1
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
2
|
Yamaue R, Torikai M, Terashima M, Mori H. KD-409, a Respiratory Syncytial Virus FG Chimeric Protein without the CX3C Chemokine Motif, Is an Efficient Respiratory Syncytial Virus Vaccine Preparation for Passive and Active Immunization in Mice. Vaccines (Basel) 2024; 12:753. [PMID: 39066391 PMCID: PMC11281633 DOI: 10.3390/vaccines12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Although respiratory syncytial virus (RSV) vaccine development initiatives have existed for half a century, no candidate has been approved for application at all ages from neonates to children. Developing an effective and safe RSV vaccine for pediatric use is challenging owing to RSV-associated disease and vaccine-enhanced disease (VED). We aimed to design an RSV vaccine, KD-409, by structurally incorporating the F ectodomain and G protein central conserved domain without the CX3C chemokine motif and test its efficacy and safety. KD-409 formed rosette particles or trimmers. KD-409 immunization of mice mainly induced anti-RSV F protein IgG. The induced anti-F antibodies had a higher IgG2a/IgG1 ratio than pre-fusion F, suggesting that they induced Th1-dominant immunity. Active and passive immunities were assessed by analyzing the viral titers in BALB/c mice intranasally challenged with RSV after intramuscular KD-409 immunization and pups derived from mothers who were intramuscularly vaccinated with KD-409 twice, respectively. KD-409 was more effective than post-fusion F and had a lower minimum effective dose than pre-fusion F. Thus, KD-409 demonstrated great potential as a novel RSV vaccine candidate, outperforming existing RSV F-based candidates. Our findings provide a promising strategy to overcome RSV-associated acute lower respiratory infections without the risk of VED associated with traditional approaches.
Collapse
Affiliation(s)
| | - Masaharu Torikai
- KM Biologics Co., Ltd., Kikuchi Research Center, 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan; (R.Y.); (M.T.)
| | | | | |
Collapse
|
3
|
Leroux-Roels I, Bruhwyler J, Stergiou L, Sumeray M, Joye J, Maes C, Lambert PH, Leroux-Roels G. Double-Blind, Placebo-Controlled, Dose-Escalating Study Evaluating the Safety and Immunogenicity of an Epitope-Specific Chemically Defined Nanoparticle RSV Vaccine. Vaccines (Basel) 2023; 11:vaccines11020367. [PMID: 36851245 PMCID: PMC9967611 DOI: 10.3390/vaccines11020367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND V-306 is a virus-like particle-based vaccine candidate displaying respiratory syncytial virus (RSV) F site II protein mimetics (FsIIm) as an antigenic epitope. METHODS This was a randomized, placebo-controlled, double-blind, dose-escalating, first-in-human study, conducted in 60 women aged 18-45 years. Twenty subjects per cohort (15 vaccine and five placebo) received two V-306 intramuscular administrations on Days 0 and 56 at 15 µg, 50 µg, or 150 µg. Safety and immunogenicity were assessed after each vaccination and for 1 year in total. RESULTS V-306 was safe and well tolerated at all dose levels, with no increase in reactogenicity and unsolicited adverse events between the first and second administrations. At 50 µg and 150 µg, V-306 induced an increase in FsIIm-specific immunoglobulin G (IgG) titers, which lasted at least 4 months. This did not translate into an increase in RSV-neutralizing antibody titers, which were already high at baseline. No increase in the anti-F protein-specific IgG titers was observed, which were also high in most subjects at baseline due to past natural infections. CONCLUSIONS V-306 was safe and well-tolerated. Future modifications of the vaccine and assay conditions will likely improve the results of vaccination.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Jacques Bruhwyler
- Expert Clinical Services Organization (ECSOR) sa/nv, Rue de la Station 78, B-1630 Linkebeek, Belgium
| | - Lilli Stergiou
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
- Correspondence: ; Tel.: +41-4343-38660
| | - Mark Sumeray
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Paul-Henri Lambert
- Department of Paediatrics, Gynecology and Obstetrics, University of Geneva, Rue du Général Dufour 24, 1211 Geneva, Switzerland
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Blanco JCG, Cullen LM, Kamali A, Sylla FYD, Boukhvalova MS, Morrison TG. Evolution of protection after maternal immunization for respiratory syncytial virus in cotton rats. PLoS Pathog 2021; 17:e1009856. [PMID: 34941963 PMCID: PMC8741018 DOI: 10.1371/journal.ppat.1009856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.
