated vaccine candidate against S. pneumoniae, induces a protective immune response against pneumococcal infection in mice. However, underlying mechanisms have yet to be fully illustrated. To explore the mechanism of innate and adaptive immunities induced by SPY1. In this study, bone marrow-derived dendritic cells (DCs) of mice were infected with SPY1 and its parental wild-type strain D39, SPY1-infected DCs were co-cultured with homologous CD4+T cells or adoptive transfer to C57BL/6 mice. Results showed that SPY1 promoted DCs maturation with increased levels of surface molecules such as CD40, CD86, and MHC II, and upregulated the expression of proinflammatory cytokines, including TNF-α, IL-6, IL-12p40, IL-12p70 and IL-23. By contrast, D39 did not efficiently induce DCs activation and maturation. SPY1 could also activate MAPK and NF-κB signaling pathways in DC, but D39 unlikely affected this pathways. SPY1 treated DCs also induced Th1 and Th17 responses in vitro and in vivo. Our results supported the potential of SPY1 as a novel attenuated pneumococcus vaccine, because SPY1-activated DCs exhibit fully matured phenotype, initiated an adaptive immune response, and orchestrated Th1 and Th17 responses.
Collapse
Affiliation(s)
- Song Gao
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, The First Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China
| | - Lingbin Zeng
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, Chengdu Women's and Children's Central Hospital, Chengdu 610091, China
| | - Xuemei Zhang
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yingying Wu
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Cui
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhixin Song
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyu Sun
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- College of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
18
|
Zagólski O, Stręk P, Kasprowicz A, Białecka A. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study. Med Sci Monit 2015; 21:2997-3002. [PMID: 26434686 PMCID: PMC4599189 DOI: 10.12659/msm.893779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. MATERIAL AND METHODS We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). RESULTS Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. CONCLUSIONS The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization.
Collapse
Affiliation(s)
- Olaf Zagólski
- Department of Otorhinolaryngology, St. John Grande's Hospital, Cracow, Poland
| | - Paweł Stręk
- Department of Otolaryngology, Jagiellonian University, Cracow, Poland
| | | | - Anna Białecka
- Centre of Microbiological Research and Autovaccines, Cracow, Poland
| |
Collapse
|
19
|
Zeng L, Liu Y, Wang H, Liao P, Song Z, Gao S, Wu Y, Zhang X, Yin Y, Xu W. Compound 48/80 acts as a potent mucosal adjuvant for vaccination against Streptococcus pneumoniae infection in young mice. Vaccine 2015; 33:1008-16. [DOI: 10.1016/j.vaccine.2015.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 12/25/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
20
|
Mucosal immunization with the live attenuated vaccine SPY1 induces humoral and Th2-Th17-regulatory T cell cellular immunity and protects against pneumococcal infection. Infect Immun 2014; 83:90-100. [PMID: 25312946 DOI: 10.1128/iai.02334-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal immunization with attenuated vaccine can protect against pneumococcal invasion infection, but the mechanism was unknown. Our study found that mucosal delivery with the live attenuated SPY1 vaccine strain can confer T cell- and B cell-dependent protection against pneumococcal colonization and invasive infection; yet it is still unclear which cell subsets contribute to the protection, and their roles in pneumococcal colonization and invasion remain elusive. Adoptive transfer of anti-SPY1 antibody conferred protection to naive μMT mice, and immune T cells were indispensable to protection examined in nude mice. A critical role of interleukin 17A (IL-17A) in colonization was demonstrated in mice lacking IL-17A, and a vaccine-specific Th2 immune subset was necessary for systemic protection. Of note, we found that SPY1 could stimulate an immunoregulatory response and that SPY1-elicited regulatory T cells participated in protection against colonization and lethal infection. The data presented here aid our understanding of how live attenuated strains are able to function as effective vaccines and may contribute to a more comprehensive evaluation of live vaccines and other mucosal vaccines.
Collapse
|