Collapse
Affiliation(s)
- Jorge C. G. Blanco
- Sigmovir Biosystems, Inc., Rockville, Maryland, United States of America
| | - Lori M. Cullen
- University of Massachusetts Chan Medical School, Worcester, Massachusetts United States of America
| | - Arash Kamali
- Sigmovir Biosystems, Inc., Rockville, Maryland, United States of America
| | | | | | - Trudy G. Morrison
- University of Massachusetts Chan Medical School, Worcester, Massachusetts United States of America
| |
Collapse
|
5
|
Ciapponi A, Bardach A, Mazzoni A, Alconada T, Anderson SA, Argento FJ, Ballivian J, Bok K, Comandé D, Erbelding E, Goucher E, Kampmann B, Karron R, Munoz FM, Palermo MC, Parker EPK, Rodriguez Cairoli F, Santa María V, Stergachis AS, Voss G, Xiong X, Zamora N, Zaraa S, Berrueta M, Buekens PM. Safety of components and platforms of COVID-19 vaccines considered for use in pregnancy: A rapid review. Vaccine 2021; 39:5891-5908. [PMID: 34489131 PMCID: PMC8360993 DOI: 10.1016/j.vaccine.2021.08.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rapid assessment of COVID-19 vaccine safety during pregnancy is urgently needed. METHODS We conducted a rapid systematic review, to evaluate the safety of COVID-19 vaccines selected by the COVID-19 Vaccines Global Access-Maternal Immunization Working Group in August 2020, including their components and their technological platforms used in other vaccines for pregnant persons. We searched literature databases, COVID-19 vaccine pregnancy registries, and explored reference lists from the inception date to February 2021 without language restriction. Pairs of reviewers independently selected studies through COVIDENCE, and performed the data extraction and the risk of bias assessment. Discrepancies were resolved by consensus. Registered on PROSPERO (CRD42021234185). RESULTS We retrieved 6757 records and 12 COVID-19 pregnancy registries from the search strategy; 38 clinical and non-clinical studies (involving 2,398,855 pregnant persons and 56 pregnant animals) were included. Most studies (89%) were conducted in high-income countries and were cohort studies (57%). Most studies (76%) compared vaccine exposures with no exposure during the three trimesters of pregnancy. The most frequent exposure was to AS03 adjuvant, in the context of A/H1N1 pandemic influenza vaccines, (n = 24) and aluminum-based adjuvants (n = 11). Only one study reported exposure to messenger RNA in lipid nanoparticles COVID-19 vaccines. Except for one preliminary report about A/H1N1 influenza vaccination (adjuvant AS03), corrected by the authors in a more thorough analysis, all studies concluded that there were no safety concerns. CONCLUSION This rapid review found no evidence of pregnancy-associated safety concerns of COVID-19 vaccines or of their components or platforms when used in other vaccines. However, the need for further data on several vaccine platforms and components is warranted, given their novelty. Our findings support current WHO guidelines recommending that pregnant persons may consider receiving COVID-19 vaccines, particularly if they are at high risk of exposure or have comorbidities that enhance the risk of severe disease.
Collapse
Affiliation(s)
- Agustín Ciapponi
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Ariel Bardach
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Agustina Mazzoni
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Tomás Alconada
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina
| | - Steven A Anderson
- US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Fernando J Argento
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Jamile Ballivian
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina
| | - Karin Bok
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 31 Center Dr # 7A03, Bethesda, MD 20892, USA.
| | - Daniel Comandé
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Emily Erbelding
- National Institute of Allergy and Infectious Diseases, 1 Center Dr # 7A03, Bethesda, USA.
| | - Erin Goucher
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA.
| | - Beate Kampmann
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Ruth Karron
- Bloomberg School of Public Health, Johns Hopkins University, 7CX5+8W Baltimore, MD, USA.
| | - Flor M Munoz
- Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA.
| | - María Carolina Palermo
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina
| | - Edward P K Parker
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Federico Rodriguez Cairoli
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Victoria Santa María
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina
| | - Andy S Stergachis
- School of Pharmacy and School of Public Health, University of Washington, MM2R+78 Seattle, WA, USA.
| | - Gerald Voss
- TuBerculosis Vaccine Initiative (TBVI), GHF4+6W Lelystad, the Netherlands.
| | - Xu Xiong
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA.
| | - Natalia Zamora
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina
| | - Sabra Zaraa
- School of Pharmacy, University of Washington, MM2R+78 Seattle, WA, USA.
| | - Mabel Berrueta
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Dr. Emilio Ravignani 2024 C1014CPV, Argentina.
| | - Pierre M Buekens
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA.
| |
Collapse
|
6
|
Ciapponi A, Bardach A, Mazzoni A, Alconada T, Anderson S, Argento FJ, Ballivian J, Bok K, Comandé D, Erbelding E, Goucher E, Kampmann B, Karron R, Munoz FM, Palermo MC, Parker EPK, Cairoli FR, Santa MV, Stergachis A, Voss G, Xiong X, Zamora N, Zaraa S, Berrueta M, Buekens PM. Safety of COVID-19 vaccines, their components or their platforms for pregnant women: A rapid review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.06.03.21258283. [PMID: 34127978 PMCID: PMC8202435 DOI: 10.1101/2021.06.03.21258283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pregnant women with COVID-19 are at an increased risk of severe COVID-19 illness as well as adverse pregnancy and birth outcomes. Many countries are vaccinating or considering vaccinating pregnant women with limited available data about the safety of this strategy. Early identification of safety concerns of COVID-19 vaccines, including their components, or their technological platforms is therefore urgently needed. METHODS We conducted a rapid systematic review, as the first phase of an ongoing full systematic review, to evaluate the safety of COVID-19 vaccines in pregnant women, including their components, and their technological platforms (whole virus, protein, viral vector or nucleic acid) used in other vaccines, following the Cochrane methods and the PRISMA statement for reporting (PROSPERO-CRD42021234185).We searched literature databases, COVID-19 and pregnancy registries from inception February 2021 without time or language restriction and explored the reference lists of relevant systematic reviews retrieved. We selected studies of any methodological design that included at least 50 pregnant women or pregnant animals exposed to the vaccines that were selected for review by the COVAX MIWG in August 2020 or their components or platforms included in the COVID-19 vaccines, and evaluated adverse events during pregnancy and the neonatal period.Pairs of reviewers independently selected studies through the COVIDENCE web software and performed the data extraction through a previously piloted online extraction form. Discrepancies were resolved by consensus. RESULTS We identified 6768 records, 256 potentially eligible studies were assessed by full-text, and 37 clinical and non-clinical studies (38 reports, involving 2,397,715 pregnant women and 56 pregnant animals) and 12 pregnancy registries were included.Most studies (89%) were conducted in high-income countries. The most frequent study design was cohort studies (n=21), followed by surveillance studies, randomized controlled trials, and registry analyses. Most studies (76%) allowed comparisons between vaccinated and unvaccinated pregnant women (n=25) or animals (n=3) and reported exposures during the three trimesters of pregnancy.The most frequent exposure was to AS03 adjuvant in the context of A/H1N1 pandemic influenza vaccines (n=24), followed by aluminum-based adjuvants (n=11). Aluminum phosphate was used in Respiratory Syncytial Virus Fusion candidate vaccines (n=3) and Tdap vaccines (n=3). Different aluminum-based adjuvants were used in hepatitis vaccines. The replication-deficient simian adenovirus ChAdOx1 was used for a Rift Valley fever vaccine. Only one study reported exposure to messenger RNA (mRNA) COVID-19 vaccines that also used lipid nanoparticles. Except for one preliminary report about A/H1N1 influenza vaccination (adjuvant AS03) - corrected by the authors in a more thorough analysis, all studies concluded that there were no safety concerns. CONCLUSION This rapid review found no evidence of pregnancy-associated safety concerns of COVID-19 vaccines that were selected for review by the COVAX MIWG or of their components or platforms when used in other vaccines. However, the need for further data on several vaccine platforms and components is warranted given their novelty. Our findings support current WHO guidelines recommending that pregnant women may consider receiving COVID-19 vaccines, particularly if they are at high risk of exposure or have comorbidities that enhance the risk of severe disease.
Collapse
|
7
|
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev Vaccines 2019; 18:935-950. [PMID: 31446807 DOI: 10.1080/14760584.2019.1657013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes high morbidity and mortality rates among infants, young children, and the elderly worldwide. Unfortunately, a safe and effective vaccine is still unavailable. In 1966, a formalin-inactivated RSV vaccine failed and resulted in the death of two young children. This failure shifted research toward the development of subunit-based vaccines for pregnant women (to passively vaccinate infants) and the elderly. Among these subunit-based vaccines, the viral envelope glycoproteins show great potential as antigens. Areas covered: In this review, progress in the development of safe and effective subunit RSV vaccines based on the viral envelope glycoproteins and intended for pregnant women and the elderly, are reviewed and discussed. Studies published in the period 2012-2018 were included. Expert opinion: Researchers are close to bringing safe and effective subunit-based RSV vaccines to the market using the viral envelope glycoproteins as antigens. However, it remains a major challenge to elicit protective immunity, with a formulation that has sufficient (storage) stability. These issues may be overcome by using the RSV fusion protein in its pre-fusion conformation, and by formulating this protein as a dry powder. It may further be convenient to administer this powder via the pulmonary route.
Collapse
Affiliation(s)
- Max Beugeling
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jildou De Zee
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
8
|
Epitope-Specific Serological Assays for RSV: Conformation Matters. Vaccines (Basel) 2019; 7:vaccines7010023. [PMID: 30813394 PMCID: PMC6466065 DOI: 10.3390/vaccines7010023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in children and older adults. An effective vaccine must elicit neutralizing antibodies targeting the RSV fusion (F) protein, which exists in two major conformations, pre-fusion (pre-F) and post-fusion (post-F). Although 50% of the surface is shared, pre-F contains highly neutralization-sensitive antigenic sites not present on post-F. Recent advancement of several subunit F-based vaccine trials has spurred interest in quantifying and understanding the protective potential of antibodies directed to individual antigenic sites. Monoclonal antibody competition ELISAs are being used to measure these endpoints, but the impact of F conformation and competition from antibodies binding to adjacent antigenic sites has not been thoroughly investigated. Since this information is critical for interpreting clinical trial outcomes and defining serological correlates of protection, we optimized assays to evaluate D25-competing antibodies (DCA) to antigenic site Ø on pre-F, and compared readouts of palivizumab-competing antibodies (PCA) to site II on both pre-F and post-F. We show that antibodies to adjacent antigenic sites can contribute to DCA and PCA readouts, and that cross-competition from non-targeted sites is especially confounding when PCA is measured using a post-F substrate. While measuring DCA and PCA levels may be useful to delineate the role of antibodies targeting the apex and side of the F protein, respectively, the assay limitations and caveats should be considered when conducting immune monitoring during vaccine trials and defining correlates of protection.
Collapse
|
9
|
Gilbert BE, Patel N, Lu H, Liu Y, Guebre-Xabier M, Piedra PA, Glenn G, Ellingsworth L, Smith G. Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge. Vaccine 2018; 36:8069-8078. [PMID: 30389195 DOI: 10.1016/j.vaccine.2018.10.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in newborns, young children, elderly, and immune-compromised. The RSV fusion (F) glycoprotein is a major focus of vaccine development and the target of palivizumab (Synagis®) which is licensed as an immuno-prophylactic for use in newborn children at high risk of infection. However, clinical use of a narrowly targeted monoclonal antibodies leads to the generation of escape mutant strains that are fully resistant to neutralization by the antibody. Herein, we evaluated the RSV F nanoparticle vaccine (RSV F vaccine), produced as near-full-length, pre-fusogenic F trimers that form stable protein-detergent nanoparticles. The RSV F vaccine induces polyclonal antibodies that bind to antigenic site II as well as other epitopes known to be broadly neutralizing. Cotton rats immunized with the RSV F vaccine produced antibodies that were both neutralizing and protected against wild-type RSV infection, as well as against a palivizumab-resistant mutant virus. Use of aluminum phosphate adjuvant with the RSV F vaccine increased site II antibody avidity 100 to 1000-fold, which correlated with enhanced protection against challenge. The breadth of the vaccine-induced antibody response was demonstrated using competitive binding with monoclonal antibodies targeting antigenic sites Ø, II, IV, and VIII found on pre-fusion and post-fusion conformations of RSV F. In summary, we found the RSV F vaccine induced antibodies that bind to conserved epitopes including those defined as pre-fusion F specific; that use of adjuvant increased antibody avidity that correlated with enhanced protection in the cotton rat challenge model; and the polyclonal, high-avidity antibodies neutralized and protected against both wild-type and palivizumab-resistant mutant virus. These data support the ongoing clinical development of the aluminum phosphate adjuvanted RSV F nanoparticle vaccine.
Collapse
Affiliation(s)
- Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | | | - Hanxin Lu
- Novavax, Inc., Gaithersburg, MD, USA.
| | - Ye Liu
- Regenxbio, Inc., Rockville, MD, USA(1).
| | | | - Pedro A Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | |
Collapse
|
10
|
Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, Mejias A, Karron RA, Simões EA, Knezevic I, Ramilo O, Piedra PA, Chu HY, Falsey AR, Nair H, Kragten-Tabatabaie L, Greenough A, Baraldi E, Papadopoulos NG, Vekemans J, Polack FP, Powell M, Satav A, Walsh EE, Stein RT, Graham BS, Bont LJ. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. THE LANCET. INFECTIOUS DISEASES 2018; 18:e295-e311. [PMID: 29914800 DOI: 10.1016/s1473-3099(18)30292-5] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/02/2023]
Abstract
The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: (1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious diseases in young children and older adults worldwide.
Collapse
Affiliation(s)
- Natalie I Mazur
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands; Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Deborah Higgins
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Marta C Nunes
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands
| | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III Majadahonda, Madrid, Spain
| | - Annefleur C Langedijk
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Nicole Horsley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter J Openshaw
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Asuncion Mejias
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Pediatrics, Division of Infectious Diseases, Center for Vaccines and Immunity at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Departamento de Farmacología y Pediatria, Facultad de Medicina, Universidad de Malaga, Malaga, Spain
| | - Ruth A Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Af Simões
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Epidemiology Center for Global Health, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana Knezevic
- Norms and Standards for Biologicals, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Octavio Ramilo
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Pediatrics, Division of Infectious Diseases, Center for Vaccines and Immunity at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Helen Y Chu
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands
| | - Ann R Falsey
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Medicine, University of Rochester and Rochester General Hospital, Rochester, NY, USA
| | - Harish Nair
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Leyla Kragten-Tabatabaie
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Julius Clinical, Zeist, Netherlands
| | - Anne Greenough
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, School of Life Course Sciences, King's College London, London, UK
| | - Eugenio Baraldi
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Nikolaos G Papadopoulos
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Allergy Department, 2nd Paediatric Clinic, National Kapodistrian University of Athens, Athens, Greece; Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - Fernando P Polack
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Fundacion INFANT, Buenos Aires, Argentina
| | - Mair Powell
- Licensing Division, Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK
| | - Ashish Satav
- Mahatma Gandhi Tribal Hospital, Karmagram, Utavali, Tahsil, Dharni, India
| | - Edward E Walsh
- Department of Medicine, University of Rochester and Rochester General Hospital, Rochester, NY, USA
| | - Renato T Stein
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Pontificia Universidade Católica RGS (PUCRS), Porto Alegre, Brazil
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Louis J Bont
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands; Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands; Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands.
| | | |
Collapse
|
11
|
Blanco JCG, Boukhvalova MS, Morrison TG, Vogel SN. A multifaceted approach to RSV vaccination. Hum Vaccin Immunother 2018; 14:1734-1745. [PMID: 29771625 PMCID: PMC6067850 DOI: 10.1080/21645515.2018.1472183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/12/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. In addition, RSV infections occur throughout different ages, thus, maintaining the virus in circulation, and increasing health risk to more susceptible populations such as infants, the elderly, and the immunocompromised. To date, there is no vaccine approved to prevent RSV infection or minimize symptoms of infection. Current clinical trials for vaccines against RSV are being carried out in four very different populations. There are vaccines that target two different pediatric populations, infants 2 to 6 month of age and seropositive children over 6 months of age, as well as women (non-pregnant or pregnant in their third trimester). There are vaccines that target adult and elderly populations. In this review, we will present and discuss RSV vaccine candidates currently in clinical trials. We will describe the preclinical studies instrumental for their advancement, with the goal of introducing new preclinical models that may more accurately predict the outcome of clinical vaccine studies.
Collapse
|
12
|
Scheltema NM, Kavelaars XM, Thorburn K, Hennus MP, van Woensel JB, van der Ent CK, Borghans JAM, Bont LJ, Drylewicz J. Potential impact of maternal vaccination on life-threatening respiratory syncytial virus infection during infancy. Vaccine 2018; 36:4693-4700. [PMID: 29941327 DOI: 10.1016/j.vaccine.2018.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is an important cause of infant mortality. Here, we estimated the potential impact of maternal vaccination against RSV on life-threatening RSV infection in infants. METHODS We developed a mathematical model for maternal vaccine-induced antibody dynamics and used characteristics of a maternal RSV vaccine currently in phase 3 of clinical development. The model was applied to data from two cohorts of children younger than 12 months with RSV-related paediatric intensive care unit (PICU) admission in the United Kingdom (n = 370) and the Netherlands (n = 167), and a cohort of 211 children younger than 12 months with RSV-related in-hospital death from 20 countries worldwide. RESULTS Our model predicted that, depending on vaccine efficiency, maternal vaccination at 30 weeks' gestational age could have prevented 62-75% of RSV-related PICU admissions in the United Kingdom and 76-87% in the Netherlands. For the global mortality cohort, the model predicted that maternal vaccination could have prevented 29-48% of RSV-related in-hospital deaths. Preterm children and children with comorbidities were predicted to benefit less than (healthy) term children. CONCLUSIONS Maternal vaccination against RSV may substantially decrease life-threatening RSV infections in infants.
Collapse
Affiliation(s)
- Nienke M Scheltema
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xynthia M Kavelaars
- Department of Methods and Statistics, Tilburg University, Tilburg, The Netherlands
| | - Kentigern Thorburn
- Department of Paediatric Intensive Care, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Marije P Hennus
- Department of Paediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Job B van Woensel
- Department of Paediatric Intensive Care, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
| | - Cornelis K van der Ent
- Department of Paediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, The Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S, Zhang J, Moldt B, Khan A, Svabek C, McAuliffe JM, Wrapp D, Patel NK, Cook KE, Richter BWM, Ryan PC, Yuan AQ, Suzich JA. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci Transl Med 2018; 9:9/388/eaaj1928. [PMID: 28469033 DOI: 10.1126/scitranslmed.aaj1928] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA.
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755, USA
| | - Nicole L Kallewaard
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Nancy D Ulbrandt
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Susan Palaszynski
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jing Zhang
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Brian Moldt
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Anis Khan
- Department of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Catherine Svabek
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Josephine M McAuliffe
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Daniel Wrapp
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755, USA
| | - Nita K Patel
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kimberly E Cook
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Bettina W M Richter
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Patricia C Ryan
- Biologics Safety Assessment, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Andy Q Yuan
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - JoAnn A Suzich
- Department of Infectious Disease, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
14
|
Vermillion MS, Klein SL. Pregnancy and infection: using disease pathogenesis to inform vaccine strategy. NPJ Vaccines 2018; 3:6. [PMID: 29423318 PMCID: PMC5794984 DOI: 10.1038/s41541-017-0042-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the mainstay of preventative medicine for many infectious diseases. Pregnant women, unborn fetuses, and neonates represent three at-risk populations that can be simultaneously protected by strategic vaccination protocols. Because the pathogenesis of different infectious microbes varies based on tissue tropism, timing of infection, and host susceptibility, the goals of immunization are not uniform across all vaccines. Mechanistic understanding of infectious disease pathogenesis and immune responses is therefore essential to inform vaccine design and the implementation of appropriate immunization protocols that optimize protection of pregnant women, fetuses, and neonates.
Collapse
Affiliation(s)
- Meghan S. Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| |
Collapse
|
15
|
Juch H, Nikitina L, Reimann S, Gauster M, Dohr G, Obermayer-Pietsch B, Hoch D, Kornmueller K, Haag R. Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Nanotoxicology 2018; 12:90-103. [PMID: 29334310 PMCID: PMC5815307 DOI: 10.1080/17435390.2018.1425496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A thorough understanding of nanoparticle bio-distribution at the feto-maternal interface will be a prerequisite for their diagnostic or therapeutic application in women of childbearing age and for teratologic risk assessment. Therefore, the tissue interaction of biocompatible dendritic polyglycerol nanoparticles (dPG-NPs) with first- trimester human placental explants were analyzed and compared to less sophisticated trophoblast-cell based models. First-trimester human placental explants, BeWo cells and primary trophoblast cells from human term placenta were exposed to fluorescence labeled, ∼5 nm dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10 nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence microscopy. To assess the impact of dPG-NP on trophoblast integrity and endocrine function, LDH, and hCG releases were measured. A dose- and charge-dependent accumulation of dPG-NPs was observed at the early placental barrier and in cell lines, with positive dPG-NP-surface causing deposits even in the mesenchymal core of the placental villi. No signs of plasma membrane damage could be detected. After 24 h we observed a significant reduction of hCG secretion in placental explants, without significant changes in trophoblast apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP’s surface charge substantially influences their bio-distribution at the feto-maternal interface, with positive charge facilitating trans-trophoblast passage, and in contrast to more artificial models, the first-trimester placental explant culture model reveals potentially hazardous influences of charged dPG-NPs on early placental physiology.
Collapse
Affiliation(s)
- Herbert Juch
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Liudmila Nikitina
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Sabine Reimann
- b Institute of Chemistry and Biochemistry-Organic Chemistry , Freie Universität Berlin , Berlin , Germany
| | - Martin Gauster
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Gottfried Dohr
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | | | - Denise Hoch
- d Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Karin Kornmueller
- e Institute of Biophysics , Medical University of Graz , Graz , Austria
| | - Rainer Haag
- b Institute of Chemistry and Biochemistry-Organic Chemistry , Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
16
|
Vandini S, Biagi C, Lanari M. Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection. Int J Mol Sci 2017; 18:ijms18081717. [PMID: 28783078 PMCID: PMC5578107 DOI: 10.3390/ijms18081717] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the recently defined Pneumoviridae family, Orthopneumovirus genus. It is the leading cause of acute bronchiolitis and one of the most common causes of infant viral death worldwide, with infection typically occurring as recurrent seasonal epidemics. There are two major RSV subtypes, A and B, and multiple genotypes, which can coexist during RSV epidemic season every year and result in different disease severity. Recently, new RSV genomic sequences and analysis of RSV genotypes have provided important data for understanding RSV pathogenesis. Novel RSV strains do spread rapidly and widely, and a knowledge of viral strain-specific phenotypes may be important in order to include the more virulent strains in future therapeutical options and vaccine development. Here we summarize recent literature exploring genetic and molecular aspects related to RSV infection, their impact on the clinical course of the disease and their potential utility in the development of safe and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Vandini
- Pediatrics and Neonatology Unit, Imola Hospital, 40026 Imola, Italy.
| | - Carlotta Biagi
- Department of Pediatric Emergency, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Marcello Lanari
- Department of Pediatric Emergency, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy.
| |
Collapse
|
17
|
Blanco JCG, Pletneva LM, Otoa RO, Patel MC, Vogel SN, Boukhvalova MS. Preclinical assessment of safety of maternal vaccination against respiratory syncytial virus (RSV) in cotton rats. Vaccine 2017. [PMID: 28624306 DOI: 10.1016/j.vaccine.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maternal immunization directed to control RSV infection in newborns and infants is an appealing vaccination strategy currently under development. In this work we have modeled maternal vaccination against RSV in cotton rats (CR) to answer two fundamental questions on maternal vaccine safety. We tested (i), whether a known, unsafe RSV vaccine (i.e., FI-RSV Lot 100 vaccine) induces vaccine enhanced disease in the presence of passively transferred, RSV maternal immunity, and (ii) whether the same FI-RSV vaccine could induce vaccine enhanced disease in CR litters when used to immunize their RSV-primed mothers. Our data show that FI-RSV immunization of pups with subsequent RSV infection results in vaccine-enhanced disease independent of whether the pups were born to RSV-seropositive or RSV-seronegative mothers, and that FI-RSV immunization of RSV-seropositive mothers does not present a health risk to either the mother or the infant. Our study also raises a novel concern regarding infant immunization, namely that "safe" RSV vaccines (e.g., live RSV administered intramuscularly) may induce vaccine-enhanced disease in RSV-infected pups born to seropositive mothers. Finally, we describe for the first time a sharp decrease in RSV neutralizing antibody titers in immunized seropositive CR at the time of delivery. This decline may reflect maternal immune suppression, potentially pinpointing a window of increased vulnerability to RSV infection that could be alleviated by effective immunization of expectant mothers.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Raymonde O Otoa
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| |
Collapse
|
18
|
Villafana T, Falloon J, Griffin MP, Zhu Q, Esser MT. Passive and active immunization against respiratory syncytial virus for the young and old. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28525961 DOI: 10.1080/14760584.2017.1333425] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants worldwide and also causes significant disease in the elderly. Despite 60 years of RSV research and vaccine development, there is only one approved medicine to prevent RSV infections. Palivizumab, a monoclonal antibody (mAb) against the RSV fusion (F) protein, is indicated for preterm infants and children at high-risk for RSV infections. It is an active time in RSV vaccine and mAb development with 14 vaccines and 2 mAbs currently being tested in clinical trials as of 13 February 2017. Active vaccination of women in the third trimester or passive immunization of infants with a mAb are particularly attractive approaches as the most severe disease occurs within the first 6 months of life. Areas covered: Here, we review current approaches for preventing RSV in the young and old, describe proposed clinical endpoints for studies in pediatric and adult clinical trials and highlight results from recent and ongoing clinical studies. Expert commentary: With 16 candidates in clinical development, approval of the first RSV vaccine or mAb for the prevention of RSV in all infants or the elderly is likely to occur in the next five years.
Collapse
Affiliation(s)
| | | | | | - Qing Zhu
- a MedImmune LLC , Gaithersburg , MD , USA
| | | |
Collapse
|
19
|
Rezaee F, Linfield DT, Harford TJ, Piedimonte G. Ongoing developments in RSV prophylaxis: a clinician's analysis. Curr Opin Virol 2017; 24:70-78. [PMID: 28500974 DOI: 10.1016/j.coviro.2017.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children worldwide. Lower respiratory tract infection due to RSV is one of the most common causes of hospitalization for infants, especially those born premature or with chronic lung or heart disease. Furthermore, RSV infection is an important cause of morbidity in adults, particularly in the elderly and immunocompromised individuals. The acute phase of this infection is often followed by episodes of wheezing that recur for months or years and usually lead to a physician diagnosis of asthma. RSV was discovered more than 50 years ago, and despite extensive research to identify pharmacological therapies, the most effective management of this infection remains supportive care. The trial of a formalin-inactivated RSV vaccine in the 1960s resulted in priming the severe illness upon natural infection. Currently, Palivizumab is the only available option for RSV prophylaxis, and because of restricted clinical benefits and high costs, it has been limited to a group of high-risk infants. There are several ongoing trials in preclinical, Phase-I, Phase-II, or Phase-III clinical stages for RSV vaccine development based on various strategies. Here we review the existing available prophylactic options, the current stages of RSV vaccine clinical trials, different strategies, and major hurdles in the development of an effective RSV vaccine.
Collapse
Affiliation(s)
- Fariba Rezaee
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States.
| | - Debra T Linfield
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| | - Terri J Harford
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| | - Giovanni Piedimonte
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| |
Collapse
|
20
|
Sakudo A, Toyokawa Y, Imanishi Y, Murakami T. Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:131-136. [PMID: 28254277 DOI: 10.1016/j.msec.2017.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 12/01/2022]
Abstract
The exact mechanisms by which nanoparticles, especially those composed of soft materials, are modified by gas plasma remain unclear. Here, we used respiratory syncytial virus (RSV), which has a diameter of 80-350nm, as a model system to identify important factors for gas plasma modification of nanoparticles composed of soft materials. Nitrogen gas plasma, generated by applying a short high-voltage pulse using a static induction (SI) thyristor power supply produced reactive chemical species (RCS) and caused virus inactivation. The plasma treatment altered the viral genomic RNA, while treatment with a relatively low concentration of hydrogen peroxide, which is a neutral chemical species among RCS, effectively inactivated the virus. Furthermore, a zero dimensional kinetic global model of the reaction scheme during gas plasma generation identified the production of various RCS, including neutral chemical species. Our findings suggest the nitrogen gas plasma generates RCS, including neutral species that damage the viral genomic RNA, leading to virus inactivation. Thus, RCS generated by gas plasma appears to be crucial for virus inactivation, suggesting this may constitute an important factor in terms of the efficient modification of nanoparticles composed of soft materials.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| | - Yoichi Toyokawa
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | | | - Tomoyuki Murakami
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
| |
Collapse
|
21
|
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27312983 DOI: 10.1002/wnan.1416] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Nanomedicine is a relatively new field that is rapidly evolving. Formulation of drugs on the nanoscale imparts many physical and biological advantages. Such advantages can in turn translate into improved therapeutic efficacy and reduced toxicity. While approximately 50 nanotherapeutics have already entered clinical practice, a greater number of drugs are undergoing clinical investigation for a variety of indications. This review aims to examine all the nanoformulations that are currently undergoing clinical investigation and their outlook for ultimate clinical translation. WIREs Nanomed Nanobiotechnol 2017, 9:e1416. doi: 10.1002/wnan.1416 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joseph M Caster
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Artish N Patel
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tian Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Yamaji Y, Yasui Y, Nakayama T. Development of Acquired Immunity following Repeated Respiratory Syncytial Virus Infections in Cotton Rats. PLoS One 2016; 11:e0155777. [PMID: 27224021 PMCID: PMC4880180 DOI: 10.1371/journal.pone.0155777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/14/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections occur every year worldwide. Most infants are infected with RSV by one year of age and are reinfected because immune responses after the first infection are too weak to protect against subsequent infections. In the present study, immune responses against RSV were investigated in order to obtain a better understanding of repetitive RSV infections in cotton rats. No detectable neutralizing antibody (NT) was developed after the first infection, and the second infection was not prevented. The results of histological examinations revealed severe inflammation, viral antigens were detected around bronchial epithelial cells, and infectious viruses were recovered from lung homogenates. Following the second infection neutralizing antibodies were significantly elevated, and CD8+ cells were activated in response to RSV-F253-265. No viral antigens was detected thereafter in lung tissues and infectious viruses were not recovered. Similar results were obtained in the present study using the subgroups A and B. These results support the induction of humoral and cellular immune responses following repetitive infections with RSV; however, these responses were insufficient to eliminate viruses in the first and second infections.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108–8641, Japan
| | - Yosuke Yasui
- Health Center, Keio University, Kanagawa 223–8521, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108–8641, Japan
- * E-mail:
| |
Collapse
|